化学杂交剂——GENESIS诱导小麦雄性不育机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上种植面积最大和适应性最广泛的作物,是包括水稻、玉米和马铃薯在内人类消费量最大的粮食作物。我国是世界上小麦生产大国,在我国小麦是仅次于水稻的第二大粮食作物,小麦年播种面积2800万公顷,总产量1.20亿吨。在今后30-40年内,我国人口预计将达到16亿,粮食的需求量将增加两倍,小麦作为我国主要的粮食作物,其总产量则必须快速和持续地增长。小麦总产量的增加有两条途径:一是扩大小麦种植面积;二是提高小麦单产。扩大小麦种植面积的空间极小,因为我国的可耕地面积逐年减少,非农业用地面积连年增加,特别是自1998年开始,我国对农业生态系统做出一系列调整,如封山造林、退耕还林、以粮代赈等,导致小麦种植面积逐年缩减,所以只有提高小麦单产,才能有效地提高我国小麦总产量,以满足人们的消费需求。利用杂种优势大幅度提高农作物产量,已在许多作物,如玉米、水稻和油菜等获得了巨大的经济效益,取得了举世瞩目的成就。许多研究和生产实践表明,小麦也具有明显的杂种优势,深入研究与开发利用,并推向产业化是大幅度提高小麦产量的重要途径。小麦杂种优势研究利用的途径有三条,分别为:细胞核质互作雄性不育(Cytoplasm Male Sterility,缩写为CMS);化学杂交剂诱导雄性不育(Chemical Hybridization Agents,缩写为CHA);核雄性不育(Nucleus Male Sterility,缩写为NMS)(遗传型核不育和光温敏核不育)。比较上述三条途径,因CHA途径亲本选择自由,可以直接利用常规品种等优点,成为目前小麦杂种优势研究利用的主要途径。但CHA途径的关键是必须有一个优良的化学杂交剂。GENESIS是美国孟山都公司(Monsanto Company)研制的一种高效、低毒的新型化学杂交剂,刘宏伟等研究证明,GENESIS诱导小麦雄性不育彻底,对小麦雌蕊育性没有影响,且与不同基因型品种间无显著互作效应,被认为是目前应用于杂种小麦商业化研究中最优良的CHA。为了更好地开发利用GENESIS,探索化学杂交剂诱导诱导小麦雄性不育机理,亦为进一步合成筛选更优良的CHA提供理论依据。本研究对经GENESIS诱导后雄性不育花粉粒发育的超微结构的变化、幼穗和花药中乙烯含量变化、幼穗和花药中超氧化物歧化酶(Superoxide Dismutase,缩写为SOD)、过氧化氢酶(Catalase,缩写为CAT)和过氧化物酶(Peroxide,缩写为POD)活性的变化、幼穗和花药中可溶性蛋白质含量的变化以及乙烯合成抑制剂对小麦CMS育性调控效应进行了研究。结果如下:
     与可育花粉粒相比较,经GENESIS诱导后雄性不育花粉粒发育的超微结构发生了显著变化,雄性不育花粉粒的内壁结构没有形成。花粉粒内壁不仅承担着对花粉粒内外物质进行运输的功能,而且还具有合成花粉粒后期发育、萌发、管壁形成及伸长所需物质与蛋白质的功能。花粉粒内壁没有形成直接影响了花粉粒内外物质的
    
    ——.
    传输和花粉粒后期发育所需物质的合成,内壁结构没有形成从而导致花粉粒败育:
    在败育花粉粒中还观察到,在花粉粒发育到“大液泡期”时,其液泡膜破裂,导致
    膜系统破坏,使液泡中所含水解酶释放细胞质中,导致细胞解体,花粉粒败育。败
    育花粉粒内无淀粉粒的积累,且线粒体的峭少又模糊不清,淀粉粒为细胞中的能量
    物质,线粒体为细胞的能量工厂,两者均出现异常,使细胞中能量供应不足,引起
    花粉粒败育。
     在众多的调节植物生长发育的植物激素中,乙烯是结构最简单的一种,这个只有
    两个碳原子的气体分子对植物的代谢调节可贯穿植物整个生活周期。乙烯可以调节
    小泡子细胞内蛋白质、淀粉以及DNA和RNA的代谢与合成,从而导致小抱子细胞
    的发育过程发生变化,引起花粉粒败育,乙烯作为一种CHA应用于诱导小麦雄性不
    育。经GENESIS处理后,与可育幼穗和花药相比,不育小麦幼穗或花药中乙烯释放
    量显著增加,乙烯释放量的增加,引起与乙烯相关的一系列生理生化的变化,从而导致
    花粉粒发生败育。对幼穗和花药细胞内活性氧清除酶SOD、POD和CAI酶活性进
    行了测定,发现经GEN’ESIS处理以后,SOD、POD和 CAT活性显著低于对照,且
    三种酶活性降低速度剧烈,这样将导致细胞内活性氧积累,加剧膜脂过氧化,使花
    粉在发育过程中膜及细胞器膜解体退化,使花粉败育。对幼穗和花药中可溶性蛋白
    含量进行了测定,发现幼穗和花药中可溶性蛋白含量降低,影响了幼穗和花药中蛋
    白质的正常代谢,使花粉败育。
     乙烯在植物育性调控中具有极其重要的作用,无论在CMS不育或CHA诱导的
    不育中,乙烯的释放量均发生了显著的变化。本研究利用乙烯合成抑制剂硫代酸银
     (STS)和氨基乙氧基甘氨酸(AVG)对 CMS不育系中内源乙烯释放量进行抑制研
    究,结果发现用乙烯合成抑制剂处理后,CMS不育系幼穗和花药中乙烯释放量降低,
    不育系育性得到一定的恢复,自交结实率由原来0最高增加到7.3%。说明通过抑制
    CMS不育系中乙烯释放量,可以使雄性不育恢复为雄性可育,使CMS不育系可通
    过化学诱导进行自交结实繁殖。这扩大了小麦化学杂交剂的内涵,使小麦化学杂交
    育种技术更加丰富多彩。
Common wheat (Triticitm aestivwn L.) is grown across a wide range of environments around the world. Wheat is the number one food grain consumed directly by humans, including rice, maize, and potatoes. China is the largest wheat producer in the world. Wheat is the second leading cereal crop in China, with annual wheat area and production totaling 28 million ha. and 120 million tons. Chinese population is predicted to reach 1.6 billion people during the next 30 to 40 years. It will be need to double the supply of food during this times, just to keep pace with population growth. Wheat is a leading national food source. Wheat will no doubt become more important, which underscores the need to rapidly and continuously increase production. Greater wheat production can be achieved in two ways only: (i) by expanding the area sown, and (ii) by improving the yield per unit of area sown. It will be small room to expand the area sown. Because the fanning land will be used to grow wheat will decrease year after year. The area of nonagricultural uses will increase every year. Increased use of productive agriculture lands for growing wheat is not likely. Especially starting from 1998, Chinese government put more attention to agriculture ecosystem More trees have been planted on side of hill where had been sown wheat before. So the area sown of wheat decreased every year. In order to provide enough food to people and to meet the increasing grain demands in our country, increased wheat production must get from higher yield. Greater yield per unit of area sown can be achieved in many ways. Utilizing heterosis in crop is an important way to increase yield. The successful utilization of heterosis in rice, corn, oil rapeseed and other crops give hybrid wheat breeders a bright future. Now there are three methods used for producing hybrid wheat seed, including cytoplasm male sterility (abbreviated CMS), chemical hybridization agents (abbreviated CHA) and nucleus male sterility (abbreviated NMS). Comparing with those three ways, CHA system is an important method to produce hybrid wheat seed. The CHA system can simplify and increase the efficiency of the hybrid breeding programs, and dramatically increase the range of germplasm that can be utilized in development of hybrids. The male and female parents can be chosen freely from wheat conventional varieties. The development of a successful CHA system must have a reliable hybridization technology. In an other words, an effective CHA is bottleneck in hybrid wheat research program. GENESIS has been used successfully in many geographical areas in Europe and U.S.A. Several hybrid wheat varieties have been produced commercially using GENESIS Hybridization agent, which was developed in the USA by Monsanto Company. In 1996, the former Northwest Agricultural University (Northwest Sci-Tech University of Agriculture and Forestry) cooperated with Monsanto Company and introduced GENESIS (MON21200) into China for efficacy test. After 3 years efficacy test and genotype test, more than 500 genotypes were screened. The results indicated that GENESIS could induce completely male sterility, no strong interaction and side effect on
    
