黄土中Sr阻滞因子的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核能的利用,一方面给人类社会带来了极大的经济效益,另一方面,核废物若处置不当,将对生态环境造成很严重的污染,威胁到人类的健康。目前,放射性废物的地质处置是国际上唯一接受的、安全的处置方法。一个适宜的核废物处置库库址的选定需要综合各种因素,其中核素迁移是其核心问题之一。本文通过实验考察了Sr在饱和黄土中的迁移行为,为浅地层处置场的适宜性评价提供依据。
     首先,在25±1℃的条件下,系统的研究了Sr在供试黄土中的吸附行为及其影响因素。动力学吸附结果表明:黄土对Sr的吸附能力极强,几乎瞬间就能达到吸附平衡。采用批量平衡法,在5~100mg/L的浓度范围内,开展了Sr平衡吸附行为的实验研究,以Freundlich方程拟合实验数据,计算出Sr在黄土中的吸附特性参数1/n和Kf,1/n为0.6791,Kf值为117.67。Freundlich方程线性化的拟合效果也比较令人满意,获得了该浓度范围内的分配系数Kd,其值为55.01 mL/g。此外,就温度、土壤粒径、初始液质量浓度、pH值和钙离子强度对Sr吸附的影响开展了实验,结果显示:随着温度的降低、土壤粒径的减小、初始液质量浓度的增大、pH值的升高和钙离子浓度的降低,Sr在黄土中的吸附量都有不同程度的升高。
     其次,进行了土柱模拟实验。以Br-为示踪溶质,在稳定流条件下,得到了Br-的穿透曲线。用时7个月约210天,进行Sr在饱和黄土中的淋溶动态实验,获得了Sr在土柱中的垂直浓度分布曲线。实验结果显示:Sr在土柱中的浓度峰出现在11.25cm处,动态阻滞因子为283.6。
     最后,根据易混合置换实验获得的Br-的BTC,应用软件HYDRUS-1D,求解一维溶质运移对流-弥散方程数学模型的反问题,估算出Sr的峰值距离,进行Kd和Rd实验数据的修正。
On the one hand, radionuclide is used for industry, which promotes the economic development; on the other hand, radionuclide is harmful to human health and ecological environment if it is not treated properly. Nowadays, the geologic disposal is considered as one of the best methods. And the superficial disposing is widely applied to treat the VLLW. Many factors need to be considered for choosing a suitable site to treat the radionuclide. And the migration of nuclide is one of the most important factors and must be considered.
     Firstly, we studied the behavior of Sr in contact with test loess through kinetic adsorption and the equilibrium was reached almost instantaneously. Then, adsorption isotherms of Sr on the test loess were studied using laboratory batch system and experimental concentration of Sr is rang from 5mg/l to 100mg/l. The adsorption isotherms of Sr were described by the Freundlich equation. The Kf value and 1/n value are 117.67 and 0.6791 respectively. And the Kd value is 55.01mL/g when the 1/n value is 1. The Kd values are all increased with the decreasing of temperature、the reducing of particle size、the increasing of initial concentration and the increasing of pH and have negative correlation of Ca2+ ion concentration.
     Secondly, the migration experiment lasted seven months about 215 days. The miscible displacement experiments were carried out on saturated homogeneous loess under steady-state flow at a specific pore water velocity to investigate the movement of Sr using bromide as a tracer. The vertical concentration distribution of Sr in column was obtained, which was used to compute the retardation coefficient. The results from leaching experiment suggested that maximum of concentration is located in 11.25cm. then the retardation coefficient was calculated and its value is 283.6.
     Finally,the computer code(HYDRUS-1D) was applied to fit the breakthrough curve of bromide. And by solving inverse problem of the convection dispersion equation, the relative parameters were obtained. Then the least-squares optimization approach was used to estimate the position of concentration of Sr in column.
