MOX燃料模块快堆嬗变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电站乏燃料中超铀核素,特别是其中的少数锕系核素(Minor Actinides,简称MA),对环境具有潜在长期放射性危害性。当前世界上已积累了几百吨MA,而且以后每年还将以吨量级的速率增加。虽然我国核电发展起步较晚,但将同样面临MA不断积累的问题。快中子反应堆(简称快堆)是目前比较有效的嬗变MA的现实装置。MA可以作为快堆的燃料用于产生能量。但在快堆中消耗MA涉及到乏燃料后处理(MA的分离)、含MA燃料的制造、MA对堆芯性能的影响、MA需在快堆中多次循环等方面的问题。
     原型快堆是我国发展快堆的下一个工程目标,它也是模块快堆电站的第一个模块快堆。原型模块快堆的主要任务是作为大型商用快堆的原型,验证其作为电站运行的可行性。同时模块快堆在嬗变MA等方面还应发挥作用。本论文旨在研究模块快堆嬗变压水堆核电站乏燃料中MA的一些相关问题。主要论述随着我国压水堆核电站装机容量和运行堆年的增加,乏燃料中MA总量增长趋势;模块快堆的堆芯概念设计方案;在不改变模块快堆堆芯设计的前提下,MOX燃料中添加MA和稀土核素对堆芯中子学性能的影响以及模块快堆的嬗变效率;模块快堆对减少我国MA总量的作用;模块快堆产生的最终核废物的长期放射性毒性随时间的变化等。论文通过充分调研,考虑了各种因素和限制条件,给出了模块快堆可能达到的MA嬗变率和焚毁率,在此基础上假想了我国MA的消耗趋势。本论文的主要结论:不是专门为嬗变目的设计的模块快堆的嬗变支持比为2。随着分离技术的发展以及专门用于嬗变目的的模块快堆设计成功,采用模块快堆嬗变MA的效率会极大提高。本论文所给出的数据和得出的结论对规划我国乏燃料的管理有一定的参考意义。
The transuranic elements especially the minor actinides (MA) in spent fuel represent potential environmental radiotoxicity hazard in the long term. Hundreds tones of MA are already produced worldwide, and annually about a few tones of MA is added. Though China develops nuclear power since near term, it will face the same situation that the amounts of MA accumulated in the spent fuel in China is growing quickly. Fast reactor has operated successfully in some countries, which is suitable to burn MA and is effective to some degree. MA can be used for nuclear energy production as fuel for fast reactor. But to burn MA in fast reactor concern of many issues in which the first one influencing MA burning is reprocessing (particularly MA partitioning). The second is its conditioning and fuel fabrication of MA. The third is the influence to fast reactor core performance by the MA added. The fourth is the multiple recycles of MA in fast reactor and so on.
    China plans to design and construct the prototype fast reactor in the future not very far which also is a first module of the Modular Fast reactor Power Plant. The transmutation of MA from thermal neutron reactors using modular fast reactor is discussed in this thesis. The amounts of MA accumulated in the spent fuel are predicted according to the Nuclear Power Plant development plan envisaged in China. The modular fast reactor core conceptual design is performed. The ratio of MA added to the MOX fuel is studied. The neutronics characteristics of MA transmutation, and the transmutation and burning efficiency of the modular fast reactor are calculated. The role of the modular fast reactor to buffer the growing of MA in China and the reduction of radiotoxicity of nuclear waster via multiple recycling of MA in the modular fast reactor are calculated. Many constrains and limits are considered when designing the modular fast reactor core. The MA transmutation rate and burning rate of the modular fast reactor are realizable. Basing this transmutation capability the reduction tendency of the amounts of MA accumulated in China is predicted. The main conclusion of this thesis is that the transmutation supporting ratio of the modular fast reactor is two, which core is not special designed for transmutation. The efficiency of modular fast reactor could be raised greatly as the partitioning technology developing and the successfully designing of modular fast reactor core favorite for MA transmutation. The results and conclusions given in this thesis could be as a reference to the strategy study of the nuclear fuel cycle in the country.
引文
1. M.J.Schaffer,et al.,Background study of linear fusion system for transmutation fission reactor wasters,EPRI Ap-1644(1980).
    2. A.G.Croff,et al.,A preliminary assessment of partitioning and transmutation as a radioactive waste management concept,ORNL/TM-5808(1977).