    
    
    female fertility was found among genotype and GENESIS under commercial rate. All results were proofed that GENESIS was a promising CHA for wheat in commercial hybrid wheat production. In 2000, one hybrid named XiZa NO.1 was released by Northwest Sci-Tech University of Agriculture and Forestry. In order to develop and to utilize GENESIS effectively, and to understand of the mechanisms involved in male sterility, and to get more knowledge about male sterility inducing by GENESIS, and to screen new CHA bttter, it is essential to study the mechanisms of pollen abortion in male sterility induced by GENESIS. In this paper, by using the methods of semi-thin and thin section, ultrastructure in the inline of K-Yun A (male sterility line with Ae. Kotschyi cytoplasm), CHA-Yun B (male sterility induced by GENESIS) and 77(2) (male fertility as a check) were comparatively studied. Effects of
引文
1.杨景成,于元杰,齐延芳等.小麦D型细胞质雄性不育系和保持系小孢子发育的超微结构观察[J].作物学报,2001,27(1):91-94
    2.杨光圣,瞿波,傅延栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究[J].华中农业大学学报,1999,18(6):520-523
    3.姚雅琴,张改生,刘宏伟等.K型和T型小麦雄性不育花粉粒形态与细胞化学定位[J].中国农业科学,2002,35(2):123-126
    4.姚雅琴,张改生,刘宏伟等.K型雄性不育系及保持系花药小孢子不同发育期ATP酶活性变化[J].中国农业科学,2000,33(3):97-99
    5.胡适宜,王模善,徐丽云.小麦雄性不育系和保持系的小孢子发育的电子显微镜研究[J].植物学报,1977,19(3):167-171
    6.李传友,孙兰珍.小麦同核异质雄性不育系花粉发育的超微结构[J].华北农学报,1998,13(1):24-29
    7.徐是雄.植物材料的薄切片、超薄切片技术[M].北京:北京大学出版社,1981:4-62
    8.陆文梁,郭仲琛.小孢子发生和花粉发育的细胞学观察[J].植物学报,1984,26(1):28-33
    9.李祥义,邓景阳.太谷核不育雄性败育过程中的细胞形态学研究[J].作物学报,1983.9(2):151-156
    10.陈朱希昭.太谷核不育小麦小孢子发育和败育过程的电子显微镜观察[J].中国农业科学,1985,11(5):16-20
    11.王台,童哲.光周期敏感核不育水稻农垦58S不育花的显微结构变化[J].作物学报,1980,6(4):225-230
    12.何蓓如,王忠明,王鸿钧等.K型小麦雄性不育系的花药和花粉发育[C].北京:农业出版社,1993,99-105
    13.孙国庆,程俊源,刘录祥.同核异质小麦雄性不育小孢子发育的细胞形态学观察[C].北京:农业出版社,1993,133-137
    14.姚雅琴,杨天章.小麦药壁表皮细胞与药室内壁细胞超微结构[J].西北农业大学学报,1996,24(4):39-45
    15.徐树华.全国水稻主要雄性不育系类型花粉发育的细胞学观察[J].中国农业科学,1982,(2):9-14
    16.湖南师范学院生物系水稻杂优组.水稻雄性不育的花粉败育途径[J].中国农业科学,1978(3):1-7
    17.冯九焕,卢永根,刘向东.水稻光温敏核雄性不育培矮64S花粉败育的细胞学机理[J].中国水稻科学,2000,14(1):7-14.
    
    
    18.李英贤,张爱民.植物雄性不育激素调控研究进展[J].中国农学通报,1995,14(3):25-28
    19.周培疆,凌杏元,张端阳.植物细胞质雄性不育的能量代谢及其分子机制[J].植物生理学通讯,1999,35(6):491-500
    20.田长恩,梁承邺,黄毓文等.乙烯与水稻细胞质雄性不育的关系[J].作物学报,1999,25(1) 116-119
    21.田长恩,张明永,梁承邺等.植物雄性不育生理生化研究新进展[J].生命科学,1999,11,增刊:94-97
    22.田长恩,梁承邺.多胺对水稻CMS系及保持系幼穗蛋白质、核酸和活性氧代谢的影响[J].植物生理学报,1999,25(3):222-228
    23.苏小军,蒋跃明.新型乙烯受体抑制剂—1-甲基环丙烯在采后园艺作物中的应用[J].植物生理学通迅,2001,37(4):361-363
    24.孙大业,郭艳林,马力耕编著.细胞信号转导[M].北京:科学出版社,1999
    25.汤福强,刘愚.植物乙烯生物合成研究进展[J].植物生理学通讯,1994,30(1):3-10
    26.冯剑亚,俞炳果,曹大铭.乙烯利和氯化钴对光敏核不育系幼穗中多胺和乙烯含量的影响[J].南京农业大学学报,1992,15(2):127-129
    27.骆炳山,李文斌,屈映兰.湖北光敏核不育水稻育性转换机理初控[J].华中农业大学学报,1990,9(1)5:7-12
    28.柯德森,王爱国,罗广华.活性氧在外源乙烯诱导内源乙烯产生过程中的作用[J].植物生理学报,1997,23(1):67-72
    29.黄园存,张继澍,孙大业.乙烯利、GA_3对采后番茄果实中乙烯,CaM含量的影响[J].植物生理学通讯,1993,19(16):267-271
    30.赵德刚,韩玉珍,傅永福.玉米雌、雄穗与叶片内几种激素含量的比较[J].植物生理学报,1999,25(1):57-65
    31.波钦诺克XH.植物生理化学分析方法(荆家海,丁钟荣译)[M].北京:科学出版社,1981
    32.李德红,骆炳山,屈映兰.光敏核不育水稻幼穗的乙烯生成与育性转换[J].植物生理学报,1996,22(3):320-326
    33.络炳山,李德红,屈映兰.乙烯与光敏核不育水稻育性转换关系[J].中国水稻科学.1993,7(1):7-14
    34.张能刚,周燮.三种内源酸性植物激素与农垦58S育性转换的关系[J].南京农业大学学报,1992,15(3):7-12
    35.田长恩,段俊,梁承邺.乙烯对水稻CMS系及其保持系蛋白质、核酸和活性氧代谢的影响[J].中国农业科学,1999,32(5):36-42
    36.黄雪清,高东迎,杨安南等.化学杀雄剂Ⅲ号诱导水稻雄性不育过程中幼穗、颖花、花药中核酸和蛋白质代谢研究[J].作物学报,2001,27(6):827-731
    
