活细胞内示踪乙型肝炎病毒的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经绿色荧光蛋白(green fluorescent protein,GFP)标记后的病毒,可以在活细胞中显示并研究它们。但GFP并不适合标记乙型肝炎病毒(hepatitis B virus,HBV),因为HBV是一种体积较小的病毒体,它的内部空间狭小,无法容纳GFP这样一个含有238个氨基酸的大片段的掺入。最近有报道称:融合了四半胱氨酸标签(tetracysteine tag,TC tag)的目的蛋白可以被一种双砷荧光染料在活细胞中特异地标记。这种双砷标记技术为活细胞中HBV的荧光示踪和研究又提供了新的机遇。
     【目的】制造重组的经双砷染料标记的荧光HBV,从而在活细胞中示踪并研究HBV。
     【方法】应用分子克隆和PCR定点突变技术,以含1.3倍HBV基因组的载体为模板,在其编码的核心蛋白的免疫优势c/el表位(the immunodominant c/el site)附近插入一个特殊的TC标签,这个标签可以同双砷荧光染料特异地结合。构建所得的重组的HBV载体被转染入HepG2细胞中用于表达TC嵌合型核心蛋白。应用Westernblotting,免疫荧光以及双砷标记分析这种蛋白的表达和亚细胞定位。此外,表达这种TC嵌合型核心蛋白的细胞用双砷染料印迹后,继续被培养,用于制造荧光HBV病毒体。应用投射电子显微镜(transmission electron microscopy,TEM)和激光共聚焦显微镜鉴定荧光HBV病毒体的产生,并进一步调查这些荧光病毒对DMSO处理过的HepG2细胞的感染性。最终,应用激光共聚焦显微镜在活细胞中直接观察荧光HBV的转运。
     【结果】编码TC嵌合型核心蛋白的HBV载体被成功构建,转染了这些HBV载体的细胞可以表达TC嵌合型核心蛋白并制造成熟的HBV病毒体。而且,细胞中结合了双砷染料的TC嵌合型核心蛋白可以特异地发出荧光,并组装入HBV核心颗粒中进而形成荧光HBV病毒体,这些病毒体保留了同野生型HBV病毒体类似的感染性。这些荧光HBV在活细胞中的转运可以通过激光共聚焦显微镜,直观而便捷地观察到。
     【结论】本研究应用双砷标记技术,首次制造出了荧光HBV病毒体,它让我们可以在活细胞中示踪并研究HBV的转运。这种荧光HBV可以作为一种非常有价值的工具,用于在活细胞中深入地研究HBV生命周期中的动态过程以及病毒与宿主之间的相互作用。
Production of virus tagged with green fluorescent protein (GFP) contributes tovisualizing and studying virus in living cells. But GFP tag, as a 238-amino acide largeinserted fragment, is not suitable for labeling Hepatitis B virus (HBV) that is a compactvirion with limited internal space. It was recently reported that protein of interestgenetically inserted with a smaller size tetracysteine (TC) tag could be specially labeled bya biarsenical fluorescent dye in living cells. This biarensical labeling approach offers us anew opportunity to fluorescently label HBV virion for visualizing and studying HBV inliving cells.
     【Objective】To generated one recombinant HBV fluorescently labeled with biarsenicaldye, which could be visualized and studied in living cells.
     【Methods】By using a molecular clone and PCR based site directed mutagenensis, a TCtag that could be specially bound with a biarsenical fluorescent dye was genetically insertednear the immunodominant c/el site of HBV core protein encoded by 1.3 time HBV vector.The recombinant HBV vectors were transfected into HepG2 cells to express TC-taggedcore proteins. The expression and subcellular localization of TC-tagged core proteins wereanalyzed by western blotting, immunofluorescence and biarsenical dye labeling. Furthermore, these transfected cells expressing TC-tagged core proteins were stained withbiarsenical dye, and then maintained to produce fluorescent HBV virions. Confocalmicroscopy and transmission electron microscopy (TEM) were used to analyze theproduction of fluorescent HBV virions. And the infectivity of fluorescent HBV virions toDMSO-treated HepG2 cells was investigated. Finally, the translocation of fluorescent HBVin living cells was observed by time-lapse confocal microscopy.
