Pt系纳米合金催化剂制备及其催化丙烷脱氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Pt-Sn双金属催化剂是应用最为广泛的丙烷脱氢催化剂,但这种催化剂上仍存在结焦失活现象。因此Pt-Sn催化剂的构效关系以及催化性能改进仍是近年来本领域的研究热点。本文以NaBH4为还原剂的采用化学还原法制备了非负载、γ-Al2O3和纳米碳管负载的具有不同组成和结构特征的Pt-Sn体相合金(金属间化合物)以及γ-Al2O3负载Pt-X (X=Ir、Co)合金催化剂;采用XRD、N2物理吸附、HRTEM、氢气化学吸附以及TPO-TPR等方法表征了催化剂结构,并考察了其催化丙烷脱氢反应性能。研究结果表明本文方法可以制备出非负载与负载的PtSn、PtSn2、Pt2Sn3以及PtSn4合金,所得合金晶相结构较为单一,Pt/Sn比与前驱体溶液中类似;γ-A1203负载的合金催化剂中,催化活性随着Pt/Sn比的降低而增加,L-PtSn/Al-B(Sn:Pt为4.3,Pt理论负载量为1wt%的y-Al2O3负载Pt-Sn催化剂)具有最高的催化活性,其初始活性(TOF=0.39)低于类似粒径的单Pt催化剂L-PtSn/Al-F (TOF=0.43),但合金催化剂稳定性高,3小时反应后活性均高于单Pt催化剂,其中3小时的L-PtSn/Al-B的TOF为0.35,L-PtSn/Al-F的TOF为0.17;纳米碳纤维负载的各种PtSn合金催化剂其活性和丙烯选择性均高于γ-Al2O3负载催化剂;采用本文制备方法所得PtCo和PtIr合金催化剂没有观察到核壳式结构的存在,其催化稳定性和选择性均高于单Pt催化剂。本文研究结果对于阐释PtSn合金的形成与Pt-Sn双金属催化剂的催化剂失活的关系以及高性能丙烷脱氢催化剂的开发具有重要的借鉴意义。
Supported Pt-Sn bimetallic catalyst is one of the widely used catalysts in propane dehydrogenation process. Although it has been industrialized for many years, this catalyst still suffers from coking and deactivation. Many research work has been focused on the structure-performance relationship and improving catalytic performance. Unsupported,γ-Al2O3 and carbon nanotube supported PtSn bulk alloy (intermetallic compound) with different compositions and structural properties and Pt-X (X=Ir, Co) nanoalloy were prepared by chemical reduction method using NaBH4 as reduction agents. All the catalysts were characterized by XRD, N2 physisorption, HRTEM, H2 chemisorption and TPO-TPR methods and tested in propane dehydrogenation. It was found that PtSn, PtSn2, Pt2Sn3 and PtSn4 bulk alloys could be synthesized by the method used in this article. The obtained alloys had single crystallinity and the Pt/Sn ratios in these alloys were similar to those in the precursor solutions. The activity ofγ-Al2O3 supported alloy catalyst increased with the decrease of Pt/Sn ratio. Supported PtSn4 catalyst had the highest activity. Though its initial activity is lower than that of single Pt catalyst, the alloy catalyst had higher stability and activity after 3 hours reacting than that of Pt catalyst. Carbon nanotube supported PtSn alloy catalyst has higher performances thanγ-Al2O3 supported catalysts. Core-shell structure was not observed in Pt-Co and Pt-Ir alloy prepared in this article and their catalytic perfromances is inferior to PtSn alloys. The results obtained here were helpful for illustration of the effect of occurrence of PtSn alloys in Pt-Sn bimetallic catalysts on the catalyst deactivation and maybe useful for the development of highly efficient propane dehydrogenation catalyst.
引文
[1]余长林,葛庆杰,徐恒泳,等.丙烷脱氢制丙烯研究新进展[J].化工进展,2006,29(4):977-982.
    [2]Shinji K, Tsuyoshi A, Masa-aki O, et al. Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts[J]. Applied Catalysis A: General,2009,356(1):80-87.
    [3]蔡庆华,黄慧萍,史玉芳,等.碳载Pt-Cr合金催化剂的制备及其性能比较[J].电源技术研究与设计,2007,31(10):782-785.
