生长因子对成骨细胞特异转录因子Cbfal基因表达的影响以及Cbfal基因多态性与骨质疏松的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验目的
     成骨细胞由间充质的前体细胞分化而来,许多激素和细胞因子参与了此分化过程的调节,但其确切机制尚不清楚。目前人们正致力于研究局部因子与循环激素,乃至局部因子与细胞内介质的相互作用在成骨细胞分化过程中的重要意义。成骨细胞特异转录因子Cbfal(Core binding factor α1,Cbfal)是近年来发现的调节成骨细胞分化和骨形成过程的关键转录因子。Cbfal缺乏的小鼠缺乏成熟的成骨细胞,且骨形成完全受阻。许多成骨细胞分化相关基因如Ⅰ型胶原、骨钙素、骨桥素等基因的启动子区域存在Cbfal的结合位点。而将Cbfal基因转染至非成骨细胞如C3H10T1/2和原代培养皮肤成纤维细胞中,导致上述细胞向成骨细胞分化,显示了其对成骨趋向的强力调控。已有研究证实Cbfal基因突变直接导致人类一种单基因显性遗传病,即颅骨锁骨发育不全。
     自Cbfal作为成骨细胞特异转录因子被发现以来,各种影响因素及不同信号传导通路对其表达及活性的影响一直受到广泛地关注。有研究证实Cbfal被MAPK信号传导通路磷酸化并激活。由于MAPK信号传导通路是许多跨细胞信号,如细胞外基质—整合素相互作用、机械作用的信号以及某些生长因子的作用等的交叉点。因此本研究的目的在于:探讨生长因子IGF-Ⅰ、GM-CSF、EGF、VEGF和FGF-9是否通过MAPK信号传导通路影响成骨细胞特异转录因子Cbfal基因的表达。
     实验方法
     1、含小鼠Cbfal基因调控序列的荧光素酶报告基因表达质粒(p696-Luc)的构建:首先通过PCR扩增获得小鼠Cbfal基因调控序列的基因片段(-641bp—+55bp),连接dATP后插入pGEM-T Easy Vector过渡载体中。然后设计分别含MluⅠ和XhoⅠ酶切位点的上下游引物再次PCR扩增小鼠Cbfal基因调控序列的基因片段(-641bp—+55bp),并将其最终克隆至PGL3-Basic荧光素酶报告基因表达质粒中。
     2、p696-Luc活性的检测:利用脂质体瞬时转染技术将构建成功的p696-Luc转染至MC3T3-E1和C2C12细胞中,于转染后16hr分别将不同浓度的生长因子IGF-Ⅰ、GM-CSF、
Objective
    Osteoblasts originate from common progenitors, which are capable of differentiating into other mesenchymal cell lineages such as chondrocytes, myoblasts, and bone marrow stromal cells including adipocytes. During the differentiation process from mesenchymal progenitors, various hormones and cytokines regulate osteoblast differentiation. Recently, an osteoblast specific transcription factor Cbfal was coloned. It is essential but not sufficient for osteoblast differentiation and bone formation. Cbfal- deficient mice completely lacked bone formation due to maturational arrest of osteoblasts. The phenotype of the heterozygous Cbfal mutation is similar to that of CCD. Patients suffering from this disease exhibit Cbfal mutations. Cleidocranial dysplasia (CCD) is an autosomal-dominant disease.
    Cbfal is an essential transcription factor for osteoblast differentiation and bone formation, however, the sigaling pathways regulating Cbfal has not been clarified. Xiao et al showed that Cbfal can be phosphorylated and activaled by the mitogen-activated protein kinase (MAPK) pathway. This pathway can be stimulated by a variety of signals including those initiated by extracellular matrix (ECM), mechanical loading and osteogenic growth factors. So, the present study was undertaken to further explore the involvement of the MAPK pathway in Cbfal gene expression affected by growth factors IGF-I, GM-CSF, EGF, VEGF and FGF-9. Methods
    1. Construction of reported Cbfal promoter (p696-Luc): To generate a targeting vector, genomic fragment containing Cbfal promoter (-641bp—+55bp) region were isolated from the genome of C57BJ mouse white blood cells by PCR. The A-tailing PCR fragment was ligated into pGEM-T Easy Vector, named p696-Teasy. Then we got the Cbfal promoter (-641bp— +55bp) region from the p696-Teasy using a 5'primer built in the MluI site and a 3'primer with a XhoI site and digested the product with MluI and XhoI. The gel-purified fragment was ligated into MluI/XhoI sites of pGL3-Basic vector. The resulting product contains nucleotides -641— +55 (696bp) of the reported Cbfal promoter, named p696-Luc.
    2. Determination of luciferase activity of p696-Luc: MC3T3-E1 and C2C12 cells were
引文
1. Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K 1993 Molecular cloning and characterization of PEBP2 β the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 α. Virology 194: 314-331.
    2. Satake M, Nomura S, Yamaguchi-Iwai Y, Takahama Y, Hashimoto Y, Niki M, Kitamura Y, Ito Y. Expression of the Runt domain-encoding PEBP2 alpha genes in T cells during thymic development. Mol Cell Biol 1995; 15: 1662-70.
    3. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao Y-H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T 1997 Target disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755-764.