    3. M.Steinberg,et al.,Neutron burning of long-lived fission products for waste disposal,BNL 8558(1964).
    4. L.Koch,Status of Transmutation,Use of fast reactors for actinide transmutation,IAEA-TECDOC-693,1993.
    5.李寿楠,高放废物的嬗变处置与不产生长寿命高放废物的新核能系统,《核科学与工程》,Vol.16(3,4),1996。
    6.放射性洁净核能系统研讨会报告文集,RCNPS-1996。
    7. A.G.Croff,et al.,Actinide partitioning and transmutation program final report,Vol.1,Overall assessment,ORNL/TM-5566(1980).
    8.赵仁恺主编,中国快堆技术发展,1996年。
    9. A.G.Croff,"A user's manual for the ORIGEN2 code",ORNL/TM-7175,1980.
    10. T.Mukayama,et al.,Minor actinide transmutation in fission reactors and fuel cycle considerations,IAEA-TECDOC-693,1993.
    11. T.Wakarayashi,et al.,Characteristics of TRU transmutation in a LMFBR,IAEA-TECDOC-693,1993.
    12. A.Sasahara,T.Matsumard,An assessment of TRU recycling in metal fuel FBR,International Conference on the Physics of Reactors,1990.
    13.张玉山,长寿命核废物嬗变处理的研究综述,《原子核物理评论》,Vol.14(4),P251,1997。
    14. C.L.Cocked,T.Wu,et al.,Higher Actinide Transmutation in the ALMR,The Proceedings of the Global'93 Conference,Seattle,1993.
    15. M.L.Thompson,J.E.Quinn,The ALMR system's missions for transmuting waste into energy,GE Nuclear Energy-Advanced Reactor Programs,The Proceedings of the Global'93 Conference,Seattle,1993.
    16. J.H.Bultrnan,et al.,Actinide breeding and burning in metallic and oxide fueled ALMR cores,The Proceedings of the Global'93 Conference,Seattle,1993.
    17. H.Khalil,et al.,Physics consideration in the design of liquid metal reactors for transuranium element consumption,IAEA-TECDOC-693,1993.
    18. T.Inoue,Recycling of Minor Actinides in metal fuel FBR,Proceedings of the Second International information Exchange meeting on Actinide and Fission
    
    product Separation and Transmutation, Argonne,USA, 1992.
    19. M.Yamaoka, et al., Characteristics of a heterogeneous TRU-loading core, Proceedings of the Second International information Exchahge meeting on Actinide and Fission product Separation and Transmutation,Argonne,USA, 1992.
    20. K.Fujimura, et al., Minor Actinide burning LMFBR core system to enhance safety characteristics, The Proceedings of the Global'93 Conference,Seattle, 1993.
    21. C.Prunier, et al., Some specific aspects of homogeneous Am and Np based fuels transmutation through the outcomes of the superfact experiment in PHENIX fast reactor, The Proceedings of the Global'93 Conference, Seattle, 1993.
    22. K.D.Dobbin, et al.. Evaluating the efficacy of a minor actinide burner, The Proceedings of the Global'93 Conference, Seattle, 1993.
    23. J.Journet, et al., Minor actinides transmutation in oxide fueled fast reactor, The Proceedings of the Global'93 Conference,Seattle, 1993.
    24. T.Wakabayashi,T.Ikegami, Characteristics of an LMFBR core loaded with MA and Rare Earth containing fuels, The Proceedings of the Global'93 Conference,Seattle, 1993.
    25. Dale Lancaster, Actinide burning in a standard pressurized water reactor, The Proceedings of the Global'93 Conference, Seattle, 1993.
    26. A.Puill, J.Bergeron, Incineration of actinide targets in a pressurized water reactor SPIN project, The Proceedings of the Global'93 Conference,Seattle, 1993.
    27. Tomohiko IWASAKI, Naohiro HIRAKAWA, Fast and perfect transmutation of actinide wasters using A-Burner, The Proceedings of the Global'93 Conference, Seattle, 1993.
    28. J.Hughes, et al., Molten salt critical reactors for the transmutation of transuranics and fission products, The Proceedings of the Global'93 Conference,Seattle, 1993.
    29. J.V.Nelson, et al., The symbiotic relationship between waste burning and safety in liquid metal reactors, The Proceedings of the Global'93 Conference, Seattle, 1993.
    30. G.Palmiotti, M.Salvatores, R.N.Hill, Data uncertainty impact in radiotoxicity evaluation connected to EFR and IFR systems, The Proceedings of the Global'93 Conference, Seattle, 1993.
    31. T.Nakagawa, et al., Nuclear data evaluation for JENDL actinide file and high energy data files, The Proceedings of the Global'93 Conference,Seattle, 1993.