     【Results】The HBV vector encoding TC-tagged core protein were successfullyconstruted. The cells transfected with the HBV vector could express TC-tagged coreproteins and produce mature HBV virions. Moreover, TC-tagged core proteins bound withbiarsenical dye could specifically fluoresce in cells and be incorporated into nucleocapsidto form fluorescent HBV virions. The recombinant fluorescent HBV virions retained theirinfectivity as wild-type ones. The translocation of fluorescent HBV in living cells could bedirectly and conveniently observed by time-lapse confocal microscopy.
     【Conclusion】To the best of our knowledge, this is the first time to generate fluorescentHBV virions with biarsenical labeling and to visualize their trafficking in living cells. Thefluorescent HBV may become one highly valuable tool for further studying detaileddynamic processes of HBV life cycle and interaction of HBV with host in live-imagingapproach.
引文
1. Ganem D, Prince A M. Hepatitis B virus infection-natural history and clinical consequences. N Engl J Med, 2004, 350: 1118-1129.
    2. Seeger C, Mason W S. Hepatitis B virus biology. Microbiol Mol Biol Rev, 2000, 64:51-68.
    3. Kann M, Sodeik B, Vlachou A, et al. Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. J Cell Biol, 1999, 145: 45-55.
    4. Hu J, Toft D O, Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J, 1997, 16: 59-68.
    5. Lu X, Block T. Study of the early steps of the Hepatitis B Virus life cycle. Int J Med Sci, 2004, 1:21-33.
    6. Greber U F, Way M. A superhighway to virus infection. Cell, 2006, 124: 741-754.
    7. Campbell E M, Perez O, Melar M, et al. Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology, 2007, 360: 286-293.
    8. Desai P, Person S. Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol, 1998, 72: 7563-7568.
    9. Le L P, Le H N, Nelson A R, et al. Core labeling of adenovirus with EGFP. Virology, 2006,351:291-302.
    10. Lux K, Goerlitz N, Schlemminger S, et al. Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. J Virol, 2005, 79: 11776-11787.
    11. Luxton G W, Haverlock S, Coller K E, et al. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci USA, 2005, 102: 5832-5837.
    12. McDonald D, Vodicka M A, Lucero G, et al. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol, 2002, 159: 441-452.
    13. Smith G A, Pomeranz L, Gross S P, et al. Local modulation of plus-end transport targets herpesvirus entry and egress in sensory axons. Proc Natl Acad Sci, 2004, 101: 16034-16039.
    14. Sampaio K L, Cavignac Y, Stierhof Y D, et al. Human cytomegalovirus labeled with green fluorescent protein for live analysis of intracellular particle movements. J Virol, 2005, 79: 2754-2767.
    15. Warrington K H, Jr., Gorbatyuk O S, Harrison J K, et al. Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol, 2004, 78: 6595-6609.
    16. Adams S R, Campbell R E, Gross L A, et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc, 2002, 124: 6063-6076.
    17. Gaietta G, Deerinck T J, Adams S R, et al. Multicolor and electron microscopic imaging of connexin trafficking. Science, 2002, 296: 503-507.
    18. Griffin B A, Adams S R, Tsien R Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science, 1998, 281: 269-272.
    19. Rudner L, Nydegger S, Coren L V, et al. Dynamic fluorescent imaging of human immunodeficiency virus type 1 gag in live cells by biarsenical labeling. J Virol, 2005, 79: 4055-4065.
    20. Ruthel G, Demmin G L, Kallstrom G, et al. Association of ebola virus matrix protein VP40 with microtubules. J Virol, 2005, 79: 4709-4719.
    21. Panchal R G, Ruthel G, Kenny T A, et al. In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc Natl Acad Sci, 2003, 100: 15936-15941.
