去除水中微量酚类化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化剂在光催化降解氯酚类等难生化处理有机物方面具有能耗低,反应条件温和,操作简便,可减少二次污染等突出特点,因此备受环境科学工作者的关注。半导体粒子吸收能量大于其带隙能的光量子时,一个电子从价带被激发到导带,结果这个电子对吸附在颗粒表面的分子起化学还原作用,同时价带上的空穴起化学氧化的作用。纳米ZnO微球具有很高的活性,能够把有机物降解为CO2、H2O和一些无机酸,而且ZnO具有安全、廉价、无污染等优点,是最有发展前途的绿色环保型催化剂之一。本文采用醇解方法制备纳米晶体ZnO微球,探讨了升温速率对醇解反应发生温度的影响。考察了种子液用量以及醇解时间对纳米级的ZnO微球的形貌影响。
     膜生物反应器(MBR)技术应用于饮用水的处理尚是一项较新的技术,90年代中期首次在法国出现应用实例。目前应用MBR对微污染水源水中微量2,4,6–TCP的去除尚未见报道。本试验设计采用MBR作为主体工艺来处理微污染地表水,向反应器内投加PAC以强化处理效果,在关注MBR对微污染地表水中有机物总量去除的同时,还将水中同时存在的微量氯酚类化合物2,4,6–TCP作为目标污染物之一。本试验的目的是使MBR及其组合工艺(MBR+PAC)能够稳定运行,能够实现对微污染水中有机物总量去除的同时,保证对其中的微量人工合成有机物高效的去除,使出水水质能够达到《生活饮用水卫生标准》(GB5749–2006)的要求,为实现MBR的工程化提供技术支持。
     研究中考察了微量水平下的2,4,6–TCP在膜生物反应器中的降解机理,实验中面临的难题之一就是2,4,6-TCP及其各种降解中间产物的检测问题。SPME是一种新型的微量样品富集技术。目前国内对于SPME–HPLC联用技术的研究还刚刚起步,应用性文献不多。论文综述了近年来SPME技术的发展状况,详细介绍了SPME-HPLC联用技术的原理、仪器及其在各环境领域的应用。通过对SPME和HPLC联用技术的研究,优化了SPME和HPLC联用的实验条件,初步建立了SPME–HPLC分析环境水样中痕量酚类化合物的方法。
Semiconductor photo-catalysts have attracted considerable attention in the field of environmental science due to their many significant advantages such as low consumption, mild reaction condition, simple operation and decrease of secondary pollution in photo-degradation of refractory organic pollutants including chlorophenol. When the semiconductor particle is illuminated by light having higher energy than its band gap energy, an electron is excited from the conduction band to valence band to reduce the molecule absorbed on the surface of the particle and the hole in valence band can act as an oxidant. ZnO is one of the most promising green catalysts due to its higher photo-degradation ability in decomposing of the organic pollutants into CO2, H2O and some mineral acid as well as its many advantages (i.e., safety, non-toxic nature, low cost and no pollution). In this thesis, ZnO nanoparticles were firstly prepared through the thermal alcoholysis reaction of zinc acetate in diethylene glycol (DEG). The effect of heating rate on the alcoholysis temperature was explored. The influences of seed solution amount added and reaction time on the surface morphologies of zinc oxide microspheres were also discussed.
     MBR process used in the treatment of drinking water is still a relatively new technology, which was first developed in the mid-1990s in France. Using MBR for trace 2,4,6-TCP removal in micro-polluted water sources has not been reported up to present. In this thesis, the experimental design used MBR as the main technology to address micro-polluted surface water to the reactor, adding PAC to strengthen the effect in the mean time. The purpose of this test is not only to remove the organic pollutants as a whole, but also to achieve effective removal of the trace 2,4,6-TCP compound at the same time during the stable operation of MBR. As a result, the treated water from MBR or MBR-PAC process could meet the requirements of Standards for drinking water quality (GB5749-2006).
     SPME is a new kind of micro-sample enrichment technology. In this thesis, the development of the technology of SPME coupled with HPLC, including the principle, the apparatus and its various applications, in the field of environment in recent years were reviewed. Through the preliminary study, the analysis methods under the optimized experimental conditions of SPME-HPLC were established for fast determination of trace phenolic compounds in micro-polluted lake water.
