低热膨胀系数的聚酰亚胺复合薄膜的制备与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路产业的发展,高性能微电子封装技术已形成与集成电路产业相适应的高新技术产业。对电子封装材料来讲,较低的热膨胀系数和良好的高频特性(即较低的介电常数和介电损耗)是两个重要的指标。聚酰亚胺(PI)具有优良的机械、介电、电绝缘、耐高温、耐腐蚀等性能,综合性能优异,应用于电子塑料封装材料前景良好。
     本文首先用直接固相法和分步固相法两种方法合成出了纯度较高的原料钨酸锆(ZrW208)粉末,粒径在5~10μm左右,平均热膨胀系数为-9.604×10-6 K-1。然后分别以合成的ZrW208粉末和纳米碳化硅(n-SiC)作为填料,采用原位聚合法制备出了ZrW208/PI和n-SiC/PI两种复合薄膜,用扫描电子显微镜(SEM)、热机械分析仪(TMA)、阻抗分析仪和热重分析(TG)研究了所制备薄膜的表面形貌、热膨胀性能、介电性能及热稳定性。结果表明:
     (1)ZrW208粒子均匀的分散在PI基体中,且ZrW208的加入降低了复合薄膜的热膨胀系数(CTE), ZrW2O8含量越高,复合薄膜的CTE越小;热循环次数对CTE的影响不大,制备出的PI膜具有很好的尺寸稳定性。ZrW208/PI复合薄膜的介电常数随着填料含量的增加而小幅度增加,介电损耗随填料含量的增加变化较小,两者始终维持在较低的范围内,且在相当大的频率范围内保持稳定,对温度的依赖性不大。随着ZrW208含量的增加,复合薄膜的热稳定性增加,力学性能虽有小幅下降,但仍维持在较高水平。通过对ZrW2O8改性后的研究表明,改性后的ZrW208在PI基体中分散更均匀,得到的ZrW2O8/PI复合薄膜的CTE更小,介电常数和介电损耗也相应降低。
     (2) n-SiC粒子均匀分散在PI基体中,复合薄膜的CTE随着n-SiC含量的增加逐渐减小,n-SiC为15wt%时,CTE降低了11%,且复合薄膜的热膨胀系数实验值比较接近于以Kerner公式的计算值。复合薄膜的介电常数和介电损耗随着填料含量的增大而有小幅度增加,但始终维持在较低的范围内,而且在相当大的频率和温度范围内保持稳定。相对于纯PI,n-SiC/PI复合薄膜的热稳定性也有所提高。
     两种PI复合薄膜均具有低热膨胀系数、低介电常数、低介电损耗(温度、频率稳定性)、较高的热稳定性等性能特点,能够很好的应用于电子封装材料。
With the development of the integrated circuit industry, high-performance microelectronic packing technology has formed high-tech industries compatible with IC industry. In terms of electronic packaging materials, low thermal expansion coefficient and good high frequency characteristics (ie. low dielectric constant and dielectric loss) are two important indicators. Polyimide (PI) has good prospects in electronic plastic packaging materials for its excellent mechanical、dielectric、electrical insulation、marked thermal stability and corrosion resistance properties.
     In this study, the high purity zirconium tungstate (ZrW2O8) powders have synthesized by two methods:direct solid-state reaction and step by step solid-state reaction, with the average size of 5~10μm and the average coefficient of thermal expansion of -9.604×10-6K-1.And then selecting the synthetic ZrW2O8 and n-SiC as fillers, ZrW2O8/PI and n-SiC/PI composite films were prepared by in-situ dispersive polymerization separately. The surface morphology, thermal expansion, dielectric properties and thermal stability of ZrW2O8/PI and n-SiC/PI composite films were studied by scanning electron microscopy (SEM), thermal mechanical analysis (TMA), impedance analyzer and thermal gravimetric analysis (TG) respectively. The following are the results:
     (1) ZrW2O8 particles are dispersed in the PI evenly, and the input of ZrW2O8 decreases the CTE of composite films. The higher ZrW2O8 content, the smaller the CTE; number of thermal cycles has little effect on the CTE, so the prepared PI films has good dimensional stability. The dielectric constant of ZrW2O8/PI composite films increases slowly with the content of filler, and the dielectric loss changes little with increasing content of filler, remaining in the lower range, and both of them are stable in a wide frequency range and have little dependence on temperature. With the increase of ZrW2O8 content, the thermal stability of composite films increases, while the mechanical properties of composite films decreases slightly, and still remaining in the higher range. Using KH550 to modify ZrW2O8, the modified ZrW2O8 disperses in the PI matrix more uniformly, resulting in smaller CTE、lower dielectric constant、lower dielectric loss of ZrW2O8/PI composite films.