    4. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosenwell IR, Stamp GWH, Beddington RSP, Mundlos S, Olsen BR, Selby PW, Owen MJ 1997 Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765-771.
    5. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS. Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR 1997 Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89: 773-779.
    6. Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G 1997 Missense mutations abolishing DNA binding of the osteoblast-specific transcriptional factor CBFAI/OSF2 in cleidocranial dysplasia. Nat Genet 16: 307-310.
    7. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G 1997 Cbfal/Osf2: a transcriptional activator of osteoblast differentiation. Cell 89: 747-754.
    8. Tintut Y, Parhami F, Le V, Karsenty G, Demer LL Inhibition of osteoblast-specific transcription factor Cbfal by the cAMP pathway in osteoblastic cells. Ubiquitin/proteasome-dependent regulation. 1999 J Biol Chem 274: 28875-28879.
    9. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL 1999 Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases CBFAI/OSF2, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14: 1522-1535.
    10. Lee MH, Javed A, Kim HJ, Shin HI, Gutierrez S, Choi YJ, Rosen V, Stein JL, vanWijnen AJ, Stein GS, Lian JB, Ryoo HM 1999 Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor β1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J Cell Biochem 73: 114-125.
    11. Nishimura R, Harris E, Imamura K, Miyazono K, Mundy GR, Yoneda T 1998 Expression of transcription factor Cbfal is enhanced by the BMP-2/SMAD signal transduction cascade in pluripotent mesenchymal cells. J Bone Miner Res 23 [Suppl]: S150.
    12.Chen D, Ji X, Marris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR 1998 Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142: 295-305.
    13.Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty, G. and Franceschi RT. MAPK pathway activate and phosphorylate the osteoblast-specific transcription factor, Cbfal. J Biol Chem 2000; 275: 4453-59.
    14.Grigoriadis AE, Heersche JNM, Aubin JE. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 1988; 106: 2139-51.
    15.Yamaguchi A, and Kahn AJ. Clonal osteogenic cell lines express myogenic and adipocytic developmental potential. Calcif Tissue Int 1991; 49: 221-225.
    16.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-7.
    17.Tumber A, Meikle MC. and Hill PA. Autocrine signals promote osteoblast surival in culture. J Endocrinol 2000; 167: 383-90.
    18.Ducy P, and Karsenty G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene Mol Cell Biol 1995; 15: 1858-69.
    19.Frendo JL, Xiao G, Fuchs S, Franceschi RT, Karsenty G, and Ducy P. Functional hierarchy between two OSE2 elements in the control of Osteocalcin gene expression in vivo. J Biol Chem 1998; 273: 30509-16.
    20.ALP Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, and Nakatsuka K. Cbfal isoforms exert functional differences in osteoblast differentiation. J Biol Chem 1999; 274: 6972-8.
    21.Kern B, Shen J, Starbuck M and Karsenty G. Cbfal contributes to the osteoblast-specific expression of Type I collagen genes. J Biol Chem 2001; 276: 7101-7.
    22.Gao YH, Shinki T, Yuasa T, Kataoka-Enomoto H, Komori T, Suda T and Yamaguchi A. Potential role of cbfal, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochem Biophys Res Commun 1998; 252: 697-702.
    23.Thirunavukkarasu K, Halladay DL, Miles RR, Yang X, Galvin RJ, Chandrasekhar S, Martin TJ and Onyia JE. The osteoblast-specific transcription factor Cbfal contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem 2000; 275: 25163-72.
    24.Drissi H, Pouliot A, Koolloos C., et al. 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfal gene promoter. Exp Cell Res 2002; 274: 323-33.
    25.Prince M, Banerjee C, Javed A, Green J, Lian JB, Stein GS, Bodine PV, Komm BS Expression and regulation of Runx2/Cbfal and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts 2001 J Cell Biochem 80: 424-440.
    26.Wieser R, Wrana JL, Massague J 1995 GS domain mutations that constitutivelyactivate T beta R-I, the downstream signaling component in the THGF-beta receptor complex. EMBO J 14: 2199-2208.
    27.Tou L, Quibria N, Alexander JM 2001 Regulation of human cbfal gene transcription in osteoblasts by selective estrogen receptor modulators (SERMs) Mol Cell Endocrinol 183: 71-79.
    28.Zhou Y-X, Xu X, Chen L, Li C, Brodie SG, Deng C-X 2000 A Pro250Arg substitution in mouse Fgfrl causes increased expression of Cbfal and premature fusion of calvarial sutures. Hum Mol Genet 9: 2001-2008.
    29.Namba K, Abe M, Saito S, Satake M, Ohmoto T, Watanabe T Sato Y 2000 Indispensable role of the transcription factor PEBP2/CBF in angiogenic activity of a murine endothelial cell MSS31. Oncogene 19: 106-114.
    30.D'Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, Thesleff I 1999 Cbfal is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 126: 2911-2920.
    31.Tsuji K, Noda M. Transient suppression of core-binding factor alpha 1 expression by basic fibroblast growth factor in rat osteoblast-like osteosarcoma ROS17/2.8 cells. J Bone Miner Metab 2001; 19: 213-9.