引文
[1] Puma G L, Yue P L. Photocatalytic oxidation of chlorophenols in single-component and multicomponent systems[J]. Industrial & Engineering Chemistry Research, 1999, 38 (9): 3238-3245
    [2] Ohlenbusch Gerd, Kumke Michael U, Frimmel Fritz H. Sorption of phenols to dissolved organic matter investigated by solid phase microextraction[J]. The Science of The Total Environment, 2000, 253 (1-3): 63-74
    [3] Erkan Sahinkaya, Dilek Filiz B. Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge—evaluation of biokinetic coefficients[J]. Environmental Research, 2005, 99 (2): 243-252
    [4] Comparelli R, Fanizza E, Curri M L, et al. UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates[J]. Applied Catalysis B: Environmental, 2005, 60 (1-2): 1-11
    [5] Gondal M A, Sayeed M N. Laser-enhanced photocatalytic degradation of organic pollutants from water using ZnO semiconductor catalyst[J]. Journal of Environmental Science and Health A: Toxic/Hazardous Substances & Environmental Engineering, 2008, 43: 70-77
    [6] Liu H Q, Yang J X, Liang J H, et al. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light[J]. Journal of the American Ceramic Society, 2008, 91 (4): 1287-1291
    [7] Byrappa K, Subramani A K, Ananda S, et al. Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO[J]. Bulletin of Materials Science, 2006, 29 (5): 433-438
    [8] Chakrabarti S, Dutta B K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst[J]. Journal of Hazardous Materials, 2004, 112 (3): 269-278
    [9] Sivakumar T, Shanthi K. Kinetic studies on the photo decolourisation of textile dyes (reactive) using ZnO catalyst[J]. Indian Journal of Chemical Technology, 2000, 7 (3): 121-126
    [10]刘庆禄,林波.纳米材料与技术在废水处理中的应用及前景[J].环境科学与管理, 2007, 32 (11): 98-101
    [11] Hu Xiulan, Masuda Yoshitake, Ohji Tatsuki, et al. In situ forced hydrolysis-assisted fabrication and photo-induced electrical property in sensor of ZnO nanoarrays[J]. Journal of Colloid and Interface Science, 2008, 325 (2): 459-463
    [12] Daneshvar N, Salari D, Khataee A R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162 (2-3): 317-322
    [13] Cristian J L, Uanita F, Jaime B, et al. Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions[J]. Catalysis Today, 2002, 76 (2-4): 235-246
    [14] Kandavelu V, Kastien H, Thampi K R. Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts[J]. Applied Catalysis B: Environmental, 2004, 48 (2): 101-111
    [15] Sakthivel S, Neppolian B, Shankarb M V, et al. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2[J]. Solar Energy Materials & Solar Cells, 2003, 77 (1): 65-82
    [16]丁士文,王利勇,张绍岩.纳米TiO2-ZnO复合材料的合成、结构与光催化性能[J].无机化学学报, 2003, 19 (6): 632-635
    [17]井立强,孙晓君,郑大方. ZnO超微粒子的量子尺寸效应和光催化性能[J].哈尔滨工业大学学报, 2001, 33 (3): 344-348
    [18] Curri M L, Comparelli R, Cozzoli P D, et al. Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye[J]. Materials Science and Engineering, 2003, 23 (1-2): 285-289
    [19]井立强,袁福龙,侯海鸽. ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J].中国科学B辑化学, 2004, 34 (4): 310-314
    [20] Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chemical Reviews, 1995, 95 (1): 49-68
    [21] Rahman M A, Kaneco S, Suzuki T, et al. Optimized conditions for the solar photocatalytic degradation of bisphenolain water using zinc oxide[J]. Annali di Chimica, 2005, 95 (9-10): 715-719
    [22] Parida K M, Dash S S, Das. D P. Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods[J]. Journal of Colloid and Interface Science, 2006, 298 (2): 787-793
    [23] Sukharev V, Kershaw R. Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 98 (3): 165-169
    [24] Poulios I, Achpinis I.T. Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides[J]. Journal of Chemical Technology and Biotechnology, 1999, 74 (4): 349-357