    
    37.上海植物生理学会编.植物生理学实验指导[M].上海:上海科技出版社,1985:44-45
    38.王爱国,罗广华.植物超氧化物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,(6):55-57
    39.朱广廉,曹宋巽.太谷核不育小麦不育株和可育株花药内游离氨基酸成分的比较分析[J].物生理学报,1984,10(3):185-189
    40.赵会杰,刘华山,林学梧.小麦胞质不育系花粉败育与活性氧代谢关系的研究[J].作物学报.1996,22(3):365-367
    41.段俊,梁承邺,张明永.玉米细胞质雄性不育与膜脂过氧化的关系[J].植物生理学通讯,1996,32(5) 331-334
    42.冯剑亚,俞炳景,曹大铭.光敏核不育水稻幼穗发育过程中多胺的变化[J].南京农业大学学报,1991,14(1):12-16
    43.李合生,陈翠连,洪玉枝主编.植物生理生化实验原理和技术[M].华中农业大学规划教材,1998,136-137
    44.邹琦主编.植物生理生化实验指导[M].北京:中国农业出版社,1995,97-99
    45.苏俊英,吕德彬,程西永.化学杂交剂Genesis及Sc2053对小麦穗部过氧化物酶活性的影响[J].河南农业大学学报,2000,34(4):309-311
    46.张明永,梁承邺,段俊.油菜细胞质雄性不育系发育进程中活性氧的代谢[J].植物学报,1997,39(5):480-482
    47.朱广廉,钟海文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990:51-54
    48.高东迎,杜春光,李正玮等.温敏雄性不育小麦C94S小孢子败育的细胞学研究[J].西南农业大学学报,1998,20(1):16-18
    49.张明永,梁承邺,段俊等.CMS水稻不同器官的膜脂过氧化水平[J].作物学报,1997,23(5):603-606
    50.黄庆榴,唐锡华,茅剑蕾.粳型光敏核不育水稻7001S的光温反应特性与花粉育性转换及其过程中花药蛋白质的变化[J].作物学报,1994,20(2):156-160
    51.刘春光,吴郁文,侯宁等.小麦D~2型细胞质雄性不育系配子发育的细胞形态特征和同工酶的研究[J].遗传学报,1995,22(3):199-205
    52.刘春光,吴郁文,侯宁等.4个普通小麦同核异质系的遗传特征研究[J].遗传学报,1999,26(6):657-665
    53.沈银柱,刘植义,黄占景等.不同化学杂交剂(CHA)对小麦花药同工酶影响的研究[J].遗传学报,1999,21(5):41-46
    54.周美兰,程尧楚,邹应斌等.光温敏核不育小麦ES-14花粉败育的细胞学研究[J].作物研究,1996,4:20-23
    55.张爱民,李英贤,黄铁城.小麦雄性不育与内源激素关系的初步研究[J].农业生物技术学报,1996,4(1):56-61
    
    
    56.李英贤,张爱民,黄铁城.小麦细胞质雄性不育与花药组织内源激素的关素[J].农业生物技术学报,1996,4(4):307-313
    57.张爱民,吴厚雄,李英贤等.小麦雄性不育系与穗部内源激素的关系[J].中国青年农业科学学术学报,1997
    58.张爱民,李英贤,黄铁城.T型不育系,恢复系和杂种F_1花药组织内源激素水平比较[J].农业生物技术学报,1997,5(3):234-238
    59.李英贤,张爱民.小麦雄性不育与叶片中内源激素含量的关系[J].农业生物技术学报,1998,6(2):35-39
    60.张爱民,李英贤,黄铁城.化学杂交剂诱导的雄性不育花药组织内源激素的变化[J].农业生物技术学报,1997,5(1):64-71
    61.陈万义.化学杂交剂的进展[J].农药,1999,38(1):1-6
    62.张晓梅,陈万义.一种可能对小麦育种有重要贡献的CHA[J].农药,1999,38(10):16-18
    63.肖兴国,张爱民,聂秀玲.转基因小麦的研究进展与展望[J].农业生物技术学报,2000,8(2):111-116
    64.张爱民,肖兴国,聂秀玲.中国的植物转基因雄性不育研究[J].中国科学基金,2000,3:132-135
    65.李艳红,肖兴国,赵广荣等.将新的人工雄性不育基因导入小麦栽培品种的研究初报[J]、农业生物技术学报,1999,7(3):225-258
    66.傅荣昭,曹光诚.基因枪法将人工雄性不育基因导入小麦的研究初报[J].遗传学报 1997,24(4):358-361
    67.李艳红,张爱民,肖兴国.小麦基因转移研究进展[C].中国青年农业科学学术年报,1997,B:551-556
    68.李胜国,刘玉乐,康良仪等.烟草花药特异启动子测定及雄性不育基因及恢复基因的构建[J].农业生物技术学报,1995,3(3):25-32
    69.李胜国,刘玉乐,朱峰等.基因工程雄性不育烟草的获得[J].植物学报,1995,37(8):659-660
    70.罗玉英,刘玉乐,李胜国等.TA29-Barnase嵌合基因导入对烟草花药绒毡层及花粉发育的影响[J].植物学报,1997,39(10):894-898
    71.广东省农作物杂种优势利用研究协作组长.水稻化学杀雄利用杂种优势的研究[J].中国农业科学,1997,10(2):47-50
    72.山东农学院农学系植物与植物生理教研组.乙烯利诱导小麦(Triticum aestivum L.)雄性不育的细胞形态学观察[J].植物学报,1997,19(1):28-33
    73.华南农学院农学系作物生态遗传研究室.杀雄剂一号诱导水稻雄性不育的细胞学观察[J].遗传学报,1978,5(3):181-185
    74.杭州大学生物系遗传育种组.关于小麦化学去雄的几个问题[J].植物学杂志,1975,5(3):33-35
    