    32.Thomas T, Gori F, Spelsberg TC, Khosla S, Riggs BL, Conover CA 1999 Response of bipotential human marrow stromal cells to insulin-like growth factors: Effect on binding protein production, proliferation, and commitment to osteoblasts and adipocytes. Endocrinology 140: 5036-5044.
    33.Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, Hedgehogs, and Cbfal. Endocrine Reviews 2000; 21: 393-411.
    34.Tsuji K, Ito Y, Noda M. Expression of the PEBP2alphaA/AML3/CBFAl gene is regulated by BMP4/7 heterodimer and its overexpression suppresses type I collagen and osteocalcin gene expression in osteoblastic and nonosteoblastic mesenchymal cells. Bone 1998; 22: 87-92.
    35.McCarthy TL, Centrella M, Canalis E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology 1989; 124: 1247-53.
    36.Canalis E, McCarthy T, Centrella M. Isolation and characterization of insulin-like growth factor I (somatomedin-C) from cultures of fetal rat calvariae. Endocrinology 1988; 122: 22-7.
    37.Van Den Brande JL. A personal view on the early history of the insulin-like growth factors(1). Horm Res 1999; 51 (Suppl S3): 149-75.
    38.Sims NA, Clement-Lacroix P, Da Ponte F, et al. Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of State5. J Clin Invest 2000; 106: 1095-103.
    39.Hock JM, Centrella M, Canalis E. Insulin-like growth factor I has independent effects in bone matrix formation and cell replication. Endocrinology 1988; 122: 254-60.
    40.McCarthy TL, Centrella M, Canalis E. Regulatory effects of insulin-like growthfactors I and II on bone collagen synthesis in rat calvarial cultures. Endocrinology 1989; 124: 301-9.
    41.Tanaka H, Moriwake T, Matsuoka Y, Nakamura T, Seino Y. Potential role of rhIGF-I/IGFBP-3 in maintaining skeletal mass in space. Bone 1998; 22: 1455-75.
    42. [IGF-0-16 Mochizuki H, Hakeda Y, Wakatsuki N, et al. Insulin-like growth factor-I supports formation and activation of osteoclasts. Endocrinology 1992; 131: 1075-80.
    43.Guicheux J, Heymann D, Rousselle AV, et al. Growth hormone stimulatory effects on osteoclastic resorption are partly mediated by insulin-like growth factor I: an in vitro study. Bone 1998; 22: 25-31.
    44.Liggett W Jr, Shevde N, Anklesaria P, Sohoni S, Greenberger J, Glowacki J. Effects of macrophage colony stimulating factor and granulocyte-macrophage colony stimulating factor on osteoclastic differentiation of hematopoietic progenitor cells. Stem Cells 1993; 11: 398-411.
    45.Hattersley G, Chambers TJ. Effects of interleukin 3 and of granulocyte-macrophage and macrophage colony stimulating factors on osteoclast differentiation from mouse hemopoietic tissue.J Cell Physiol 1990; 142: 201-9.
    46.Weir EC, Insogna KL, Horowitz MC. Osteoblast-like cells secrete granulocyte-macrophage colony-stimulating factor in response to parathyroid hormone and lipopolysaccharide. Endocrinology 1989; 124: 899-904.
    47.Postiglione L, Domenico GD, Montagnani S, Spigna GD, Salzano S, Castaldo C, Ramaglia L, Sbordone L, Rossi G. Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Induces the Osteoblastic Differentiation of the Human Osteosarcoma Cell Line SaOS-2. Calcif Tissue Int 2003; 72: 85-97.
    48. Evans DB, Bunning RA, Russell RG. The effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on human osteoblast-like cells. Biochem Biophys Res Commun 1989; 160: 588-95.
    49.Cho MI, Lee YL, Garant PR. Radiautographic demonstration of receptors for epidermal growth factor in various cells of the oral cavity. Anat Rec 1988; 222: 191-200.
    50.Cho MI, Garant PR, Lee YL. Periodontal ligament fibroblasts, preosteoblasts, and prochondrocytes express receptors for epidermal growth factor in vivo: A comparative radioautographic study. J Periodont Res 1988; 23: 287-94.
    51.Cho MI, Garant PR, Lee YL. Radioautographic evidence for binding of epidermal growth factor by hard tissue stem cells and periodontal ligament fibroblasts. In: The Biological Mechanisms of Tooth Eruption and Root Resorption.1988 Z. Davidovitch, ed. EBSCO Media, Birmingham, pp. 133-44.
    52.Cho MI, Lin WL, Garant PR. Occurrence of epidermal growth factor-binding sites during differentiation of cementoblasts and periodontal ligament fibroblasts of the young rat: a light and electron microscopic radioautographic study. Anat Rec 1991; 231: 14-24.
    53.Matsuda N, Yokoyama K, Takeshita S, Watanabe M. Role of epidermal growth factor and its receptor in mechanical stress-induceddifferentiation of humanperiodontal ligament cells in vitro. Arch Oral Biol 1998; 43: 987-97.
    54.Villenueva JE, Nimni ME. Promotion of calvarial cell osteogenesis by endothelial cells. J Bone Miner Res 1997; 5: 733-9.
    55.Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 2002; 99: 9656-61.