    [25]张茂林,安太成,胡晓洪.泡沫镍负载纳米ZnO-SnO2光催化降解三氯乙烯[J].环境科学学报, 2005, 25 (2): 259-263
    [26] Jing Liqiang, Wang Dejun, Wang Baiqi, et al. Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles[J]. Journal of Molecular Catalysis A:Chemical, 2006, 244 (1-2): 193-200
    [27]井立强,蔡伟民,孙晓君. Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性[J].催化学报, 2002, 23 (4): 336-340
    [28] Di Li., Hajime Haneda. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 155 (1-3): 171-178
    [29] Lin Hsiu-Fen, Liao Shih-Chieh, Hung Sung-Wei. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst.[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174 (1): 82-87
    [30] Casey P S, Rossouw C J, Boskovic S, et al. Incorporation of dopants into the lattice of ZnO nanoparticles to control photoactivity[J]. Superlattices and Microstructures, 2006, 39 (1-4): 97-106
    [31]王英连,孙汪典. ZnO薄膜光催化降解苯酚实验[J].化学工程, 2006, 34 (3): 39-42
    [32]孙汪典,王英连. ZnO薄膜的掺Ag改性及其光催化降解苯酚性能研究[J].真空科学与技术学报, 2007, 27 (4): 309-311
    [33] Wang Y X, Li X Y, Lu G., et al. Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities[J]. Journal of Physical Chemistry C, 2008, 112 (19): 7332-7336
    [34] Solyanikova I P, Golovleva L A. Bacterial degradation of chlorophenols: pathways, biochemica and genetic aspects[J]. Journal of Environmental Science and Health part B, 2004, 39 (3): 333-351
    [35] Shtein Z F, Baskunov B, Golovlev E, et al. Dependence of the conversion of chlorophenols by rhodococci on the number and position of chlorine atoms in the aromatic ring[J]. Microbiology, 2000, 69 (1): 40-47
    [36] Nordin K, Unell M, Jansson J K. Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6[J]. Applied Environmental Microbiology, 2005, 71 (11): 6538-6544
    [37] Tartakovsky B, Levesque M J, Dumortier R, et al. Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacterium frappieri PCP21[J]. Applied Environmental Microbiology, 1999, 65 (10): 4357-4362
    [38] Lanthier M, Juteau P, Lepine F, et al. Desulfitobacterium hafniense is present in a high proportion within the biofilms of a high-performance pentachlorophenol-degrading, methanogenic fixed-film reactor[J]. Applied Environmental Microbiology, 2005, 71 (2): 1058-1065
    [39] Quan Xiangchun, Shi Hanchang, Zhang Yongming. Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp.[J]. Separation and Purification Technology, 2004, 34 (1-3): 97-103
    [40]李萍,刘俊新.共代谢基质驯化活性污泥降解五氯酚[J].中国给水排水, 2004, 20 (6): 35-37
    [41] Alexievaa Z, Gerginova M, Zlateva P, et al. Comparison of growth kinetics and phenol metabolizing enzymes of Trichosporon cutaneum R57 and mutants with modified degradation abilities[J]. Enzyme and Microbial Technology, 2004, 34 (3-4): 242-247
    [42] Fialova′A, Boschke E, Bley T. Rapid monitoring of the biodegradation of phenol-like compounds by the yeast Candida maltosa using BOD measurements[J]. International Biodeterioration and Biodegradation, 2004, 54 (1): 69-76
    [43] Jiang Yan, Wen Jianping, Lan Li, et al. Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis[J]. Biodegradation, 2007, 18 (6): 719-729
    [44] Kennedy K J, Ning Z, Fernandes L. Modeling simultaneous removal of primary substrates and chlorinated phenols in upflow anaerobic sludge blanket reactors[J]. Canadian Journa of Civil Engineering, 2001, 28 (6): 910-921
    [45] Ning Z, Kennedy K J, Fernandes L. Anaerobic degradation kinetics of 2,4-dichlorophenol (2,4-DCP) with linear sorption[J]. Water Science and Technology, 1997, 35 (2-3): 67-75
    [46] Sponza D T, Ulukoy A E. Treatment of 2,4-dichlorophenol (DCP) in a sequential anaerobic (upflow anaerobic sludge blanket) aerobic (completely stirred tank) reactor system[J]. Process Biochemistry, 2005, 40 (11): 3419-3428