     (2) n-SiC particles are dispersed in the PI matrix evenly by employing the in-situ polymerization. The coefficient of thermal expansion (CTE) of n-SiC/PI composite films decreases with the increasing the SiC loading, while the experimental data could be analyzed by Kerner model closely. The CTE of PI with n-SiC mass fraction of 15% is about 11% decrease than that of the pure PI. The dielectric constant and dielectric loss of films increase slowly with the content of n-SiC fillers, remaining in the lower range and stable in both a wide frequency range and a wide temperature range. Compared with the pure PI, the thermal stability of n-SiC/PI composite films has improved.
     Both PI composite films have low coefficient of thermal expansion, low dielectric constant, low dielectric loss (temperature、frequency stability), high thermal stability and other performance characteristics, can be well applied in electronic packaging materials.
引文
[1]张海坡,阮建民.电子封装材料及其技术发展状况[J].粉末冶金材料科学与工程,2003,8(3):216-223
    [2]田民波,梁彤翔,何卫.电子封装技术和封装材料[J].半导体情报,1995,32(4):42-61
    [3]张臣,沈能钰.电子封装材料现状与发展[J].新材料产业,2003,(3):5-12
    [4]孙勤良.环氧树脂在封装材料中的应用概况[J].热固性树脂,2000,15(1):47-51
    [5]Barrie Dunn. New Material In space[J]. Material World.2000, (1):13-15
    [6]R R Tummala, Z J Rymaszewski, A G Klopfenstein微电子封装手册(第二版)[M].电子工业出版社,北京,2001
    [7]Chen Y, Chung D D L. Silicon-aluminum net work composites fabricated by liquid metal infiltration [J]. Journal of Material Science.1994,29(23):6069-6073
    [8]张新平,尹立孟,于传宝.电子和光子封装无铅钎料的研究和应用发展[J].材料研究学报,2008,22(1):1-9
    [9]Sangha S P S, Jacobson D M, Ogilvy A J W, et al. Novel aluminum-silicon alloys for electronics packaging [J]. Engineer Science an Education Journal.1997,6(5):195-201
    [10]刘金刚,尚玉明,范琳,等.先进电子封装中的聚酰亚胺树脂[J].半导体技术,2003,28(10):38-41
    [11]K M Shu, G C Tu. The Microstructure and the Thermal Expansion characteristics of Cu/SiCp Composites[J]. Materials Science and Engineering,2003,236-247
    [12]H S Lee, K Y Jeon, H Y Kim, et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packing applications [J]. Journal of Materials Science.2000, 35(6):6231-6236
    [13]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,2002,288-314
    [14]包兴,胡明.电子器件导论[M].北京:北京理工大学出版社,1990,33-53
    [15]何曼君,陈维,董西侠.高分子物理[M].上海:复旦大学出版社,1990,372-392
    [16]黄娆,刘之景.新型低介电常数材料研究进展[J].纳米材料与结构,2003,(9):11-18
    [17]赵文元,赵文明,王亦军.聚合物材料的电学性能及其应用[M].北京:化学工业出版社,1996,88-101
    [18]J C Romero, Wang L, Arsenault aR J. Interfacial structure of a SiC/Al composite[J]. Materials Science and Engineering.1996, A(212):1-12
    [19]L Geng C, K Yao. SiC-Al interface structure in squeeze cast SiCw/Al composite[J]. Scripta Metal Mater.1995(33):949-952
    [20]中国电子学会生产技术学分会丛书编委会.微电子封装技术[M].合肥:中国科学技术出版社,2003
    [21]Mary T A, Evans J S O, Vogt T, et al. Negative thermal expansion from 0.3 to 1050 kelvin in ZrW2O8[J]. Science,1996,272(5):90-92
    [22]Chang L L Y, Scroger M G, Philipis B. Condensed Phase relations in the systems ZrO2-WO2-WO3 and HfO2-WO2-WO3[J]. Journal of the American Ceramic Society,1967, 50(4):211-213