    56.Tokuda H, Hatakeyama D, Shibata T, Akamatsu S, Oiso Y, Kozawa O. p38 MAP kinase regulates BMP-4-stimulated VEGF synthesis via p70 S6 kinase in osteoblasts. Am J Physiol Endocrinol Metab 2003; 11; [epub ahead of print].
    57.Saadeh PB, Mehrara BJ, Steinbrech DS, Dudziak ME, Greenwald JA, Luchs JS, Spector JA, Ueno H, Gittes GK, Longaker MT. Transforming growth factor-betal modulates the expression of vascular endothelial growth factor by osteoblasts. Am J Physiol 1999; 277(4 Pt 1): C628-37.
    58.Wang X, Tokuda H, Hirade K, Kozawa O. Stress-activated protein kinase/c-Jun N-terminal kinase (JNK) plays a part in endothelin-1-induced vascular endothelial growth factor synthesis in osteoblasts. J Cell Biochem 2002; 87: 417-23.
    59.Tokuda H, Kozawa O, Miwa M, Uematsu T. p38 mitogen-activated protein (MAP) kinase but not p44/p42 MAP kinase is involved in prostaglandin E1-induced vascular endothelial growth factor synthesis in osteoblasts. J Endocrinol 2001; 170: 629-38.
    60.Tokuda H, Harada A, Hirade K, Matsuno H, Ito H, Kato K, Oiso Y, Kozawa O. Incadronate amplifies prostaglandin F2alfa-induced vascular endothelial growth factor synthesis in osteoblasts: Enhancement of MAP kinase activity. J Biol Chem 2003; 19; [epub ahead of print].
    61.Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 2000; 141: 1667-74.
    62.Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001; 2: S3005.1-S3005.12.
    63. [FGF-7-6 Canalis E, Centrella M, McCarthy T. Effects of fibroblast growth factor on bone formation in vitro. J. Clin. Invest. 1988; 81: 1572-7.
    64.Rodan, SB, Wesolowski G, Kyonggeun Y, Rodan GA. Opposing effects of fibroblast growth factor and pertussis toxin on alkaline phosphatase, osteopontin, osteocalcin, and type I collagen mRNA levels in ROS 17/2.8 cells. J Biol Chem 1989; 264: 19934-41.
    65.Hurley MM, Abreu C, Gronowicz GA, Kawaguchi H, Lorenzo JA. Expression and regulation of basic fibroblast growth factor mRNA levels in mouse osteoblastic MC3T3-E1 cells. J Biol Chem. 1994; 269: 9392-6.
    66.Xiao G, Jiang D, Gopalakrishnan R, Franceschi RT. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfal/Runx2. J Biol Chem 2002; 277:36181-7.
    67. Kim HJ, Kim JH, Bae SC, Choi JY, Kim HJ, Ryoo HM. The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2. J Biol Chem 2003; 278: 319-26.
    68. Miyamoto M, Naruo K, Seko C, Matsumoto S, Kondo T, Kurokawa T. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which hads a unique secretion property. Mol Cell Biol 1993; 13: 4251-9.
    69. Tagashira S, Ozaki K, Ohta M, Itoh N. Localization of fibroblast growth factor-9 mRNA in the rat brain. Brain Res Mol Brain Res 1995; 30: 233-41.
    70. Mattei MG, Penault-Llorca F, Coulier F, BirnbaumD. The human FGF9 gene maps to chromosomal region 13q11-q12. Genomics 1995; 29: 811-2.
    71. Song J, Slack JM. XFGF-9: anew fibroblast growth factor from Xenopus embryos. Dev Dyn 1996; 206: 427-36.
    72. Colvin JS, White AC, Pratt SJ, Ornitz DM. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2001; 128: 2095-106.
    73. Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 2001; 104: 875-89.
    74. Giri D, Ropiquet F, Ittmann M. FGF9 is an autocrine and paracrine prostatic growth factor expressed by prostatic stromal cells. J Cell Physiol 1999; 180: 53-60.
    75. Tsai SJ, Wu MH, Chen HM, Chuang PC, Wing LYC. Fibroblast growth factor-9 is an endometrial stromal growth factor. Endocrinology 2002; 143: 2715-21.
    76.陈华粹。酪氨酸蛋白激酶,酯酶,《细胞信息与调控——现代生物医学丛书》,刘景生主编,北京:北京医科大学中国协和医科大学联合出版社,1998年6月,ISBN 7-81034-798-5,第十二章:P239-248。
    77. Chen Q, Kinch MS, Lin TH, Burridge K, Juliano RL 1994 Integrin-mediated cell adhesion activates mitogen-activated protein kinases J Biol Chem 269: 26602-26605.
    78. Cobb MH, Boulton TG, Robbins DJ 1991 Extracellular signal-regulated kinases: ERKs in progress. Cell Regul 2: 965-978.
    79. Schmidt C, Pommerenke H, Durr F, Nebe B, Rychly J 1998 Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem 273: 5081-5085.