    [47] Collins G, Foy C, Mchugh S, et al. Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15°C[J]. FEMS Microbiology Ecology, 2005, 53 (1): 167-178
    [48] Atuanya E I, Purohit H J, Chakrabarti T. Anaerobic and aerobic biodegradation of chlorophenols using UASB and ASG bioreactors[J]. World Journal of Microbiology and Biotechnology, 2000, 16 (1): 95-98
    [49] Armenante P M, Kafkewitz D, Lewandowski G A, et al. Anaerobic-aerobic treatment of halogenated phenoliccompounds[J]. Water Research, 1999, 33 (3): 681-692
    [50] Kharoune L, Kharoune M, Lebeault J M. Aerobic degradation of 2,4,6-trichlorophenol by a microbial consortium-selection and characterization of microbial consortium[J]. Applied Microbiology and Biotechnology, 2002, 59 (1): 112-117
    [51]叶鹏,张剑波,陈嵩.固定化辣根过氧化物酶催化去除五氯酚[J].北京大学学报, 2005, 41 (6): 918-925
    [52] Bagheri H, Saber A, Mousavi S R. Immersed solvent microextraction of phenol and chlorophenols from water samples followed by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2004, 1046 (1-2): 27-33
    [53] Jiu Ai. Headspace Solid phase microextraction. dynamics and quantitative analysis before reaching a partition equilibrium[J]. Analytical Chemistry, 1997, 69 (16): 3260-3266
    [54] Zhang Z, Yang M J, Pawliszyn J. Solid phase microextraction, a solvent- free altemative for sample preparation[J]. Analytical Chemistry, 1994, 17: 844-854
    [55]王栩如,王小如, Lee Frank S C.非平衡体系中固相微萃取技术的定量分析研究-快速监测水中痕量的有机污染物(多环芳烃)[J].高等学校化学学报, 1999, 20 (5): 40-44
    [56] Pawliszyn J. Solid Phase Microextraction: Theory and Practice[M]. New York: Wiley-VCH, 1997
    [57] Ulrich S. Solid-phase microextraction in biomedical analysis[J]. Journal of Chromatography A, 2000, 902 (1): 167-194
    [58] Catherine L Arthur, Lisa M Killam, Karen D Buchholz, et al. Automation and optimization of solid-phase microextraction[J]. Analytical Chemistry, 1992, 64 (17): 1960-1966
    [59] Ralf Eisert J P, Galina Barinshteyn, David Chambers. Design of an automated analysis system for the determination of organic compounds in continuous air stream using solid-phase microextraction[J]. Analytical Communications, 1998, 35: 187-190 [60] Pan Lin, Adams Marc, Pawliszyn Janusz. Determination of fatty acids using solid phase microextraction[J]. 1995, 67 (23): 4396-4403
    [61] Page B D, Lacroix G.. Application of solid-phase microextraction to the headspace gas chromatographic analysis of semi-volatile organochlorine contaminants in aqueous matrices[J]. Journal of Chromatography A, 1997, 757 (1-2): 173-182
    [62] Cam D, Gagni S, Meldolesi L, et al. Determination of polycyclic aromatic hydrocarbons in sediment using solid-phase microextraction with gas chromatography-mass spectrometry[J]. Journal of Chromatographic Science, 2000, 38 (2): 55-60
    [63] Eisert R, Pawliszyn J. Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography[J]. Analytical Chemistry, 1997, 69 (16): 3140-3147
    [64] Ramos L, Vreuls J J, Brinkman U A T, et al. Simultaneous filtration and liquid chromatographic microextraction with subsequent GC-MS analysis to study adsorption equilibria of pesticides in Soil[J]. Environmental Science &. Technology, 1999, 33 (18): 3254-3259
    [65] Arthur C L, Killam L M, Buchholz K D, et al. Automation and optimization of solid-phase microextraction[J]. Analytical Chemistry, 1992, 64 (17): 1960-1966
    [66] Zhu Ming, Aviles Francisco J, Conte Eric D, et al. Microwave mediated distillation with solid-phase microextraction: determination of off-flavors, geosmin and methylisoborneol, in catfish tissue[J]. Journal of Chromatography A, 1999, 833 (2): 223-230