    
    75.杭州大学生物系植物生理与遗传达教研组.“乙烯利”对小麦化学去雄效应初步研究[J].遗传学通讯,1974,5(3):25-29
    76.浙江省农科院作物研究所原子能利用研究室.用“C~(14)—乙烯利”进行小麦化学杀雄机理的研究(第一报)[J].遗传学报,1977,4(4):294-301
    77.浙江省杂交小麦协作组.小麦化学杀雄机理和技术的研究[J].中国农业科学,1978,11(1):28-36
    78.闫先喜,梁作勤,田纪春.SC2053诱导小麦雄性不育形态学和细胞学观察[J].华北农学报,1996,11(1):19-24
    79.肖建国,蒋爱湘,冯桂苓等.化学杂交剂“津澳淋”诱导小麦雄性不育机理研究.华北农学报,1996,11(4):7-11
    80.张爱民,鄂立柱,武跃延等.化学杂交剂 SC2053诱导小麦雄性不育的研究[C].全国作物育种学术讨论会论文集,北京:农业出版社,1995,163-170
    81.张爱民,黄铁诚.小麦杂种优势利用研究与研究进展[J].作物杂志,1997,(5):16-20
    82.辛志勇,马有志.发展生物技术促进作物育种科技革命[J].作物杂志,1997,(5):13-15
    83.王艳,张爱民.小麦D~2型细胞光敏性不育的研究进展[J].中国农学通报,1998,14(4):16-18
    84.张改生,刘宏伟,王军卫等,我国杂种小麦走向生产的关键策略[J].科技导报,1997,(10):27-28
    85.张改生,刘宏伟,王军卫等.陕西省杂种小麦产业现状与发展对策[J].陕西农业科学,1997,(3):7-14
    86.张改生.单型小麦雄性不育系的育性及其育性恢复性能的初步研究[J].科学通报,1992,37(7):641-645
    87.刘宏伟,张改生,王军卫等.化杀杂种小麦研究[J].陕西农业科学,1998,(6):3-5
    88.刘宏伟,张改生,王军卫等.新型化学杂交剂GENESIS诱导小麦雄性不育的初步研究[J].西北植物学报,1998,18(2):218-222
    89.刘宏伟,马学锋,杨天章.V型杂交小麦制种技术研究[J].西北农业大学学报,1993,21(3):6-10
    90.黄铁诚.杂种小麦研究[C].北京:北京农业大学出版社,1990,84-104
    91.蒋爱湘,肖建国,周国雷等.SC2053诱导的雄性不育进程中过氧化物同工酶的研究[J].北京农业大学学报,1993,19(增):44-47
    92.杨武云,饶世达.小麦新型化杀剂SC2053诱导花粉败能的机理研究[J].北京农业大学学报,1993:19(增):88-91
    93.谢学民.小麦杂种优势的研究与应用[M].上海:上海科学技术出版社,1981,5(4):169-174
    
    
    94.俞养玉,王熹,陶龙兴等.CRMS诱导水稻雄性不育研究Ⅲ.CRMS对水稻花药游离脯氨酸含量的影响及其与花药败育的关系[J].中国水稻科学,1991,5(4):169-174
    95.庄巧生,杜振华主编.中国小麦育种研究进展[C].北京:中国农业出版社,1996,1-14
    96.张明,梁作勤,彭涛等.SC2053诱导小麦雄性不育初步研究[J].山东农业大学学报,1992,23(4):439-442
    97.黄铁成,王明理,张爱民等.新型化学杀雄型—WL84811诱导小麦(Triticum aestivam L.)雄性不育研究[J].作物学报,1998,14(2):155-162
    98.焦竹田,张白玉,王文华.小麦KMS—1化学杀雄试验初报[J].山西农业科学,1980,(3):10-12
    99.杨天章,柴守诚,刘庆法.WL84811对小麦杀雄效果试验初报[J].陕西农业科学,1987,(3):16-17
    100.周美兰,唐启源,程尧楚.光温核不育小麦ES-10雄性败育机制研究[J].湖南农业大学学报.1997,23(2):117-122
    101.周美兰,何觉民,邹应斌等.光温敏核不育小麦育性条件的研究[J].湖南农业大学学报,1996,22(3):231-235
    102.张建奎,何立人,李正玮等.温光型雄性不育小麦C49S育性与花药SOD活性的关系[J].西南农业大学学报,1997,19(1):54-58
    103.何立人,李正玮,张建奎等.温敏型雄不育小麦C49S育性转换与温度关系[J].西南农业大学学报,1996,18(4) 328-332
    104.高庆荣,于金凤,刘保申等.化学杂交剂GENESIS对小麦的杀雄效果[J].山东农业大学学报(自然科学版),2001,32(1):17-32
    105.陈贤丰,梁承邺.水稻不育花药中H_2O_2的积累与膜脂过氧化的加剧[J].植物生理学报,1991,17(1):44-48
    106.林植芳,梁承邺,孙谷畴等.雄性不育水稻小孢子败育与花药的有机自由基水平[J].植物学报,1993,35(3):365-367
    107.北京大学生物系植物遗传育种专业.雄性不育和雄性能育小麦花药和花粉细胞形态学观察[J].植物学报,1976,18(2):141-149
    108.重庆市作物研究所.1998年全国温光型两系法杂交小麦攻关协作组总结会纪要[C].1998,四川内江市
    109.天津市作物所.“津噢淋”杂种小麦研讨会会议纪要[C].1999,天津
    110.官春云,李栒,王国槐.化学杂交剂诱导油菜雄性不育机理的研究.Ⅰ.杀雄剂Ⅰ号对甘蓝型油菜花药绒毡层和花粉粒形成的影响[J].作物学报,1997,23(5):513-518
    111.柴守诚,杨天章,柴守玺.化学杂交剂在杂种小麦生产中的应用[J].甘肃农业大学学报,1922,27(4):288-293
    112.成贵明.杂种小麦研究和应用前景[J].种子,1991,(5):32-33
    