    80.孙卫民、王惠琴,集落刺激因子及其研究方法,《细胞因子研究方法学》,孙卫民、王惠琴主编,北京:人民卫生出版社,1999年,ISBN 7-117-03213-8,第十八章:P623。
    81. Pearson G, Robinson F, Gibson TB, Xu B-E, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews 2001; 22: 153-183.
    82. Sato M, Morii E, Komori T, Kahawara H, Sugimoto M, Terai K, Shimizu H, Yasui T, Ogihara H, Yasui N, Ochi T, Kitamura Y, Ito Y, Nomura S. Transcriptional regulation of osteopontin gene in vivo by PEBP2 α A/CBFA1 and ETS1 in the skeletal tissues. Oncogene 1998; 17: 1517-25.83.Wasylyk B, Hagman J, Gutierrez-Hartmann A. Ets transcription factors: nucleat effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci 1998; 23: 213-6.
    84.Kim WY, Sieweke M, Ogawa W, Wee HJ, Englmeier U, Graf T, Ito Y. Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO 1999; 18: 1609-20.
    85.Gu TL, Goetz TL, Graves BJ, Speck NA. Auto-inhibition and partner proteins core-binding factorβ (CBFβ) and Ets, modulate DNA binding by CBFα2(AML1). Mol Cell Biol 2000; 20: 91-103.
    86.Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RT. Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem 1998; 273: 32988-94.
    87.Xiao G, Gopalakrishnan R, Di J, Beith E, Benson MD, Franceschi RT. Bone morphogenic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation inMC3T3-E1 cells. J Bone Miner Res 2002; 17: 101-10.
    88.Wang FS, Wang CJ, Sheen-Chen SM, Kuo YR, Chen RF, Yang KD. Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J Biol Chem 2002; 277: 10931-7.
    89.Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG. The bone-specific transcriptional regulator Cbfal is a target of mechanical signals in osteoblastic cells. J Biol Chem 2002; 277: 23934-41.
    90.Hess J, Porte D, Munz C, Angel P. AP-1 and Cbfal/runt physically interact and regulate parathyroid hormone-dependentMMPl3 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem 2001; 276: 20029-38.
    91.D'Alonzo2002 D'Alonzo RC, selvamurugan N, Karsenty G, Partridge NC. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with cbfal for collagenase-3 promoter activation. J Biol Chem 2002; 277: 816-22.
    92.Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E. Multiple signaling pathways converge on the Cbfal/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 2002 (in Dress).
    1. Ralston S. The genetics of osteoporosis. Bone 1999; 25: 85-6.
    2. Niu T, Chen C, Cordell H, Yang J, Wang B, Wang Z, Fang Z, Schork N, Rosen CJ, Xu X. A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet 1999; 104: 226-33.
    3. Koller DL, Econs MJ, Morin PA, Christian JC, Hui SL, Parry P, Curran ME, Rodriguez LA, Conneally PM, Joslyn G, Peacoc kM, Johnston CC, Foroud T. Genome sereen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 2000; 85: 3116-20.
    4.赵寿元、乔守怡,基因组,《现代遗传学》,赵寿元、乔守怡主编,北京:高等教育出版社,2001年,ISBN 7-04-009469-X,第五章,P154。
    5. Morrison NA, Qi JC, Tokita A, et al: Prediction of bone density from vitamin D receptor alleles. Nature 1994, 367:284-287
    6. Zhao JX, Zhou XY, Meng XW, et al: Polymorphiss of vitamin D receptor gene and it's association with bone mineral density and osteocalcin in Chinese. Chin Med J 1997, 110(5): 366-371
    7. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH 1996 Reduced bone density and osteoporosis associated with a polymorphic Spl binding site in the collagen type Ⅰ α1 gene. Nat Genet 14:203-205
    8. Sano M, Inoue S, Hosoi T, Ouchi Y, Emi M, Shiraki M, Orimo H 1995 Association of estrogen receptor dinucleotide repeat polymorphism with osteroporosis. Biochem Biophys Res Commun 217: 378-383
    9. Hinke V, Seck T, Clanget C, Scheidt-Nave C, Ziegler R, Pfeilschifter J.Association of transforming growth factor-betal (TGFbetal) T29→C gene polymorphism with bone mineral density (BMD), changes in BMD, and serum concentrations of TGF-betal in a population-based sample of postmenopausal german women. Calcif Tissue Int 2001 Dec;69(6):315-20
    10. Masi L, Becherini L, Colli E, Gennari L, Mansani R, Falchetti A, Becorpi AM, Cepollaro C, Gonnelli S, Tanini A, Brandi ML Polymorphisms of the calcitonin receptor gene are associated with bone mineral density in postmenopausal Italian women. Biochem Biophys Res Commun 1998 Jul 9;248(1):190-5
    11. Ota N, Hunt SC, Nakajima T, Suzuki T, Hosoi T, Orimo H, Shirai Y, Emi M 1999 Linkage of interleukin 6 locus to human osteopenia by sibling pair analysis. Hum Genet 105:253-257
    12. Shiraki M, Shiraki W, Aoki C, Hosoi T, Inoue S, Kaneki M, Ouchi Y 1997 Association of bone mineral density with apolipoprotein E phenotype. J Bone Miner Res 12: 1438-144
    13. Kern B, Shen J, Starbuck M and Karsenty G. Cbfal contributes to the osteoblast-specific expression of Type Ⅰ collagen genes. J??Biol Chem 2001; 276: 7101-7.