    [4]Sukanya P, Joongjai P, Chatthip M, et al. Characteristics and catalytic properties of Pt-Sn/Al2O3 nanoparticles synthesized by one-step flame spray pyrolysis in the dehydrogenation of propane[J]. Applied Catalysis A:General 2009,370(1):1-6.
    [5]Zeeshan N, Xiaoping T, Qiang Z, et al. SAPO-34 supported Pt-Sn-based novel catalyst for propane dehydrogenation to propylene[J]. Catalysis Communications 2009,10(12): 1925-1930.
    [6]董文生,王浩静,王心葵,等.不同载体的PtSn催化剂上丙烷脱氢性能的研究[J].天然气化工.1999,24(3):9-12.
    [7]Selim A, Peter Z, Bryan E et al. Structural and Architectural Evaluation of Bimetallic Nanoparticles:A Case Study of Pt-Sn Core-Shell and Alloy Nanoparticles[J]. Journal of Catalysis,2009,3(10):3127-3137.
    [8]张一卫,周钰明,邱安定,等.Na对PtSn/ZSM-5催化丙烷脱氢反应性能的影响[J].物理化学学报.2006,22(6):672-678.
    [9]Changlin Y, Qingjie G, Hengyong X, Wenzhao L. Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene[J]. Applied Catalysis A:General,2006,315(6):58-67.
    [10]余长林,徐恒泳,葛庆杰,等.Zn对Pt-Sn/γ-Al2O3催化剂中Sn的活性状态及丙烷脱氢反应的影响[J].高等学校化学学报,2006,27(8):1492-1495.
    [11]Xinwei Z, Hong Z, Zhijun G. Design and preparation of CNT@SnO2 core-shell composites with thin shell and its application for ethanol oxidation[J]. International Journal of Hydrogen Energy,2010,32(1)1-7.
    [12]Vladimir G, Georges S, Pingping S. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts[J]. Journal of Catalysis,2010,271(12) 209-219.
    [13]Mingyuan Z, Gongquan S, Qin X. Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation[J]. Electrochimica Acta,2009,54(9) 1511-1518.
    [14]Souza R D, Parreira L S, Rascio D C. Study of ethanol electro-oxidation in acid environment on Pt3Sn/C anode catalysts prepared by a modified polymeric precursor method under controlled synthesis conditions[J]. Journal of Power Sources,2010, 195(10) 1589-1593.
    [15]Miguel S R, Roman M C, Jablonski E L, et al. Characterization of Bimetallic PtSn Catalysts Supported on Purified and H2O2-Functionalized Carbons Used for Hydrogenation Reactions[J]. Journal of Catalysis,1999,184(9):514-524.
    [16]Fatih K, Neburchilov V, Alzate V. Synthesis and characterization of quaternary PtRuIrSn/C electrocatalysts for direct ethanol fuel cells[J]. Journal of Power Sources 2010,195(10)7168-7175.
    [17]Zhenyuan Z, Tina M. N, Jian Y H. Room Temperature Synthesis of Thermally Immiscible Ag-Ni Nanoalloys[J]. Journal of Physical Chemical C,2009,113(4):1155-1159.
    [18]Santhosh K M, Chen D, Holmen A et al. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15:Effect of Sn on the dispersion of Pt and catalytic behavior[J]. Catalysis Today,2009,142(2) 17-23.
    [19]Ramallo J M, Santori G F, Giovanetti L. XPS and XAFS Pt L2,3-Edge Studies of Dispersed Metallic Pt and PtSn Clusters on SiO2 Obtained by Organometallic Synthesis: Structural and Electronic Characteristics [J]. Journal of Physical Chemical B,2003, 107(41):11441-11451.
    [20]Haubrich J, Loffreda D, Delbecq F. et al. Adsorption and Vibrations of α, β-Unsaturated Aldehydes on Pure Pt and Pt-Sn Alloy (111) Surfaces Ⅰ. Prenal[J]. Journal of Physical Chemical C,2008,112(34):3701-3718.
    [21]Takayuki K, Hirokazu I. Dehydroisomerization of butane into isobutene on Pt-Sn intermetallic compounds supported on H-SAPO-11[J]. Journal of Catalysis,2006, 241(6):426-434.
    [22]Riccardo F, Julius J, Roy J. Nanoalloys:From Theory to Applications of Alloy Clusters and Nanoparticles [J]. Chemical Reviews,2008,108(3):845-910.