    
    113.陈绍慧,肖建国,夏时雨等.小麦化学杀雄剂(CHA)杂种优势利用的进展与前景[J].天津农林科技,1991,(1)37-40
    114.周光学.杂种小麦的研究及应用状况[J].种子世界,1992,(3):7-8
    115.陈佩林.施药时期在水稻化学杀雄制种的主导作用[J].华南农业大学学报,1984,5(4):13-23
    116.黄育民.作物化学杂交育种研究进展[J].福建稻麦科技,1991,(2):19-23
    117.潘启民.光敏核不育水稻的化学去雄效果[J].种子,1991,(3):61-63
    118.夏涛,刘纪麟.玉米细胞质雄性不育性与乙烯的关系[J].华北农学报,1996,11(3):68-72
    119.谢学民,张全德.化学药剂诱导雄性不育的效果和生理效应[J].浙江农业大学学报,1995,11(1):41-47
    120.王熹,阙瑞芬.乙烯及配子诱杀剂对水稻花粉不育的诱导[J].植物生理学报,1981,7(4):381-383
    121.张爱民,李英贤,刘健.化学杂交剂对小麦穗部内源激素的影响[C].第一届国际杂种小麦研讨会论文集.北京:中国农业在学出版社,1998,249-253
    122.陈章良.激素对基因表达的调控[J].植物学报,1991,31(5):390-405
    123.张全德.小麦应用乙烯利、均三嗪二酮杀雄技术研究[J].浙江农业科学,1981,(1):11-13
    124.杨赞林.均三嗪二酮对小麦杀雄效果的初步研究[J].安徽农业科学,1980,(4):3-6
    125.杨赞林.小麦化学杀雄技术再研究[J].安徽农业科学,1981,(4):10-12
    126.赵章杏.KMIS-1诱导小麦雄性不育的生理效应[J].植物生理学通讯,1983,27(5):112-115
    127.朱汉如,张全德,谢学民.小麦化学杀雄技术的研究[J].北京农业大学学报,1985,11(4):169-175
    128.谢学民,张全德,朱汉如.~(14)C—乙烯利对小麦杀雄机理的研究(摘要)—~(14)C—乙烯利和~(14)C—乙烯利的吸收,分布和代谢[J].北京农业大学学报,1985,11(4):176
    129.王志敏,王树安.乙烯对小麦小花发育和结实的影响[J].种子,1996,(2)3-15
    130.徐是雄.小麦形态和解剖结构图谱[M].北京:北京大学出版社,1983,37-44
    131.秦泰辰.作物雄性不育化育种[M].北京:农业出版社,1993:313-334
    132.蔡旭.植物遗传育种学(第二版)[M].北京:科学出版社,1988,459-535
    133.张晚龙,孙东发,冯宋之.小麦F_2杂种优势利用研究[J].四川农业大学学报,1997,15 (2):185-188
    134.胡建广,杨金水,陈金婷.作物杂种优势的遗传学基础[J].遗传,1999,21(2):47-50
    135.李胜国,刘玉乐,田波.植物花粉发育的分子生物学研究进展[J].生物工程进展,1997,17(2):17-22
    
    
    136.周洪生,孙荣锦,蒋婉如.几种雄性不育玉米小孢子发育的显微荧光观察.华北农学报,1997,12(3):41-47
    137.姚雅琴,张改生.K型小麦不育系花药壁细胞色素氧化酶的分布[J].西北农业大学学报,1997,25(5):1-3
    138.蒋明亮,王道全,张爱民等.新哒嗪类化合物9403对小麦去雄效应的初步研究[J].中国农业大学学报,1998,3(5):39-44
    139.刘宏伟,张改生,王军卫等.9403诱导小麦雄性不育的初步研究[J].西北植物学报,1999,19(6):49-53
    140.李传友,孙兰珍.普通小麦T型,V型和K型细胞质雄性不育系花粉败育机理的细胞学研究[J] 华北农学学报,1996,11(2):1-3
    141.席湘缓.小麦雄性不育花药和花粉发育的形态学观察[J].山东农学院学报,1980,(1):15-21
    142.王培田.关于雄性不育的通路学说[J].自然科学争鸣,1977,5:51-53
    143.杨弘运.花粉雄核发育中的几个问题[J].武汉大学学报(自然科学版),1981,2:90-96
    144.刘植义,沈银柱,罗颖坤等.小麦化学杂交育种的研究与应用[C],见:杂种小麦研究进展.北京:农业出版社,1993:138-143
    145.周国雷,肖建国,蒋爱湘等.应用SC2053进行小麦化学杂交制种的几个主要技术问题[C].同上,152-157
    146.肖建国,周国雷,蒋爱湘等.冬小麦杂优新组合津化1号选育初报[C].同上157-160
    147.王世来,姚福昌,赵惠芬等.小麦CHA杂种在河北泊头中低产区优势表现[C].同上,160-167
    148.余泽良,夏琼,瞿元林等.化学杀雄剂对四川小麦杀雄效果研究初报[C].同上,176-180
    149.刘福昌.化杀杂种小麦应用体系与研究[C].同上,180-181
    150.程俊源,赵林姝,孙国庆等.化学杀雄剂SC2053诱导小麦雄性不育研究[C].同上,181-186
    151.白普一, 樊亚萍,梁淑珍.SC2053的春小麦杀雄效果试验初报[C].同上,186-187
    152.董孟雄,郭志远,弓陆身等.SC2053诱导小麦雄性不育技术研究[C].同上,187-188
    153.赵风悟,李会敏,白振庄等.新型化学杀雄剂—EK ES诱导普同小麦(Triticum aestivum) 雄性不育研究[C].同上,188
    154.黄铁诚,张爱民,王明理等.杂种小麦的研究[J].北京农业大学学报,1995,11(4),215-227
    155.粟冀玖,周同度,张建琪.普通小麦(Triticum aestivum)两种不育类型小孢子发生的形态学比较.北京农业大学学报,1985,11(4):209-211
    156.何觉民,戴君惕,邹庆斌等.生态遗传雄性不育理论与两系杂交植物[C].见:杂种小麦研究进展.北京:农业出版社,1990,191-1994
    
    
    157.余国东,谭昌华,张宋华等.重应温光型核不育小麦的育性转换及应用研究[C].同上,195-198
    158.黄寿松,王鹏科,徐洁.小麦核型—蓝标型雄性不育、保持系的研究与利用[C].同上,195-198
    159.王鹏科,田增荣.利用杀配子基因建立小麦核不育杂种优势利用体系[J].麦类作物学报,2000,22(专辑):62-64
    160.王鹏科,黄寿松.小麦核型雄性不育杂种优势研究利用的现状与展望[J].国外农学—麦类作物,1993,2:46-49
    161.王鹏科,杨智全,黄寿松.VE型小麦雄性不育—保持系的遗传研究[C].见:第一际国际杂种小麦研讨会论文集.北京:中国农业大学出版社,1998,241-243
    162.鄂立柱,张爱民,宋印明等.新型化学杂交剂GENESIS的应用研究[C].见:第一届国际杂种小麦研讨会论文集.北京:中国农业大学出版社,1998,241-243
    163.周宽基,窦有恒,王世红等.小麦新型化学杂交剂GENESIS诱导春小麦雄性不育的研究[C].同上,264-268
    164.孟金陵著.植物生殖遗传学[M].科学出版社,1995
    165.何觉民著.两系杂交小麦理论与实践[M].湖南科学技术出版社,1993
    166.胡适宜著.被子植物胚胎学[M].人民教育出版社,1982
    167.郑国昌著.生物显微技术[M].人民教育出版社,1979
    168.陈章良著.植物基因工程学[M].吉林科学技术出版社,1993
    169. Allan, R.E. Yields of wheat hybrids of the Triticum timopheevi nucleocytoplasmic system [C]. Proceeding of the Fourth International Wheat Genetics Symposium, Columbia, 1973. PP311-317
    170. Allard, R.W. Principles of plant Breeding [M]. 1960, Wiley, New York
    171. Alonso JM, Hirayama T, Roman G, et al. EINZ, a bifunctional transducer of ethylene and stress responses in Aradidopsis [J]. Science, 1999,284:2148-2152
    172. Anand, S.C. and Sharma, S.C. Seed set in relation to pollen dispersal in male-wheat varieties[C]. Proceeding of the Fourth International Wheat Genetic Symposium, Columbia 1973, PP319-320
    173. Arnold, M. H. The role of science and technology in maize and wheat production. In: The future development of maize and wheat in the third world. Pub: CIMMYT, Mexico. 1987, PP60-70
    174. Atashi-Rang, G. and Lucken, K.A. Variability combining ability, and interrelationships of anther length, anther extrusion, glume tenacity, and shattering in spring wheat [J]. Crop Science 1978, 18: 267-272
    175. Athwal. D. S. and Borlug, N.E. Genetic male sterility in wheat breeding [J]. The Indian Journal of Genetics and Plant Breeding 1967, 27:136-142
    176. Athwal, D.S., Phull, D.S. and Minocha, J.L. Genetic male sterility in wheat [J]. Euphytica,
    