    14. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Cbfal/Osf2: a transcriptional activator of osteoblast differentiation. Cell 1997; 89: 747-754.
    15. Ducy P, StarbuckM, PriemelM, Shen J, PineroG, GeoffroyV, Amling M, Karsenty G. A Cbfal-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 1999; 13: 1025-36.
    16. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao Y-H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T 1997 Target disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755-764.
    17. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosenwell IR, Stamp GWH, Beddington RSP, Mundlos S, Olsen BR, Selby PW, Owen MJ 1997 Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765-771.
    18. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS. Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR Mutations involving the transcription factor CBFAl cause cleidocranial dysplasia. Cell 1997; 89: 773-779.
    19. Drissi H, Pouliot A, Koolloos C., et al. 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp Cell Res 2002; 274: 323-33.
    20. 赵寿元、乔守怡,基因组,《现代遗传学》,赵寿元、乔守怡主编,北京:高等教育出版社,2001年,ISBN 7-04-009469-X,第五章,P155.
    21. Vaughan T, Pasco JA, Kotowicz MA, Nicholson GC, Morrison NA. Alleles of RUNX2/CBFA1 gene are associated with differences in bone mineral density and risk of fracture. J Bone Miner Res 2002; 17: 1527-34.
    22. Arden NK, Baker J, Hogg C, et al: The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 1996, 11: 530-534
    23. Deng HW, Chen WM, Recker S, et al: Genetic determination of Colles' fracture and differential bone mass in women with and without Colles' fracture. J Bone Miner Res 2000; 15: 1243-12
    24. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL 1999 Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases CBFA1/OSF2, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14: 1522-1535.
    25. Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, and Nakatsuka K. Cbfal isoforms exert functionaldifferences in osteoblast differentiation. J Biol Chem 1999; 274: 6972-8.
    26. Harris M, Nguyen TV, Howard GM, et al. Genetic and environment correlations between bone formation and bone mineral density: a twin study. Bone 1998; 22: 141-5.
    1. Ducy P and Karsenty G 1995 Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15: 1858-1869
    2. Aubin JE, Turksen K and Heersche JNM 1993 Osteoblastic cell lineage, p. 1-44 In Noda (eds.), Cellular and molecular biology of bone. Academic Press, Inc., San Diego, Calif.
    3. Vuorio E and Crombrugghe B 1990 The family of collagen gene. Annu Rev Biochem 59: 837-872
    4. Beresford JN, Fedanko NS, Fisher LW, Midura RJ, Yamagishita M, Termine JO, Gehron Robey P 1987 Analysis of the proteoglycans synthesized by human bone cells in vitro. J Biol Chem 262: 13120-13125
    5. Fisher ZW, Hawkins GR, Tuross N, Termine, JD 1987 Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II and osteonectin from the mineral compartment of developing human bone. J Biol Chem 262: 9702-9708
    6. Mark MP, Prince CW, Gay S, Austin RL, Butler WT 1988 44 kDa bone phosphoprotein (osteopontin) antigenicity at ectopic sites in newborn rats: kidney and nervous tissues. Cell Tissue Res 251: 23-30
    7. Price PA 1987 Vitamin K-dependent bone proteins, p. 419-425. In Cohn DV, Martin TJ and Meunier PJ (ed.), Calcium regulation and bone metabolism: basic and clinical aspects. Elsevier Science Publishers, Amsterdam.
    8. Raisz LG and Kream BE 1983 Regulation of bone formation. N Engl J Med 309: 29-35
    9. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G 1997 Cbfal/Osf2: a transcriptional activator of osteoblast differentiation. Cell 89: 747-754
    10. Geoffroy V, Ducy P, Karsenty G 1995 APEBP2/AML-1-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cis-acting element. J Biol Chem 270: 30973-30979
    11. Merriman HL, van Wijnen AJ, Hiebert S, Bidwell JP, Fey E, Lian J, Sein J, Stein GS 1995 The tissue-specific nuclear matrix protein, NMP-2, is a member of the AML/CBF/PEBP2 /Runt domain transcription factor family. Biochemistry 34: 13125-13132
    12. Kamachi Y, Ogawa E, Asano M, Ishida S, Murakami Y, Satake M, Ito Y, Shigesada K 1990 Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. J Virol 10: 4808-4819
    13. Gergen JP, Wieschaus E 1986 Dosage requirements for runt in the segmentation of Drosophila embryos. Cell 45: 289-299
    14. Duffy JB, Gergen JP 1991 The Drosophila segmentation gene runt acts as a position-specific numerator element necessary for the uniform expression of the sex-determining gene Sex-lethal. Gene Dev 5: 2176-2187
    15. Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, Nakatsuka M 1999 Cbfal isoforms exert functional differences in osteoblast differentiation. J Biol Chem 274: 6972-6987
    16. Kagoshima H, Shigesada K, Satake M, Ito Y, Miyoshi H, Ohki M, Pepling M, Gergen P 1993 The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends Genet 9: 338-341
    17. Ducy P, Starbuck M, Priemel M, Shem J, Pinero G, Geoffroy V, Amling M, Karsenty G 1999 A Cbfal-dependent genetic pathway controls bone formation beyond embryonic development. Gene Dev 12: 1025-1036
    18. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao Y-H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T 1997 Target disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755-764
    19. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosenwell IR, Stamp GWH, Beddington RSP, Mundlos S, Olsen BR, Selby PW, Owen MJ 1997 Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765-771
    20. Ogawa E, Maruyama G, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y 1993 PEBP2/PEA2 represents a new family of transcription factor homologous to the products of the Drosophila runt and the human AML1 gene. Proc Natl Acad Sci USA 90: 6859-6863
    21. Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K 1993 Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α. Virology 194: 314-331
    22. Stewart M, Terry A, Hu M, O'Hara M, Blyth K, Baxter E, Cameron E, Onions DE, Neil JC 1997 Proviral insertions induce the expression of bone-specific isoforms of PEBP2 α A(CBFA1): evidence for a new myc collaborating oncogene. Proc Natl Acad Sci USA 94: 8646-8651