引文
[1]潘自强.核能与可持续发展[J].2003,(7):9~13
    [2] Russell C D,Speiser A G.Complexes of Technetium With Hydroxycarboxylic Acids; Gluconic Glucoheptonic,Tartaric and Citiric[J].Nucl Med,1980,21(11):1086~1090
    [3]罗上庚.放射性废物管理发展中值得重视的几个问题[J].世界科技研究与发展,2000,22(4):35~40
    [4]国家环境保护局.GB9132-1988,1988,地中水平放射性固体废物的浅地层处置规定[S]
    [5]石晓亮,钱公望.放射性污染的危害及防护措施[J].工业安全与环保,2004,30(1) :6~9
    [6] INTERNATIONAL ATOMIC ENERGY AGENCY, Radioactive Waste Management Profiles:Data from the Waste Management Data Base[M],IAEA,Vienna,1994:15~20
    [7]陈式,马明燮,等著.中低放水平放射性废物的安全处置[M].北京:原子能出版社,1998,76~78
    [8]陈式.放射性废物管理和核设施退役中几个问题的讨论[J].辐射防护,2004,24(6):344~348
    [9]张志军.放射性核素迁移研究及进展[J].广东微量元素科学,2005,12(3):5~7
    [10]刘元方.当前核素迁移研究的若干进展[J].核化学与放射化学,1990,12(1):1~8
    [11] Relgea J F, Serne R T, Rai D. Methods for Determining Radionuclide Retardation Factors[A].PNL. Quarter Report[C].PNL,1980,3349
    [12]王志明,安永锋.85Sr在非饱和黄土中的迁移特征[J].原子能科学技术,2004,38(1):29~34
    [13]王志明,安永锋.85Sr在非饱和黄土中的迁移特征[J].原子能科学技术,2004,38(1):29~34
    [14]玄光善,金文昌,许大成,李兴洛.土壤样品90Sr测定的前处理[J] .湿法冶金,2005,24(1):48~51
    [15]张富仓,康绍忠,潘英华.饱和-非饱和土壤中吸附性溶质水动力弥散实验研究[J].水利学报,
    [16] B.Bilgin, G. Atun, G. Keceli, Adsorption of strontium on illite. Radioanalytical and Nuclear Chemistry, 2001, 250(2):323~328
    [17] Z. Nemes, N. M. Nagy, J. KUnya. Kinetics of strontium ion adsorption on natural clay samples, Journal of Radioanalytical and Nuclear Chemistry, Vol. 266, No. 2 (2005) 289~293
    [18] Saad Ali Khan, Sorption of the long-lived radionuclides cesium-134, strontium-85 and cobalt-60 on bentonite , J. Radioanal. Nucl. Chem., 2003, 258 (1):3~6
    [19] J. Solecki. Investigation of 85Sr adsorption in the presence of Na+, K+ and Cs+ on selected soils from different horizons. Journal of Radioanalytical and Nuclear Chemistry, Vol. 268, No.2 (2006) 357~364
    [20] J.Solecki, S.Michalik. Studies of 85Sr adsorption on grain fractions of soil. Journal of Radioanalytical and Nuclear Chemistry, Vol. 267, No.2 (2006) 271~278
    [21] N. Kamei-Ishikawa, S. Uchida, K. Tagami. Distribution coefficients for 85Sr and 137Cs in Japanese agricultural soils and their correlations with soil properties. Journal of Radioanalytical and Nuclear Chemistry, Vol. 277, No.2 (2008) 433~439
    [22]王青海,李晓红,顾义磊,陈金华.锶在砂岩和花岗岩中的分配系数及吸附机制研究[J].矿物岩石,2004,24(2):30~34
    [23]李良宽,周俊一,于乃琇,叶艳妹.锶、钴、铯溶质的竞争吸附和锶的迁移动态机理[J]环境科学学报,1994,14(3):330~334
    [24] Indrek Porro, Meredithe. Newman, Frank M. Dunnivant. Comparison of batch and column methods for determining strontium distribution coefficients for unsaturated transport in basalt, J.Environ. Sci.Technol. 2000, 34, 1679~1686
    [25] S. Szenknect, J.P. Gaudet and L. Dewiere. Evaluation of distribution coefficients for the prediction of strontium and cesium migration in a natural sand at different water contents J. Phys. IV France 107 (2003) 1279.
    [26] S. Palfigyi, 1 J. Palfigyiovfi. Migration of 85Sr and 137Cs in vertical soil profiles. Journal of Radioanalytical and Nuclear Chemistry, VoL 24t, No. 3 (1999): 475~481
    [27] A.H.Al-Rayyes,M.Al-Oudat,A.AL-Hamwi,H.Mukhallallati. Behavior of 134Cs, 90Sr and 238Pu in different Syrion soils. Journal of Radioanalytical and Nuclear Chemistry, Vol. 277, No.1 (2007) 139~143
    [28] Mark J. Thomasson, Peter J. Wierenga. Spatial variability of the effective retardation factor in an unsaturated field soil. Journal of Hydrology 272 (2003) 213~225
    [29] Ingrid Y.Padilla, T.-C.Jim Yeh and Martha. The effect of water content on solutetransport in unsaturated porous media. Water Resource Research 35(11),1999.