    [67] Chen Jian, Pawliszyn Janusz. Solid phase microextraction coupled to high-performance liquid chromatography[J]. Analytical Chemistry, 1995, 67 (15): 2530-2533
    [68] Gou Yanni, Eisert Ralf, Pawliszyn Janusz. Automated in-tube solid-phase microextraction-high-performance liquid chromatography for carbamate pesticide analysis[J]. Journal of Chromatography A, 2000, 873 (1): 137-147
    [69] Boyd-Boland A A, Pawliszyn J B. Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of alkylphenol ethoxylate surfactants in water[J]. 1996, 68 (9): 1521-1529
    [70] Eisert R, Pawliszyn J. Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography[J]. 1997, 69 (16): 3140-3147
    [71] Nguyen A L, Luong J H T. Separation and determination of polycyclic aromatic hydrocarbons by solid phase microextraction/cyclodextrin-modified capillary electrophoresis[J]. 1997, 69 (9): 1726-1731
    [72] Wu Jingcun, Pawliszyn Janusz. Preparation and applications of polypyrrole films in solid-phase microextraction[J]. Journal of Chromatography A, 2001, 909 (1): 37-52
    [73] Negrao M R, Alpendurada M F. Solvent-free method for the determination of polynuclear aromatic hydrocarbons in waste water by solid-phase microextraction-high-performance liquid chromatography with photodiode-array detection[J]. Journal of Chromatography A, 1998, 823 (1-2): 211-218
    [74] Popp P, Bauer C, Moder M, et al. Determination of polycyclic aromatic hydrocarbons in waste water by off-line coupling of solid-phase microextraction with column liquid chromatography[J]. Journal of Chromatography A, 2000, 897 (1-2): 153-159
    [75] Stoichev T, Baptista M S, Basto M C P, et al. Application of SPME to the determination of alkylphenols and bisphenol A in cyanobacteria culture media[J]. Analytical and Bioanalytical Chemistry, 2008, 391 (1): 425-432
    [76] Adomaviciute E, Jonusaite K, Barkauskas J, et al. In-groove carbon nanotubes device for SPME of aromatic hydrocarbons[J]. Chromatographia, 2008, 67 (7-8): 599-605
    [77] Simoes N G., Cardoso V V, Ferreira E, et al. Experimental and statistical validation of SPME-GC-MS analysis of phenol and chlorophenols in raw and treated water[J]. Chemosphere, 2007, 68 (3): 501-510
    [78] Insa S, Besalu E, Salvado V, et al. Assessment of the matrix effect on the headspace solid-phase microextraction (HS-SPME) analysis of chlorophenols in wines[J]. Journal of Separation Science, 2007, 30 (5): 722-730
    [79] Pe?alver A, Pocurull E, Borrull F, et al. Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples[J]. Journal of Chromatography A, 2002, 953 (1-2): 79-87
    [80] Hu Y L, Zheng Y X, Li G K. Solid-phase microextraction of phenol compounds using a fused-silica fiber coated with beta-cyclodextrin-bonded silica particles[J]. Analytical Sciences, 2004, 20 (4): 667-671
    [81] Natalia Campillo, Rosa Pe?alver, Manuel Hernández-Córdoba. Evaluation of solid-phase microextraction conditions for the determination of chlorophenols in honey samples using gas chromatography[J]. Journal of Chromatography A, 2006, 1125 (1): 31-37
    [82] Bagheri H, Mir A, Babanezhad E. An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water[J]. Analytica Chimica Acta, 2005, 532 (1): 89-95
    [83] Li Xiujuan, Zeng Zhaorui, Zhou Jingjing. High thermal-stable sol-gel-coated calix[4]arene fiber for solid-phase microextraction of chlorophenols[J]. Analytica Chimica Acta, 2004, 509 (1): 27-37
    [84] Baciocchi R, Attin M, Lombardi G., et al. Fast determination of phenols in contaminated soils[J]. Journal of Chromatography A, 2001, 911 (1): 135-141