    [23]Yiwei Z, Yuming Z, Anding Q, et al. Propane dehydrogenation on PtSn/ZSM-5 catalyst:Effect of tin as a promoter[J]. Catalysis Communications,2006,7:860-866.
    [25]Selim A, Anand N, Manos M, et al. Sn-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J]. Nature Materials,2008,7(8):333-338.
    [26]Jing B X, Tan S Z, Zai X L. Synthesis of Active Platinum-Silver Alloy Electrocatalyst toward the Formic Acid Oxidation Reaction[J]. Joural Physical Chemical C,2008, 112(44),17362-17367.
    [27]Garcia S, Pena M, Fierro J, Rojas S. Controlled synthesis of carbon-supported Pt3Sn by impregnation-reduction and performance on the electrooxidation of CO and ethanol[J]. Journal of Power Sources,2010,195 (21) 5564-5572.
    [28]Shenghu Z, Bindhu V, Bryan E. Pt-Sn Core-Shell and Alloy Nanoparticles for Heterogeneous NOx Reduction:Anomalous Stability and Reactivity of a Core-Shell Nanostructure[J]. Journal of Chemical science,2005,44(34):4539-4543.
    [29]杨志宽,王要武,谢晓峰,等.PtSn/C催化剂的制备与表征[J].中南大学学报,2008,39(3):448-453.
    [30]Wei H, Juanying L, Yongjin Q et al. Simple preparation of Sn-Pt nanoalloy catalysts for methanol-tolerant oxygen reduction[J]. Journal of Power Sources,2010,195(22) 1046-1050.
    [31]Odd A B, Anders H, Edd A B. Propane Dehydrogenation over Supported Pt and Pt-Sn Catalysts:Catalyst Preparation, Characterization, and Activity Measurements[J]. Journal of Catalysis,1996,158(1),1-12.
    [32]Bratlie K, Lee M, Komvopoulos H, et al. Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity [J]. Journal of Catalysis,2007,7(27):3097-3101.
    [33]Alayoglu S, Nilekar A U, Mavrikakis M, et al. Ru-Pt Core-Shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen[J]. Natural Material,2008, 7(16),333-338.
    [34]Selim A, Peter Z, Bryan E, et al. Structural and Architectural Evaluation of Bimetallic Nanoparticles:A Case Study of Pt-Ru Core-Shell and Alloy Nanoparticles [J]. Acs Nanoally,2009,3(10):3127-3137.
    [35]Anand U N, Selim A, Bryan E, et al. Preferential CO Oxidation in Hydrogen: Reactivity of Core-Shell Nanoparticles[J]. Journal of Americia Chemical Social,2010, 132(16),7418-7428.
    [36]Xuping S, Fucheng Y, Minhwa H et al. Thermodynamic assessment of the Pt-Sn system[J]. Journal of Alloys and Compounds,2001,325 (19) 109-112.
    [37]Wei Z, Lijuan L, Baoling L et al. Structural, elastic and electronic properties of intermetallics in the Pt-Sn system:A density functional investigation[J]. Computational Materials Science,2009,46 (37) 921-931.
    [38]Yi L, Dongguo L, Vojislav R, et al. Synthesis of Pt3Sn Alloy Nanoparticles and Their Catalysis for Electro-Oxidation of CO and Methanol[J]. ACS Catalysis,2011,1(12): 1719-1723.
    [39]Zhufang L, Dwayne R, Gihan K, et al. Pt3Sn Nanoparticles with Controlled Size:□ High-Temperature Synthesis and Room-Temperature Catalytic Activation for Electrochemical Methanol Oxidation[J]. Journal of Physical Chemical C,2007,111 (38), 14223-14229.
    [40]Zhenhua Z, Suli W, Weijiang Z, et al. Synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell[J]. Chemical Communications,2003,11 (8): 394-395.
    [41]Luhua J, Zhenhua Z, Wenzhen L, et al. Effects of Treatment in Different Atmosphere on Pt3Sn/C Electrocatalysts for Ethanol Electro-oxidation[J]. Energy & Fuels,2004, 18(21):866-871.
    [42]Bauer J, Xiaole C, Qingsheng L, et al. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis[J]. Journal of Material Chemical,2008,18(21),275-282.