    1967,16: 354-360
    177. Auriau, P. Hybrid Wheat: results obtained in France[C]. Proceeding of the Fourth International Wheat Genetic Symposium, Columbia 1973, P321
    178. Austin, R.B., Flavell, R.B, Henson, I.E. and Lowe, H.J.B. Molecular biology and crop improvement [M]. Cambridge University Press, Cambridge, 1986
    179. Baier, W.H. Heterosis and competition in different characters of wheat (Triticum aestivum L)[C]. Proceedings of the Fourth International Wheat Genetics Symposium, Columbia 1973, P19-25
    180. Baraba's, Z. The problems of hybrid wheat and some steps to solve them. The reality of hybrid wheat [C]. In: Heterosis in plant breeding, Proceedings of the Seventh Congress of EUCAPRIA. Ed: Janossy, A. and Lupton, F.G.H., Pub: Elsevier. 1976, PP257-268
    181. Barabas, Z., Sagi, F. and Kertesz, Z. Special ways for hybrid wheat breeding[C]. Proceeding of the Fourth International Wheat Genetic Symposium. Columbia, 1973, PP323-328
    182. Barneet, R.O. and Patterson, F.L. Cross-pollination winter wheat [J]. Crop Science 1974. 14:311-313
    183. Belgin, C., Maareten, V.G., Dennis, J.D. and Sanjaya, R. Hybrid wheat research at CIMMYT using GENESIS[C]. The Proceedings of 1st International Workshop on Hybrid Wheat. Beijing, 1998, PP31-36
    184. Bennett, M. D. and Hughes, W.G. Additional mitosis in wheat pollen induced by Ethrel [J]. Nature, 1972,240: 566-568
    188. Bleecker AB. Ethylene: a gas signal molecule in plants [J]. Anna Rev Cell Bioc, 2000, 16:1-18
    189. Block M, Debroawer D. et al. The development of a nuclear male sterility system in wheat. Expression of the barns gene under the control of tappet specific promoters [J]. Their App. Genet 1997,95: 125-131
    190. Boland, O.W. and Walcott, J. J. Levels of heterosis for yield and quality in a F1 hybrid wheat [J]. Australian Journal of Agricultural Research, 1985,36: 545-552
    191. Borghi, B., Bonali, F. and Boggini, G.1. Induction of male sterility in wheat with ethephon for hybrid seed production [C]. Proceedings of the Fourth International Wheat Genetics Symposium. Columbia, 1973, PP337-343
    124. Borojevic, S. Genetics changes to increase yield potential in wheat[C]. Proceedings of the Sixth International Wheat Genetics Symposium, Kyoto 1983, PP953-957
    192. Brears, T, Hydon, A.G. and Bingham, J. An assessment of the feasibility of producing F1 and F2 hybrids for the UK [C]. Proceedings of the Seventh International Wheat Genetics Symposium, Cambridge, 1988,PP1057-1062
    193. Brears, T. and Bingham, J. Exploitation of heterosis in hybrid wheat using gametocides[J]. Vortrage fur pflaniuchtung, 1989,16. 397-409
    
    
    194. B rewbaker, J. L. and Majumder, S. K. Cultural studies of the pollen population, effect and the self-incompatibility inhibition[J] . American Journal of Botany, 196 1 , 48 :445 7-4464
    195. Brggle, L.W, and Hayes, R.M, Performance of a spring wheat hybrid, F2, F3, and parent varieties at five population Levels [J]. Crop Science, 1967b, 7: 485-490
    196. Briggle, L.W. Heterosis in wheat a review. Crop Science, 1963, 3: 407-412
    197. Briggle, L.W., Cox, E.L. and Hayes, R.M. Performance of a spring wheat hybrid, F2, F3. and parent varieties at five population levels [J]. Crop Science , 1967, 7: 465-470
    198. Bruns, R. and Peterson, C. J. Yield and stability factors associated with hybrid wheat [J]. Euphytica, 1988, 100: 1-5
    199. Capitani G, Hohenester E, Feng L, et al. Structure of 1-aminocyclopropane-1-carboxylate syntheses, a key enzyme in the biosynthesis of the plant hormone ethylene [J]. J Mol Bioc, 1999, 294: 745-75
    200. Cdhoun, C.W. and Steer, M.W. Gametocide induction of male sterility: a review and observations on the site of action in anther [J]. Revue de cytologie atdeBiologie vegetates. 1982, 5: 283-302
    201. Chapman G P. The tappet [J]. International Review of Cytology, 1987, 107: 111-125
    202. Chase, S.S. Estimates of commercial profitability in hybrid seed production of small grains[J]. Economic Botany, 1971, 25: 330-334
    203. Chopra, V.L. Studies on the chemical induction of pollen sterility in some crop plants [J]. Indian Journal of Genetics and Plant Breeding. 1960, 20 188-189
    204. CIMMYT. 1987-88 CIMMYT world wheat facts and trends [M]. The Wheat Revolution Revisited: Recent Rends and Future Challenges. 1989, CIMMYT, Mexico.
    205. Colhoun CW, Steer MW. Microsporogenesis and the mechanism of cytoplasmic male sterility in maize [J]. Ann Bot. 1981: 417-424
    206. Cocking, E. C. and Davey, M. R. Gene transfer in cereals [J]. Science, 1987, 236: 1259-1262
    207. Cross, J. W. Transport and metabolism of pollen suppressant SC2053 in wheat[J]. Journal of Agricultural Food Chemistry, 1995, 43:548-556
    208. Cruz L J, Cagampng G B, Juliano BO. Biochemical factors affecting protein accumulation in the rice grain [J]. Plant physiol. 1970, 46: 743-749
    209. Cubitt,I.R.and Curtis,F.C. Technical progress in the development of hybrid wheat [J]. 1986, Proceedings of EFFOST Symposium
    210. Cullis, C. A. Biotechnology and plant productivity [J]. Ohio Journal of Science 1987, 87:143-147
    211. Dellaporta SL, Calderon-Urrea A. Sex Determination in flowering plants [J]. The plant cell. 1993,5:1241-1251
    