    [85] Ribeiro A, Neves M H, Almeida M F, et al. Direct determination of chlorophenols in landfill leachates by solid-phase micro-extraction-gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2002, 975 (2): 267-274
    [86] Chafer-Pericas C, Campins-Falco P, Prieto-Blanco M C. Automatic in-tube SPME and fast liquid chromatography: A cost-effective method for the estimation of dibuthyl and di-2-ethylhexyl phthalates in environmental water samples[J]. Analytica Chimica Acta, 2008, 610 (2): 268-273
    [87] Costa L L E, Sant'ana E S, Suchara E A, et al. Determination of herbicides used in irrigated rice cultivation in the south of Santa Catarina using SPME-GC-ECD[J]. Quimica Nova, 2008, 31 (1): 79-83
    [88] Chai X L, Jia J P, Sun T H, et al. Suitability of a novel circulating cooling SPME for analysis of organophosphorous pesticides in tomatoes[J]. Chromatographia, 2008, 67: 309-313
    [89] Gaurav, Kaur V, Kumar A., et al. SPME-HPLC: A new approach to the analysis of explosives[J]. Journal of Hazardous Materials, 2007, 147 (3): 691-697
    [90] Kaur V, Malik A K. A new method for simultaneous determination of Co(II), Ni(II) and Pd(II) as morpholine-4-carbodithioate complex by SPME-HPLC-UV system[J]. Talanta, 2007, 73: 425-430
    [91] Matthews R W. Photo-oxidation of organic material in aqueous suspensions of titanium dioxide[J]. Water Research, 1986, 20 (5): 569-578
    [92]周彤,吴纯德,王晓蕾,等.超声协同纳米TiO2光催化降解水中苯酚机理的研究[J].分析科学学报, 2005, 21 (3): 27-29
    [93] Di Li, Hajime Haneda. Morphologies of zinc oxide particles and their effects on photocatalysis[J]. Chemosphere, 2003, 51 (2): 129-137
    [94]邓凡政,杨睿,祝爱霞,等.光催化降解染料ZnO催化剂的性能[J].化学研究与应用, 2005, 17 (1): 89-90, 93
    [95] Jezequel D, Guenot J, Jouini N, et al. Preparation and morphological characterization of fine, spherical, monodisperse particles of ZnO[J]. Materials Science Forum, 1994, 152-5: 339-342
    [96]国家环境保护总局《水和废水监测分析方法编委会》.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002
    [97]郝爱玲,膜生物反应器处理微污染地表水的试验研究: [学位论文],天津:天津大学, 2006
    [98] Phibrook D M, Grady C P. Evaluation of biodegradation kinetics for priority polutants. Proc. Ind. Waste Conf, 40th. Purdue University, 1985, 795-804
    [99] Kenneth J Williamson, McCarty P L. Rapid measurement of monod half-velocity coefficients for bacterial kinetics[J]. Biotechnology and Bioengineering, 1975, 17 (6): 915-924
    [100]张自杰,林荣忱,金儒霖.排水工程,下册(第四版)[M].北京:中国建筑工业出版社, 1999
    [101]Huang Winn-Jung, Fang Guor-Cheng, Wang Chun-Chen. A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 260 (1-3): 45-51
    [102]Rengaraj S, Li X Z. Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension[J]. Journal of Molecular Catalysis A: Chemical, 2006, 243 (1): 60-67
    [103]Andreas Tiehm, Uwe Neis. Ultrasonic dehalogenation and toxicity reduction of trichlorophenol[J]. Ultrasonics Sonochemistry, 2005, 12 (1-2): 121-125
    [104]Cicek N, Franco J P, Suidan M T, et al. Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds[J]. Water Environment Research, 1999, 71 (1): 64-70
    [105]Clara M, Strenn B, Ausserleitner M, et al. Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional waste water treatment plant[J]. Water Science and Technology, 2004, 50 (5): 29-36
    [106]Joss A, Andersen H, Ternes T, et al. Removal of Estrogens in Municipal Wastewater Treatment under Aerobic and Anaerobic Conditions: Consequences for Plant Optimization[J]. Environmental Science & Technology, 2004, 38 (11): 3047-3055
    [107]Yoon Jeyong, Choi Youshik, Cho Soonhang, et al. Low trihalomethane formation in Korean drinking water[J]. The Science of The Total Environment, 2003, 302 (1-3): 157-166
    [108]蒋绍阶,刘宗源. UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报, 2002, 24 (2): 61-65
    [109]陈永玲. MBR及其组合工艺处理微污染地表水的试验研究: [学位论文],天津:天津大学, 2006