    [23]Ramirez A P, Kowach G R. Large low temperature specific heat in the negative thermal expansion compound ZrW2O8 [J]. Phys.Rev.Lett,1998,20(22):4903-4096
    [24]Graham J, Wadsley A D. Strong anisotropic thermal expansion in oxide, ZrW2O8[J]. Journal of the American ceramic Society,1959,42(11):570-575
    [25]Luke L Y Chang, M G Seroger, Bert Philips. Condensed phase relation in the systems ZrO2-WO2-WO3 and HfO2-WO2-WO3 [J]. J.Ame.Ceram.Soeiety,1967,50(4):210-215
    [26]Evans J S O, Mary T A, Vogt T, Subramanian M A, et al. Negative thermal expansion in ZrW2O8 and HfW2O5[J]. Chem. Mater,1996,8:2809-2823
    [27]Pryde A K A, Hammonds K D, Dove M T. Rigid unit modes and the negative thermal expansion in ZrW2O8 [J].Phis Trans,1997,(61):141-143
    [28]Tao J Z, Sleight A W. The role of rigid unit modes in negative thermal expansion [J]. Journal of Solid State Chemistry,2003,173:442-448
    [29]Cao D, Bridges F, Kowach G R, et al. Frustrated soft modes and negative thermal expansion in ZrW2O8[J]. Phys.Rev.Letters.,2002(21):215902
    [30]Cao D, Bridges F, Kowach G R. Correlated atomic motions in the negative thermal material ZrW2O8:ALoeal structure study [J].Physical Review B,2003,(68):014303
    [31]Evans J S O, Mary T A, Sleight A W. Negative Thermal Expansion in Sc2(WO4)3[J]. Journal of Solid State Chemistry,1998,137(1):148-160
    [32]J Granham, A D Wadsley, J H Weymouth, L S Williams. A new ternary oxide ZrW2O8 [J]. J. Am. Ceram. Soc.,1959,42:570
    [33]Y Yamamura, N Nakajima, T Tsuji. Heat capacity anomaly due to the a-b structural pahse transition in ZrW2O8 [J]. Solid State Communications,2000,114:453-455
    [34]李刚,姚杰,王克宇,等.一种负热膨胀材料的物相结构分析[J].南京师大学报,2000,23(1):56-59
    [35]J C Chen, G C Huang, C Hu, J P Weng. Synthesis of negative-thermal-expansion ZrW2O8 substrates [J]. Scripta Materialis,2003,49:261-266
    [36]孙秀娟,杨娟,刘芹芹,等.无机化学学报,共沉淀法制备负热膨胀ZrW208粉体及其粒径控制初探[J].2005,9:1412-1416
    [37]A P Wilkinson, C Lind, S Pattanik. A new polymorph of ZrW2O8 prepared using nonhydrolytic sol-gel chemistry [J]. Chem. Mater.,1999,11:101
    [38]孔向阳,吴建生,曾振鹏.ZrW208微波合成、表征及负膨胀行为研究[J].硅酸盐学报,1999,27(3):265-269
    [39]邢奇凤,邢献然,杜陵,等.水热法合成负热膨胀材料ZrW2O8[J].金属学报,2005,41(6):669-672
    [40]Lisa M Sullivan, Charles M Lukehart. Zirconium Tungstate (ZrW2O8)/Polyimide Nanocomposites Exhibiting Reduced Coefficient of Thermal Expansion [J]. Chen. Mater., 2005,17:2136-2141
    [41]J D Sh, Z J Pu, K H Wu, et al. Composite materials with adjustable thermal expansion for electronic applications, Materials research society symposium-proceedings,199,445:229-234
    [42]丁孟贤,何天白.聚酰亚胺新型材料[M].北京:科学出版社,1998,ix
    [43]Boccaccini A R. Predicting the electrical conductivity of two-phase composite materials[J]. Scripta Mater,1997,36:1195-1197
    [44]Lu D, Tong Q, Wang C P. Conductivity mechanisms of isotropic conductive adhesives[J]. IEEE Trans Electron Packg Manuf,1999,22:223-227
    [45]范和平.低热膨胀聚酰亚胺与无胶FPC基材.印刷电路信息,1997,5:7-20
    [46]徐庆玉,范和平,王洛礼.低热膨胀聚酰亚胺研究进展.高分子材料科学与工 程,2002,18(6):29-31
    [47]徐庆玉,范和平,王洛礼,等.低热膨胀聚酰亚胺的制备及应用.精细石油化工进展,2001,2(2):42-44
    [48]虞鑫海.聚酰亚胺硅氧烷共聚物.绝缘材料通讯,1999,(3):10-13