    22. Kratz P A, Bottcher B, Nassal M. Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc Natl Acad Sci, 1999, 96: 1915-1920.
    23. Ponsel D, Bruss V. Mapping of amino acid side chains on the surface of hepatitis B virus capsids required for envelopment and virion formation. J Virol, 2003, 77: 416-422.
    24. Guidotti L G, Matzke B, Schaller H, et al. High-level hepatitis B virus replication in transgenic mice. J Virol, 1995, 69: 6158-6169.
    25. Guarnieri M, Kim K H, Bang G, et al. Point mutations upstream of hepatitis B virus core gene affect DNA replication at the step of core protein expression. J Virol, 2006, 80: 587-595.
    26. Locarnini S, Shaw T, Dean J, et al. Cellular response to conditional expression of the hepatitis B virus precore and core proteins in cultured hepatoma (Huh-7) cells. J Clin Virol, 2005, 32: 113-121.
    27. Schildgen O, Sirma H, Funk A, et al. Variant of hepatitis B virus with primary resistance to adefovir. N Engl J Med, 2006, 354: 1807-1812.
    28. Martin B R, Giepmans B N, Adams S R, et al. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol, 2005, 23: 1308-1314.
    29. Le Seyec J, Chouteau P, Cannie I, et al. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-Sl domain. J Virol, 1999, 73: 2052-2057.
    30. Fu L, Cheng Y C. Characterization of novel human hepatoma cell lines with stable hepatitis B virus secretion for evaluating new compounds against lamivudine- and penciclovir-resistant virus. Antimicrob Agents Chemother, 2000, 44: 3402-3407.
    31. Sells M A, Chen M L, Acs G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci, 1987, 84:1005-1009.
    32. Vogel M, Vorreiter J, Nassal M. Quaternary structure is critical for protein display on capsicHike particles (CLPs): efficient generation of hepatitis B virus CLPs presenting monomeric but not dimeric and tetrameric fluorescent proteins. Proteins, 2005, 58: 478-488.
    33. Dryden K A, Wieland S F, Whitten-Bauer C, et al. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol Cell, 2006, 22: 843-850.
    34. Seitz S, Urban S, Antoni C, et al. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO J, 2007, 26: 4160-4167.
    35. Watts N R, Conway J F, Cheng N, et al. The morphogenic linker peptide of HBV capsid protein forms a mobile array on the interior surface. EMBO J, 2002, 21: 876-884.
    36. Wynne S A, Crowther R A, Leslie A G. The crystal structure of the human hepatitis B virus capsid. Mol Cell, 1999, 3: 771-780.
    37. Bruss V. Envelopment of the hepatitis B virus nucleocapsid. Virus Research, 2004, 106: 199-209.
    38. Bruss V. Hepatitis B virus morphogenesis. World J Gastroenterol, 2007, 13: 65-73.
    39. Koschel M, Oed D, Gerelsaikhan T, et al. Hepatitis B virus core gene mutations which block nucleocapsid envelopment. J Virol, 2000, 74: 1-7.
    40. Bchini R, Capel F, Dauguet C, et al. In vitro infection of human hepatoma (HepG2) cells with hepatitis B virus. J Virol, 1990, 64: 3025-3032.
    41. Cooper A, Paran N, Shaul Y. The earliest steps in hepatitis B virus infection. Biochim Biophys Acta, 2003, 1614: 89-96.
    42. Gripon P, Rumin S, Urban S, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci, 2002, 99: 15655-15660.
    43. Paran N, Geiger B, Shaul Y. HBV infection of cell culture: evidence for multivalent and cooperative attachment. EMBO J, 2001, 20: 4443-4453.
    44. Walter E, Keist R, Niederost B, et al. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology, 1996, 24: 1-5.
    45. Funk A, Mhamdi M, Lin L, et al. Itinerary of hepatitis B viruses: delineation of restriction points critical for infectious entry. J Virol, 2004, 78: 8289-8300.