    32. T.Mukaiyama et al., Characteristics of Minor Actinide transmutation in MA burner reactors and power reactors, Proceedings of the First International information Exchange meeting on Actinide and Fission product Separation and Transmutation,Mito, Japan, 1990.
    
    
    33. M.Yamaoka et al., Characteristics of TRU transmutation in an LMFBR, Proceedings of the First International information Exchange meeting on Actinide and Fission product Separation and Transmutation,Mito,Japan, 1990.
    34. A.F.renard, et al., Reduction of Minor Actinides in nuclear reactor via multiple recycling in fast reactors, Proceedings of a specialists meeting held in Obninsk,Russian Federation, IAEA-TECDOC-693, 1992.
    35. M.Salvatores, Minor actinides transmutation studies at CEA:Some reactor physics aspects, Proceedings of the First International information Exchange meeting on Actinide and Fission product Separation and Transmutation,Mito, Japan, 1990.
    36. Evaluation of benchmark calculation on a fast power reactor core with near zero sodium void effect, IAEA-TECDOC-731, January 1994.
    37. Status of liquid metal fast reactor development, 27th meeting of the IWGFR, IAEA-TECDOC-791, 1994.
    38. Optimization safety parameters for a fast burner oxide core, Sodium cooled fast reactor safety proceedings V.1, International Topical Meeting, Obninsk, Russia, 1994.
    39. 高放废物在混合堆内转化及新核能系统概念研究,中科院等离子体物理 研究所博士论文,杨永伟,1994。
    40. Hangbok Choi, Thomas J. Downar, A liquid-metal reactor for burning minor actinides of spent light water reactor fuel-Ⅱ :Nuclear Data Uncertainty analysis, Nuclear Science and Engineering: 133,23-39(1999) .
    41. M. Salvatores, et al., A global physics approach to transmutation of radioactive nuclei, Nuclear Science and Engineering: 116,1-18(1994) .
    42. J.Bultman, Actinide Transmutation in Nuclear Reactor, Ph.D. thesis, 1995.
    43. Overview of physics aspects of different transmutation concepts(1994) , www.nea.fr/html/trw/docs/.
    44. L.H.Baestle, Role and influence, www.nea.fr/html/trw/docs/.
    45. Fast reactor database, IAEA-TECDOC-866,February 1996.
    46. Status report on actinide and fission product transmutation studies, IAEA-TECDOC-948, June 1997.
    47. Advanced fuels with reduced actinide generation, Proceedings of a technical committee meeting held in Vienna,IAEA-TECDOC-916, November 1995.
    48. Evaluation of actinide partitioning and transmutation, IAEA Technical Report, Series 214(1982) .
    49. Title 40, Part 191, Environmental Standards for the management and disposal of spent fuel,High-level and Transuranic radioactive waste, Environmental
    
    Protection Agency, 1985.
    50. Title 10, CFR61, Disposal of radioactive wastes, Final Rules, Nuclear Regulatory Commission, 1989.
    51. A.G.Croff, et al., A reexamination of the incentives for actinide burning, Tran. ANS., 62(1990) .
    52. A.G.Croff, et al., Review on partitioning and transmutation, High level radioactive waste management, 1992.
    53. H.W.Wiese, et al., Homogeneous recycling of minor actinides in an EFR type fast reactor. Use of fast reactors for actinide transmutation, IAEA-TECDOC-693,1993.
    54. C.L.Cockey, Actinide transmutation in the advanced liquid metal reactor(ALMR), Use of fast reactors for actinide transmutation, IAEA-TECDOC-693,1993.
    55. CEFR初步设计参数汇总表, CEFRZ02ZTC01,1997。
    56. R.B.Kidman, et al., LIB-Ⅳ, A library of group constants for nuclear reactor calculations, LA-6260-MS, 1976.
    57. 易小毅等,六角形栅元原子核密度计算程序,内部报告,中国原子能科 学研究院,1996。
    58. R.W.Hardie, et al., 1DX, A one-dimensional diffusion code for generating effective nuclear cross sections,BNWL-954, 1969.
    59. W.W.Little, et al., 2DB User's Manual,BNWL-831,1968.
    60. R.W.Hardie, et al., PERT-V, A two-dimensional perturbation code for fast reactor analysis, BNWL-1162,1969.
    61. T.Mukaiyama, Partitioning and transmutation research and development program (OMEGA) in Japan, Use of fast reactors for actinide transmutation, IAEA-TECDOC-693,1993.
    62. C.Artioli, C.Cockey, Optimization safety parameters for a fast burner oxide core,Sodium cooled fast reactor safety proceedings, V.1, International Topical Meeting, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700