    [49]Southward R E, Thompson D S, Thompson D W, et al. Lowering coefficients of thermal expansion in soluble fluorinated polyimides via the in situ formation of lanthanum-oxo clusters. Polym Mater Sci Eng,1997,76:185-186
    [50]Southward R E, Thompson D S, Thompson D W. Enhancement of dimensional stability in soluble polyimides via lanthanide(ⅲ) acetate additives.J Adv Mater,1996,27(3):2-8
    [51]Thompson D W, Southward R E, Clair A K S. Lanthanide(Ⅲ) doped polyimide films. Polym Mater Sci Eng,1994,71:725-730
    [52]杨永森,杨娟,程晓农.低膨胀聚酰亚胺复合薄膜的制备及应用研究进展.材料导报,2007,21:214-217
    [53]Jain A, Rogojevic S, Ponoth S, et al. Porous silica materials as low-k dielectrics for electronic and optical interconnects [J]. Thin Solid Films,2001,38:513-522
    [54]宋宝玲,廖森,姜求宇.固相反应制备纳米氧化锡[J].化工技术与开发,2003,32(2):2-7
    [55]McDonagh C, Sheridan F, Butler T, et al. Characterization of sol-gel-derived silica films [J]. J Non-Cryst Solid,1996,14:72-77
    [56]Yoshiaki Suda, Hiroharu Kawasaki, Jun Namba, et al. Properties of palladium doped tin oxide thin films for gas sensors grown by PLD method combined with sputtering process [J]. Surf Coat Technol,2003,17:1293-1296
    [57]Song K C, Kim J H. Preparation of nanosize tin oxide particles from water-in-oil microemulsions[J]. J Colloid Interface Sci,1999,21:193-196
    [58]叶甜春.现代微电子技术[M].北京:化学工业出版社,2002,201-231
    [59]袁福龙,傅洪海,刘丹宁,等.用超声喷雾热分解法制备二氧化锡薄膜[J].黑龙江大学学报(自然科学版),2000,17(2):76-78
    [60]Darjang Liaw, Chingcheng Huang, Wenhsiang Chen. Color lightness and highly organosoluble fluorinated polyamides polyimides and poly(amide-imide)s based on noncoplanar 2,2'-dimethyl-4,4'-biphenylene units[J]. Polymer,2006,47:2337-2348
    [61]Yiwang Chena, Entang Kang. New approach to nanocomposites of polyimides containing polyhedral oligomeric silsesquioxane for dielectric applications[J]. Materials Letters,2004,58: 3716-3719
    [62]Fu G D, Zong B Y, Kang E T, et al. Nanoporous low-dielectric constant polyimide films via poly(amic acid)s with RAFT-graft copolymerized methyl methacrylate side chains[J]. Industrial and Engineering Chemistry Research,2004,43:6723-6730
    [63]Lizhong Jiang, Jiugui Liu, Dezhen, et al. Methodology for the preparation of nanoporous polyimide films with low dielectric constants[J]. Thin Solid Films,2006,510:241-246
    [64]Chyiming Leu, G Mahesh Reddy, Kunghwa Wei. Synthesis and Dielectric properties of polyimide chair end tethered polyhedral oligomeric silsesquioxane nanocomposites[J]. Chem Mater,2003,15:2261-2265
    [65]程晓农,孙秀娟,杨娟,等.固相法合成负热膨胀性粉体ZrW208[J].江苏大学学报(自然科学版),2005,26(4):350-353
    [66]Charles Martinek, F A Hummel. Linear Thermal Expansion of Three Tungstates[J]. Journal of the American Ceramic Society,1968,51:7-231
    [67]Kameswari U, Sleight A W, Evans J S O. Rapid synthesis of ZrW2O8 and related Phases and Structure refinement of ZrWMoO8[J]. The International Journal of Inorganic Materials,2000, 2:333-337
    [68]申浮文,罗裕基,顾翼东,等.无机化学丛书第八卷[M].北京:科学出版社,1998,103-104-532
    [69]Tao J Z, Sleight A W. The role of rigid unit modes in negative thermal expansion [J]. Journal of Solid State Chemistry,2003,173:442-448Pryde A K A, Hammonds K D, Dove M T, Heine V. Rigid unit modes and the negative thermal expansion in ZrW2O8[J]. Phis Trans,1997,(61): 141-143