    [110]陈光,刘廷良,孙宗光.水体中TOC与COD相关性研究[J].中国环境监测, 2005, 21 (5): 9-12
    [111]Lin Cheng-Fanga, Lin Tze-Yaoa, Hao Oliver J. Effects of humic substance characteristics on UF performance[J]. Water Research, 2000, 34 (4): 1097-1106
    [112]Sylwiaa Mozia, Mariaa Tomaszewska. Treatment of surface water using hybrid processes-adsorption on PAC and ultrafiltration[J]. Desalination, 2004, 162: 23-31
    [113]郝爱玲,陈永玲,顾平.膜生物反应器用于微污染地表水处理的中试研究[J].化工学报, 2006, 57 (1): 136-139
    [114]Zümriye Aksu, Jülide Yener. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents [J]. Waste Management, 2001, 21 (8): 695-702
    [115]Aksua Z, Yener J. Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge [J]. Process Biochemistry, 1998, 33 (6): 649-655
    [116]Grady C P, Smets B F, Barbeau D S. Variability in kinetic parameter estimates: a review of possible causes and a proposed terminology[J]. Water Research, 1996, 30 (3): 742-748
    [117]Erkan Sahinkaya, Filiz B Dilek. Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge—Evaluation of biokinetic coefficients[J]. Environmental Research, 2005, 99 (2): 243-252
    [118]Melin E S, Puhakka J A, Ferguson J F. Enrichment and operation strategies for polychlorophenol degrading microbial cultures in an aerobic fluidized-bed reactor[J]. Water Environment Research, 1998, 70: 171-180
    [119]朱亮.供水水源保护与微污染水体净化[M],北京:化学工业出版社, 2005
    [120]Namkung E, Stratton R G., Rittmann B E. Predicting removal of trace organic compounds by biofilms[J]. Journal of The Water Pollution Control Federation, 1983, 55 (11): 1366-1372
    [121]Chin Jen Lu, Gerale E, Speitel Jr. Effect of natural organic matter on biodegradation of a recalcitant synthetic organic chemical[J]. Journal of the American Water Works Association, 1991, 83 (2): 56-61
    [122]Buchholz K D, Pawliszyn J. Optimization of solid-phase microextraction conditions for determination of phenols[J]. Analytical Chemistry, 1994, 66 (1): 160-167
    [123]Lee M R, Yeh Y C, Hsiang W S, et al. Application of solid-phase microextraction and gas chromatography-mass spectrometry for the determination of chlorophenols in urine[J]. Journal of Chromatography B: Biomedical Applications, 1998, 707 (1-2): 91-97
    [124]Bartak Petr, Cap Lubomir. Determination of phenols by solid-phase microextraction[J]. Journal of Chromatography A, 1997, 767 (1-2): 171-175
    [125]Sch?fer B, Engewald W. Enrichment of nitrophenols from water by means of solid-phase microextraction [J]. Fresenius Journal of Analytical Chemistry, 1995, 352 (5): 535-536
    [126]Sarrión M N, Santos F J,Galceran M T. Determination of chlorophenols by solid-phase microextraction and liquid chromatography with electrochemical detection[J]. Journal of Chromatography A, 2002, 947 (2): 155-165
    [127]González-Toledo E, Prat M D, Alpendurada M F. Solid-phase microextraction coupled to liquid chromatography for the analysis of phenolic compounds in water[J]. Journal of Chromatography A, 2001, 923 (1-2): 45-52
    [128]Alpendurada Maria De Fátima. Solid-phase microextraction: a promising technique for sample preparation in environmental analysis[J]. Journal of Chromatography A, 2000, 889 (1-2): 3-14
    [129]Llompart María, Lourido Mercedes, Landín Pedro, et al. Optimization of a derivatization-solid-phase microextraction method for the analysis of thirty phenolic pollutants in water samples[J]. Journal of Chromatography A, 2002, 963 (1-2): 137-148
    [130]Bekou E. Extraction of Organic Contaminants Using Room Temperature Water-Immiscible Ionic Liquids[Dissertation], Greece: Aristotle University of Thessaloniki, 2002
    [131]楼静,金泥沙.五氯酚废水生化处理技术研究进展[J].环境科学与管理, 2007, 32 (12): 113-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700