    [30]丛伟,张兴昌,王云强,张晋爱.Se在一维风沙土土柱中的运移规律研究[J].农业环境科学学报,2007,26(5):1948-1951
    [31]马腾,王焰新.放射性核素在地下介质中迁移机理与模型研究[J].地质科技情报,2000,19(2):78~82
    [32]王玉,张一平.土壤液土比对搂土NH4+运移阻滞因子的影响.西北农林科技大学学报(自然科学版). 30(1),2002
    [33]李祯堂,王辉,游志均.大亚湾核电站处置场天然屏障对85Sr、134Cs和60Co的吸附性研究[J].辐射防护通讯,2003,23(2):27~31
    [34]李祯堂,王辉,游志均.放射性核素在页岩和黄土中的迁移研究[J].辐射防护通讯,2004,24(3):34~37
    [35]王志明,郭谦,李书绅,焦志兰,孟莉萍,郭志明.水流速度对锶迁移影响的实验研究[J].原子能科学技术,2003,37(4):320~324
    [36]李祯堂,王辉,游志均. 85Sr、134Cs和60Co在浅地层黄土与地下水间的分配系数测定[J].辐射防护,1995,15(2):138~142
    [37]杨月娥,李洋,潘伟,王志明,倪世伟.稳定元素Sr在土柱中的迁移[J].原子能科学技术.2006,40(3):292~296
    [38]王志明,杨月娥,李书绅.天然降水条件下核素在非饱和黄土中迁移快成分的特征[J].辐射防护,2001,21(2):73~76
    [39]蒋以超,张一平编著。土壤化学过程的物理化学。北京:中国科学技术出版社,1993,313~314,342
    [40]赵玉萍编著,土壤化学。北京:北京农业大学出版社,1991,105
    [41]赵振国编著。吸附作用应用原理。北京:化学工业出版社,2005:209,235~237
    [42]李学垣主编。土壤化学。北京:高等教育出版社,2001,145
    [43] Moreau C. and C. Mouvet. Adsorption and desorption of Atrazine, Deethylatrazine, and Hydroxyatrazine by soil and aquifer solids. J. Environ. Qual., 1997, 26: 416~424
    [44] Gao J. P., J. Maguhn, P. Spitzauer, et al. Sorption of pesticides in the sediment of the Teufelsweiher Pond (Southern Germany).Ⅰ: Equilibrium Assessments, Effect of Organic Carbon Content and pH. Wat. Res., 1998, 32(5): 1662~2672
    [45] Seybold. C. A, W. Mersie. Adsorption and desorption of Atrazine, Deethylatrazine. Deisopropylatrazine, Hydroxyatrazine, and Metolachlor in two soils from Virginia. J.Environ. Qual., 1996, 25(6): 1179~1185
    [46]钱鲁闽,蔡福龙,林秋明,陈英.厦门河口港湾区海水中Sr的行为特征研究[J ].海洋环境化学, 1998 , 17 (20):24~28
    [47]李爽,倪师军,张成江,丁明刚,吴虹霁.锶在土壤中的吸附动力学[J].核化学与放射化学,2007,29(2):90~95
    [48] Thiele, S. Adsorption of the Antibiotic pharmaceutical compound Sulfapyridine by a long-term differently fertilized osess chernozem. J. Plant Nutu. Soil Sci., 2000, 163: 589~594
    [49]钱天伟,刘春国。饱和-非饱和土壤污染物运移。北京:中国环境科学出版社,2007,195
    [50]李书绅,王志明,郭择德,李祯堂,赵英杰,李盛芳.低中水平放射性废物浅地层处置安全评价方法研究[J].辐射防护,2000,24(12):1~20
    [51]戴树桂,土壤多介质环境污染研究进展。土壤与环境,2001:2~3
    [52]安风春,莫汉宏,杨克武,等。农药在土壤中迁移的研究方法。环境科学,1994,13(3):214~21
    [53]冈吉W D编,夏增禄,张莉,沈瑞珍,等译。土壤和水中的农药。北京:科学出版社,1985:179
    [54]王志明,安永峰. 85Sr在非饱和黄土中的迁移特征[j].原子能科学技术,2004,38(1):29~34
    [55]毛萌。农药阿特拉津在土壤中运移与转化规律的研究:[硕士学位论文]。北京:中国农业大学,2004:5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700