    23. Yamaguchi A, Komori T, Suda T 2000 Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfal Endocri Rev 21: 393-411
    24. Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G 1998 Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with CBFb Mol Cell Biol 18: 4197-4208
    25. Banerjee C, McCabe LR, Chio JY, Hiebert SW, Stein JL, Stein GS, Lian JB 1997 Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Biochem 66: 1-8
    26. Tsuji K, Ito Y, Noda M 1998 Expression of the PEBP2alphaA/AML3/CBFA1 gene is regulated by BMP4/7 heterodimer and its overexpression suppresses type I collagen and osteocalcin gene expression in osteoblastic and nonosteoblastic mesenchymal cells. Bone 22: 87-92
    27. Ji C, Casinghino S, Chang CJ, Chen Y, Javed A, Ito Y, Hiebert SW, Lian JB, Stein GS, McCarthy TL, Centrella M 1998 CBFa(AML/PEBP2)-relatedelements in the TGF-β type I receptor promoter and expression with osteoblast differentiation. J Cell Biochem 69: 353-363
    28. Xiao ZS, Hinson TK, Quarles LD 1999 Cbfal isoform overexpression upregulates osteocalcin gene expressionin non-osteoblastic and pre-osteoblastic cells. J Cell Biochem 74: 596-605
    29. Hoshi K, Komori T, OzawaH 1999 Morphological characterization of skeletal cells in Cbfal-deficient mice. Bone 25: 639-651
    30. Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT 1999 Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res 14: 893-903
    31. Rodan GA, Martin TJ 1981 Role of osteoblasts in hormonal control of bone resorption-a hypothesis. Calcif Tissue Int 33: 349-351
    32. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee WJ, Amgen EST Program, Boyle Wj 1997 Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309-319
    33. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K 1997 Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234: 137-142
    34. Yasuda H, Shima N, Nakagawa N, Mochizuki S, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K 1998 Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIP inhibits osteoclastogenesis in vitro. Endocrinology 139: 1329-1337
    35. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS 1998 Osteoprotegerin-dificient mice develop early onset osteoporosis and arterial calcification. Gene Dev 12: 1260-1268
    36. Mizuno A, Amizuka N, Irie K, MurakamimA, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H 1998 Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247: 610-615
    37. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian X, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ 1998 Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165-176
    38. Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Barlett III FS, Frankel WN, Lee SY, Choi Y 1997 TRANCE is a novelligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272: 25190-25194
    39. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T 1998 Osteoclast differrentiation factor is a ligand osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95: 3597-3602
    40. O'Brien CA, Farrar NC, Manolagas SC 1998 Identification of a binding site in the murine RANKL/OPGL gene promoter: a potential link between osteoblastogenesis and osteoclastogenesis. J Bone Miner Res 23[Suppl]: S149
    41. Kitazawa R, Kitazawa S, Maeda S 1999 Promoter structure of mouse RANKL/TRANCE/OPGL/ODF gene. Biochem Biophys Acta 1445: 134-141
    42. Gao YH, Shinki T, Yuasa T, Kataoka-Enomoto H, Komori T, Suda T, Yamaguchi A 1998 Potential role of Cbfal, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of Osteoclast Differentiation Factor (ODF). Biochem Biophys Res Commun 252: 697-702
    43. Zhang R, Ducy P, Karsenty G 1997 1,25-dihydroxyvitamin D3 inhibits Osteocalcin expression in mouse through an indirect mechanism. J Biol Chem 272: 110-116
    44. Tintut Y, Parhami F, Le V, Karsenty G, Demer LL Inhibition of osteoblast-specific transcription factor Cbfal by the cAMP pathway in osteoblastic cells. Ubiquitin/proteasome-dependent regulation. 1999 J Biol Chem 274: 28875-28879
    45. Prince M, Banerjee C, Javed A, Green J, Lian JB, Stein GS, Bodine PV, Komm BS Expression and regulation of Runx2/Cbfal and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts 2001 J Cell Biochem 80: 424-440
    46. Wieser R, Wrana JL, Massague J 1995 GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the THGF-beta receptor complex. EMBO J 14: 2199-2208
    47. Tou L, Quibria N, Alexander JM 2001 Regulation of human cbfal gene transcription in osteoblasts by selective estrogen receptor modulators (SERMs) Mol Cell Endocrinol 183: 71-79
    48. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL 1999 Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases CBFA1/OSF2, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14: 1522-1535
    49. Lee MH, Javed A, Kim HJ, Shin HI, Gutierrez S, Choi YJ, Rosen V, Stein JL, van Wijnen AJ, Stein GS, Lian JB, Ryoo HM 1999 Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor β1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation.J Cell Biochem 73: 114-125
    50. Nishimura R, Harris E, Imamura K, Miyazono K, Mundy GR, Yoneda T 1998 Expression of transcription factor Cbfal is enhanced by the BMP-2/SMAD signal transduction cascade in pluripotent mesenchymal cells. J Bone Miner Res 23 [Suppl]: S150
    51. Chen D, Ji X, Marris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR 1998 Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142: 295-305
    52. St-Jacques B, Hammerschmidt M, McMahon AP 1999 Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Gene Dev 13: 2072-2086
    53. Zhou Y-X, Xu X, Chen L, Li C, Brodie SG, Deng C-X 2000 A Pro250Arg substitution in mouse Fgfrl causes increased expression of Cbfal and premature fusion of calvarial sutures. Hum Mol Genet 9: 2001-2008
    54. Tsuji K, Noda M. Transient suppression of core-binding factor alpha 1 expression by basic fibroblast growth factor in rat osteoblast-like osteosarcoma ROS17/2.8 cells. J Bone Miner Metab 2001; 19: 213-9.