    
    212. De Vries, A. Ph. and Le, T. S. Electron-microscopy on anther tissue and pollen of male sterile and fertile wheat (Triticum aestivum Z.)[J]. Euphytica, 1970, 19: 103-120
    213. Dennis, J.D. Hybrid wheat seed production using GENESIS hybridizing agent. The proceedings of Ist International Workshop on Hybrid Wheat. Beijing , 1998. PP23-26
    214. Dotcacil, L. and Apltauerova, M. Pollen sterility induced by ethrel and its utilization in hybridization of wheat [J]. Euphytica, 1978, 27: 353-360
    215. Dricoll, C.J. XYZ system of producing hybrid wheat. Crop Science, 1972, 12: 516-517 216. Driscoll, C.J. New approaches to wheat breeding .In: wheat science today and tomorrow. Pub: Cambridge University Press, Cambridge. 1981, PP 97-106
    217. Driscoll.C.J. Modified XYZ system of producing hybrid wheat[J]. Crop Science 1985. 25: 1115-1116
    218. Driscoll, C.J. Nuclear male sterility systems in seed production of hybrid varieties [J]. CRC Critical Reviews in Plant Science, 1986, 3: 227-256
    219. Fedak,G.and Fejer,S.O. Yield advantage in F1 hybrids between spring and winter barley[J]. Canadian Journal of Plant Science, 1975,55 :547-553
    220. FENG Jiu-huan, Lu Yong-gen, Liu Xiang-dong. Cytological Mechanism of Pollen Abortion in Photoperiod-Temperature Sensitive Genetic Male Sterile Line Peiai 64S in Rice (orgza saliva L.) [J]. Chinese J Rice SCI, 2000,14(1) : 7-1412
    221. Foster, J.P. SD84811a chemical hybridizing agent for small grain [J] . Agronomy Abstracts of the American Society of Agronomy, 1984, P66
    222. Fran Ckowinak, J.D., Maan, S. S. and Williams.N.D. A proposal for hybrid wheat Utilzing Aegilops squarrosa L.cytoplasm[J]. Crop Science, 1976, 16: 725-728
    223. Fritz, S.E.and Lukaszewski, A.J. Pollen longevity in wheat, rye and triticale [J]. Plant Breeding, 1989,102:31-34
    224. Fujimoco SY, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive element binding factors at as transcriptional activators or repressors of Gcc box-mediated gene expression [J]. Plant cue, 2000, 12: 393-404
    225. Hannu A-OKs. Cytoplasm male sterility in Barley [J]. Plant Physical, 1983, 69: 268-272
    226. Hansen DJ, Bellman SK. Sacher RM. Gibberellic acid-controlled sex expression in corn tassels [J]. Crop SCI, 1976, 16: 371-374
    227. Hansom MR. Plant mitochondria mutation and male sterility [J]. Annu Rev Genet, 1991, 25: 401-48
    228. Hansen NC, Jolly VD, Berg WA et al. Photo siderophore release related to susceptibility of wheat to iron deficiency [J]. Crop SCI, 1996, 36: 1473-1476
    229. He, J.M, Liu, X.L. and Yang .Y. C. Studies on ecological male sterile wheat[C]. The
    
    Proceedings of 1st International Workshop on Hybrid Wheat, Beijing, 1998, PP40-53
    230. He, Z.H. An investigation of the relationship between the F, potential and the measure of genetic distance among wheat lines [J]. Euphytica, 1991, 58: 165-170
    231. He, Z.H. Current status of wheat breeding in china[C]. The Proceedings of 1st International Workshop on Hybrid Wheat, Beijing, 1998, PP 1-8
    232. Hoagland, A.R., Elliot, F.C. and Rasmussen. L.W. Some histological and morphological effects of male hybridizing on spring wheat [J]. Agronomy Journal, 1953 , 45 : 468-472
    233. Hua J. Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana [J]. Cell, 1998, 94: 261-271
    234. Hughes, W.G. Ethral induced male sterility in wheat (Triticum aestivuv L.)[C]. In: Heterosis in Plant Breeding, Proceeding of the Seventh Congress of EUCARPIA 1976, PP111-114
    235. Hughes, W.G. and Bodden, J.J. Production and yield assessment of F1hybrid wheat using ethephon induced male sterility [J]. Zeitschrift fuchtung, 1978, 81:17-23
    236. Imrie, .C. Stigma receptivity in cytoplasmic male sterile wheat [J]. Australian Journal of Experimental Agricutural and Animal Husbandry, 1996,6: 175-178
    237. Irish EE. Regulation of sex determination in maize [J]. Bioessays. 1996, 18(5) : 533-569
    238. Jan, C.C., Qualest, C.O .and Vogt, H.E.. Chemical induction of sterility in wheat[J]. Euphytica, 1974, 23:78-85
    239. Jan, C.C. and Rowell, PL. Response of wheat tillers at different growing stages to gametocide treatment [J]. Euphytica, 1981, 3. 0: 501-504
    240. Jan. C.C., Qualset, C.O. and Vogt, H.E. Chemically induced sterility in wheat for hybrid seed production [J]. Euphytica, 1976, 25: 375-386
    241. Jensen, N.F. Broadbase hybrid wheat [J]. Crop Science, 1966, 6. 376-377
    242. Jiang YM, Joyce DC, Malnish AJ. Response of banana fruit to treatment with 1-methylcyclopropene [J]. Plant Grow Regul, 1999,28: 77-82
    243. John PR, Ecker JR. The ethylene gas signal transduction pathway: a molecular perspective [J]. Annu Rev Genet, 1998, 32: 27-254
    244. Johnson, R. R. and Brown, C.M. Chemical control of pollination in wheat and oats[J]. Crop Science, 1976,16:5 84-587
    245. Johnson, R.R. and Brown, C. M. Use of DPX3778 to produce hybrid wheat seed. Crop Science, 1978, 18: 1026-1028
    246. Johnson, R.R. How fast will hybrid wheat be adopted? Crops and Soils, 1985,37: 5-6
    247. Kochba J, Lave ES, Spoegel-Roy P. Difference in peroxidase activity and isonzymes in embroygenic and non-embroygenic "shamout" orange ovular callus cines [J] . Plant Cell Phgsiol. 1977, 18: 463-467
    