    [70]Pryde A K A, Hammonds K D, Dove M T, Heine V. Rigid unit modes and the negative thermal expansion in ZrW2O8 [J]. Phis Trans,1997,(61):141-143
    [71]Wang Z G, Xie M. Zhao Y F, etal. Synthesis and properties of novel liquid ester-free reworkable cyeloaliPhatic diepoxides for electronic packaging application[J]. Polymer,2003, 44(4):923-929
    [72]Mittal K L. Polyimide:Synthesis, Characterization and Applications [M]. Plenum Press, New York,1984
    [73]李敏,张佐光,仲伟虹.聚酰亚胺树脂研究与应用进展[J].复合材料学报,2000,17(4):48-53
    [74]徐庆玉,范和平,王洛礼等.低热膨胀聚酰亚胺研究进展[J].化工新型材料,2001,29(4):31-33
    [75]Magaraphan R, Lilayuthalert W, Sirivat A, etal. Adhesion and permeability of poly imide-clay nanocomposite films for protective coatings[J]. Composites Science and Technology,2001, 61(9):1253
    [76]Wang J J, Yi X S. Preparation and the properties of PMR-type polyimide composites with aluminum nitride[J]. Journal of Applied Polymer Science,2003, (89):3913-3917
    [77]王家俊,益小苏.导热型高性能树脂微电子封装材料之二:封装材料的导热和热膨胀性能[J].包装工程,2003,24(4):13-16
    [78]丁孟贤.聚酰亚胺—化学,结构与性能的关系及材料[M].北京:科学出版社,2006:75-76
    [79]Ruch P W, Beffort O. Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity [J]. Composites Science and Technology,2006, (66):2677-2681
    [80]Dang Z M, Shen Y, Fan L Z, Nan C W. Dielectric properties of the composites filled by the different conductivities fillers. Rare Metal Mater. Eng.,2002,31(supp.l):429-432
    [81]Brosseau C, Queffelec P, Talbot P. Microwave characterization of filled polymers. J Appl Phys, 2001,89(8):4532-4540Bai Y, Cheng ZY, Bharti V, Xu H S, Zhang Q M. High dielectric constant ceramic powder polymer composites. Appl Phys Lett.,2000,76(25):3804-3806
    [82]Bai Y, Cheng ZY, Bharti V, Xu H S, Zhang Q M. High dielectric constant ceramic powder polymer composites. Appl Phys Lett.,2000,76(25):3804-3806
    [83]Kirkpatrik S. Percolation and conduction. Rev Modern Phys,1973,45(4):574-588
    [84]Nan C W. Physics of inhomogeneous inorganic materials [J]. Progress in Materials Science, 1993,37:1-116
    [85]Wen J Y, Wilkes G L. Organic/inorganic hybrid network materials by the ol-gel approach[J]. Chem. Mater.,1996,8:1667-1681
    [86]Xie S H, Zhu B K, Li J B, Wei X Z, Xu Z K. Preparation and properties of polyimide/aluminum nitride composites[J]. Polymer Testing,2004,23:797-801 Wen J Y, Wilkes G L. Organic/inorganic hybrid network materials by the ol-gel approach[J]. Chem. Mater.,1996,8: 1667-1681
    [87]Feng G Y, Fang X F, Wang J J, Zhou Y, Lu R, Yuan J, Cao M S. Effect of heavily doping with boron on electronic structures and optical properties of β-SiC[J]. Physica B-Condensed Matter,2010,405(12):2625-2631
    [88]邹桂真,曹茂盛,张亮,金海波,宿辉,王正平.化学镀制备Ni包覆纳米SiC核壳颗粒及其介电相应[J].无机材料学报,2006,21(4):797-802
    [89]Huang C, Zhang Q. Enhanced dielectric and electromechnical Responses in high dielectric constant all-polymer percolative composites[J]. Advance Functional Materials,2004,14: 501-506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700