    55. Namba K, Abe M, Saito S, Satake M, Ohmoto T, Watanabe T Sato Y 2000 Indispensable role of the transcription factor PEBP2/CBF in angiogenic activity of a murine endothelial cell MSS31. Oncogene 19: 106-114
    56. D'Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, Thesleff I 1999 Cbfal is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 126: 2911-2920
    57. Thomas T, Gori F, Spelsberg TC, Khosla S, Riggs BL, Conover CA 1999 Response of bipotential human marrow stromal cells to insulin-like growth factors: Effect on binding protein production, proliferation, and commitment to osteoblasts and adipocytes. Endocrinology 140: 5036-5044
    58. Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peteres H, Tang Z, Maxson R, Maas R 2000 Msx2 deficiency in mice causes pleotropic defects in bone growth and ectodermal organ formation. Nat Genet 24: 391-395
    59. Tribiolo C, Lufkin T 1999 The murine Bapxl homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126: 5699-5711
    60. Kanzler B, Kuschert SJ, Liu Y-H, Mallo M 1998 Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 125: 2587-2597
    61. Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT 2000 MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfal. J Biol Chem 275: 4453-4459
    62. Chen Q, Kinch MS, Lin TH, Burridge K, Juliano RL 1994 Integrin-mediated cell adhesion activates mitogen-activated protein kinases J Biol Chem 269:26602-26605
    63. Cobb MH, Boulton TG, Robbins DJ 1991 Extracellular signal-regulated kinases: ERKs in progress. Cell Regul 2: 965-978
    64. Schmidt C, Pommerenke H, Durr F, Nebe B, Rychly J 1998 Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol them 273: 5081-5085
    65. Stifani S, Blaumueller SS, Redhesd CM, Hill NJ, Artavanis-Tsakonas S1992 Human homologs of a Drosophila enhancer of split gene product define a novel family of nuclear proteins. Nat Genet 2: 119-127
    66. McLarren KW, Lo R, Grbavec D, Thirunavukkarase K, Karsenty G, Stifani S 2000 The mammalian basic helix loop helix protein HES-I binds to and modulates the transactivating function of the runt-related factor Cbfal. J Biol Chem 275: 530-538
    67. Jarvis JL, Keats TE 1974 Cleidocranial dysplasia, a review of 40 new cases. Am J Radiol 121: 5-16
    68. Mundlos S 1999 Cleidocranial dysplasia: clinical and molecular genetics. J Med Genet 36: 177-182
    69. Selby PB, Selby, PR 1978 Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice: II. Description of proved mutations. Mutat Res 51: 199-236
    70. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS. Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR 1997 Mutations involving the transcription factor CBFAI cause cleidocranial dysplasia. Cell 89: 773-779
    71. Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G 1997 Missense mutations abolishing DNA binding of the osteoblast-specific transcriptional factor CBFA1/OSF2 in cleidocranial dysplasia. Nat Genet 16: 307-310
    72. Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y 1994 AML1, AML2 and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics 23: 425-432
    73. Quack I, Vonderstrass M, Stodk A, Aylsworth AS, Becker A, Brueton L, Lee PJ, Majewski F, Mulliken JB, Suri M, Zenker M, Mundlos S, Otto F 1999 Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasis. Am J Hum Genet 65: 1268-1278
    74. Zhou G, Chen Y, Zhou L, Thirunavukkarasu K, Hecht J, Chitayat D 1999 CBFA1 mutation analysis and functionalcorrelation with phenotypic variability in cleidocranial dysplasis. Hum Mol Genet 8: 2311-2316
    75. Ralston S 1999 The genetics of osteoporosis. Bone 25: 85-86
    76. Vaughan T, Pasco JA, Kotowicz, MA, Nicholson GC, Morrison NA Alleles of RUNX2/CBFA1 gene are associated with differences in bone mineral density and risk of fracture. 2002 J Bone Miner Res 17: 1527-1534

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700