    
    248. Liberman, M. Biosynthesis and action of ethylene [J]. Ann Rev Plant Physioc, 1979, 30: 533-538
    249. Liu H. W., Zhang, G.S., Wang, J.W. and Wang, X.L. Studies on male sterility in wheat induced by new chemical hybridizing agent GENESIS[C]. The Proceedings of 1st International Workshop on Hybrid Wheat, Beijing, 1998. PP27-32
    250. Luken, K.A. Hybrid wheat [M]. wheat and wheat improvement Ed: Heyne, E. G. Pub: Madd ision, Wisconsin, USA. 1985, PP44-452
    251. Mariani C, Beuckeleev M, Truettnev J et al. Induction of male sterility in plants by a chimeric ribonuclease gene [J]. Nature, 1990, 347:737-741
    252. Mariani C, Gospel V, Buckler M et al. A Chimaeric ribonuelease inhibitor gene restores fertility to male sterile Plants [J]. Nature, 1992,384-387
    253. Mcrae D. H. Advances in chemical hybridization [J]. Plant breeding reviews. 1985, 3: 169-191
    254. Miller,T.F. and Lucken, K.A. Gametocidal properties of RH-531,RH532,RH-2956 and RH-466 on spring wheat (Triticum aestivum L.)[J]. Ephytica, 1977,26:103-112
    255. Miller, J.E., Rogers, KJ.and Luken, K.A. Effects of field production techniques on hybrid wheat seed quality [J]. Crop Science, 1975. ,15:329-332
    256. Musgrave ME, Antanovics J, Siedow J N. Is male-sterility in plants related to lack of cyanide-resistant respiration in tissues? [J]. Plant SCI, 1986, 44: 7-11
    257. Nickell IG. Modification of sex expression [M]. Plant Growth Regulators. Berlin: Spring-Verlag, 1987,PP173-185
    258. Niklas, K.J. The aerodynamics of wind pollination [J]. The Botanical Rel liew.1985, 51:328-386
    259. Nishiyama Iowa. Male sterility caused by cooling treatment at young microspore stage in rice plants. Electron microscopically stage [J]. Porch Crop SCI Gap, 1970, 39:474-479
    260. Nishiyama Iowa. Male sterility caused by cooling treatment at the meiotic stage in rice: Respiratory activity of anther following loading treatment and the meiotic stage [J]. Porch crop SCI Jan, 1970, 39: 65-70
    261. Nishiyama I. Male sterility caused by cooling treatment at the young microspore stage in rice plants. XI. Effects of some substances on sterility [J]. Proc Crop Sci Japan, 1975, 44:397-402
    262. Pickett, A. A. Factors effecting seed production of F1 hybrid wheat : a review.Journal of the National Institute of Agricultural Botany, 1987. , 17. 303-312
    263. Pickett. A. A. Hybrid wheat results and problems. Pub: Pawl Parey Scientific Publishers, Berlin and Hamburg, 1993.
    264. Rajendra, B.R. and Bates, L.S. Genetically induced sterility in triticum aestivum. The Journal
    
    of Heredity, 1981,15: 199-124
    265. Rawll PL, Miller DG. Induction of male sterility in wheat with CEPA [J]. Crop SCI, 1971,1: 629-631
    267. Roger H. Instrumental methods of plant hormones [J]. Act Bot, 1995, 44: 222-229
    268. Roman G, Lubarsky B, Kieber JJ. et al. Genetic analysis of ethylene signal transduction in Avabidopsis thaliana five novel mutant loci integrated into a stress response pathway [J] Genetics. 1995, 39: 1393-1409
    269. Rowel RL, Miller DG. Effete of CEPA of female fertility of two wheat varieties [J]. Crop SCI, 1974,11:31-34
    270. Rowell, PL. and Miller, D.G. Induction of male sterility in wheat with 2-chloroethyl-phosphonic acid (ethrel)[J]. Crop Science, 1971, 11: 629-631
    271. Rowell. P.L. and Miller, D.G. Effect of 2-chloroethyl-phosphonic acid (ethephon) on female fertility of two wheat varieties [J]. Crop Science, 1974,14: 31-34
    272. Sasaruma.T, Maan, S.S and Willians, N.D. EMS-induced male sterile mutants in euplasmic and alloplasmic common wheat [J]. Crop Science, 1978, 18: 850-853
    273. Sawhney V K, Shukla A. Male sterility in flowering Plants: are plant growth substances involved? [J]. Amer J Bot, 1994, 81: 1640-1647
    274. Serek M, Sisler EC, Reid MS. Effect of 1-MCP on the vase life and ethylene response of cut flowers [J]. Plant Grow Regul, 1995, 16: 93-97
    275. Serek M, Sisler EC, Reid MS. Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowing plants [J]. J Amer Soc Hort SCI, 1994, 119(6) : 1230-1233
    276. Shukla A, S awhney VK. Abscissa acid: one of the factors affecting male sterility in Braise napes [J]. Physlol Plant, 1994, 91: 522-528
    277. Sisler EC, Serek M. Inhibitors of ethylene responses in plants at the receptor level: recent development [J]. Physlol Plant, 1997, 100: 577-582
    278. Sisler EC, Serek M. Inhibition of ethylene responses by 1-methylcyclopropene and 3-methlcyclopropene [J]. Pant Grow Regul, 1999, 27: 105-111
    279. Stoskopf, N.C.and Law, J. Some observations of ethrel as a tool for' developing hybrid cereals [J].Canadian Journal of Plant Science, 1972, 52: 680-683
    280. Tschabold, E.E., Heim, D.R. Deck, J.R., Wuight et al. LY195259, new chemical hybridizing agent for wheat [J]. Crop Science, 1988, 28: 583-588
    281. Warmke HE, Lee SLJ. Mitochondria degeneration in Texas cytoplasmic male-sterile corn anthers [J]. J Hered. , 1977, 68: 213-222
    282. Wilson J.A. Hybrid wheat breeding and commercial seed development [M]. Plant Breeding Reviews, 1984,2:303-319
    
    
    283. Wilson J.A. and Ross, W.M. Male sterility interaction of the Triticum aestivum nueleus and Triticum timopheevi cytoplasm wheat [J]. Information Service, Kyoto University, 1962, 14: 29-30
    284. Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants [J]. Ann Rev Plant physiol, 1984, 35: 241-244
    283. Zhang, A.M.and Huang, T. H. Progress of hybrid breeding in china[C]. The Proceedings of 1st International Workshop on Hybrid Wheat, .Beijing , 1998, PP9-14
    286. Zhang G.S., Wu, Z. S. and Yu S. R. Development of 5 cytoplasmic male sterile sources with good restoration performance in common wheat[c]. In: Proceedings of 8th International Wheat Genetics Symposium, Beijing, 1993, PP1267-1271
    287. Zou J T, Wu H M. Characterization of a rice pollen specific and its experession[J]. Amer J Bot., 1994, 81(5) : 552-561
    288. Zuzens, D, Grant, M.N. and MC Bean, et al. Wind Pollination of male sterile wheat [J]. Canadian Journal of Plant Science, 1969, 49: 98-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700