    [43]Nam H C, Raymond E S. A Library of Single-Crystal Metal-Tin Nanorods:Using Diffusion as a Tool for Controlling the Morphology of Intermetallic Nanocrystals[J]. Chemical Material,2008,20(15):2081-2085.
    [44]Christina B, Chantal P, Martin C et al. Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism[J]. Journal of Americia Chemical Social,2004, 126(41):8028-8037.
    [45]Luhua J, Haixia Z, Gongquan S, et al. Influence of Preparation Method on the Performance of PtSn/C Anode Electrocatalyst for Direct Ethanol Fuel Cells[J]. Chinese Journal of Catalysis,2006,27(1):15-19.
    [46]Leena D, Muthupandian A, Franz G. Photocatalytic Generation of Hydrogen Using Sonoluminescence and Sonochemiluminescence[EB/OL]. Journal of Physical Chemical C,2011,12:Article ASAP.
    [47]曾永康,杨乔森,孙洁,等.活性炭载体的超声波处理对Pt/C催化剂活性的影响分析[J].钛工业进展,2007,24(6):42-45.
    [48]Ruiyong C, Vinh T, Harald N, et al. In situ Supported Nanoscale RuxTi1-xO2 on Anatase TiO2 with Improved Electroactivity[J]. Chemical Material,2010,22(24): 6215-6217.
    [49]赵新生,孙公权,姜鲁华,等.碳纳米管担载PtSn阳极催化剂对乙醇的电催化氧化性能研究[J]Chemical Journal of Chinese Universities,2005,26(7):1304-1308.
    [50]Takayuki K, Hirokazu I. Colloidal Synthesis and Structural Control of PtSn Bimetallic Nanoparticles[J]. Journal of Catalysis,2006,241 (16) 426-434.
    [51]Xiaodong W, Jorg S, Volkmar Z, et al. Colloidal Synthesis and Structural Control of PtSn Bimetallic Nanoparticles[J]. Langmuir,2011,27(42),11052-11061.
    [52]Yohei U, Yasuhiro I, Kyoko K, et al. Core-Shell Phase Separation and Structural Transformation of Pt3Sn Alloy Nanoparticles Supported on γ-Al2O3 in the Reduction and Oxidation Processes Characterized by in Situ Time-Resolved XAFS[J]. Journal of Physical Chemical C,2011,115(32):5823-5833.
    [53]Beard K D, David B, Alison M. C, et al. Preparation and Structural Analysis of Carbon-Supported Co Core/Pt Shell Electrocatalysts Using Electroless Deposition Methods[J]. ACS Nanoally,2009,3(9):2841-2853.
    [54]Qing L, Zhijun S, Xinggui Z, et al. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst[J]. Applied Catalysis A:General,2011,398 (11) 18-26.
    [55]Sukanya P, Joongjai P, Chatthip M et al. Characteristics and catalytic properties of Pt-Sn/Al2O3 nanoparticles synthesized by one-step flame spray pyrolysis in the dehydrogenation of propane[J]. Applied Catalysis A:General,2009,370 (1) 1-6.
    [56]Zeeshan N, Xiaoping T, Qiang Z et al. SAPO-34 supported Pt-Sn-based novel catalyst for propane dehydrogenation to propylene[J]. Catalysis Communications,2009,10 (9):1925-1930.
    [57]Chameli P, Najat A S, Bruce E K, et al. Acetylene Chemisorption on Sn/Pt(100) Alloys [J]. Journal of Physical Chemical B,2001,105(18):3786-3796.
    [58]Sanna K, Krause A. Effect of Catalyst Prereduction on the Dehydrogenation of Isobutane over Chromia/Alumina[J]. Catalysis Letters,2005,44(32):3862-3868.
    [59]Na-oki I, Tadatoshi T, Kazuhiro S, et al. Dehydrogenation of Ethylbenzene with Carbon Dioxide Using Activated Carbon-Supported Catalysts[J]. Catalysis Letters, 2000,39(41):1228-1234.
    [60]Naresh S, Yuguo W, Devadas P, et al. Huffman. Production of Hydrogen and Carbon Nanostructures by Non-oxidative Catalytic Dehydrogenation of Ethane and Propane[J]. Energy & Fuels,2004,18(11):727-735.
    [61]Hongbo L, Jorge A. Structural Stability and Thermal Transformation of Pt-Sn Bimetallic Nano Clusters[J]. Journal of Nano Research,2010,12 (8) 131-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700