    46. Kock J, Kann M, Putz G, et al. Central role of a serine phosphorylation site within duck hepatitis B virus core protein for capsid trafficking and genome release. J Biol Chem, 2003,278:28123-28129.
    47. Lill Y, Lill M A, Fahrenkrog B, et al. Single hepatitis-B virus core capsid binding to individual nuclear pore complexes in Hela cells. Biophys J, 2006, 91: 3123-3130.
    48. Yeh C T, Wong S W, Fung Y K, et al. Cell cycle regulation of nuclear localization of hepatitis B virus core protein. Proc Natl Acad Sci, 1993, 90: 6459-6463.
    1. Cooper A, Paran N, Shaul Y. The earliest steps in hepatitis B virus infection. EMBO J. 2003. 13: 2273-2279.
    2. Lu X Y, Block T. Study of the early steps of the Hepatitis B Virus life cycle. Int J Med Sci, 2004, 1:21-33.
    3. Seeger C, Mason W S. Hepatitis B virus biology. Microbiol Mol Biol Rev, 2000, 64:51-68.
    4. Lou K X. Hepatitis B Basic Biology and Clinical Science. Beijing: People's Medical Publishing House, 2003, 37-39.
    5. Sells M A, Chen M L, Acs G. Production of hepatitis B virus particles in HepG2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci, 1987, 84: 1005-1009.
    6. Acs G, Sells M A, Purcell R H, et al. Hepatitis B virus produced by transfected HepG2 cells causes hepatitis in chimpanzees. Proc Natl Acad Sci, 1987, 84: 4641-4644.
    7. Tsurimoto T, Fujiyama A, Matsubara K. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA. Proc Natl Acad Sci, 1987, 84: 444-448.
    8. Weiss L, Kekule A S, Jakubowski U, et al. The HBV-producing cell line HepG2-4A5: a new in vitro system for studying the regulation of HBV replication and for screening antihepatitis B virus drugs. Virology, 1996, 216: 214-218.
    9. Shih C, Li L S, Roychoudhury S, et al. In vitro propagation of human hepatitis B virus in a rat hepatoma cell line. Proc Natl Acad Sci, 1989, 86: 6323-6327.
    10. Delaney W E, Isom H C. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology, 1998, 28: 1134-1146.
    11. William E, Delaney I V, Thomas G M, et al. Use of the Hepatitis B Virus Recombinant Baculovirus-HepG2 System to Study the Effects of (-)- β-2', 3'-Dideoxy-3'-Thiacytidine on Replication of Hepatitis B Virus and Accumulation of Covalently Closed Circular DNA. Antimicrob Agents Chemother, 1999, 43: 2017-2026.
    12. Delaney W E, Edwards R, Colledge D, et al. Cross-resistance testing of antihepadnaviral compounds using novel recombinant baculoviruses which encode drug-esistant strains of hepatitis B virus. Antimicrob Agents Chemother, 2001, 45: 1705-1713.
    13. Aoki Y, Aizaki H, Shimoike T, et al. A human liver cell line exhibits efficient translation of HCV RNAs produced by a recombinant adenovirus expressing T7 RNA polymerase. Virology, 1998, 250: 140-150.
    14. Yakov F, Gidon A, Eithan G, Mali K G. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles. Biochem Biophys Res Commun, 2004, 321: 269-274.
    15. He T C, Zhou S, Da-Costa L T, et al. A simplified system for generating recombinant adenovirus. Proc Natl Acad Sci, 1998, 95: 2509-2514.
    16. Sprinzl M F, Oberwinkler H, Schaller H, et al. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier. J Virol, 2001,75:5108-5118.
    17. Gripon P, Diot C, Theze N, et al. Hepatitis B virus infection of adult human hepatocytes cultured in the presrnce of dimethylsulforide. J Virol, 1988, 62: 4136-4143.
    18. Gripon P, Diot C, Guguen-Guillouzo C. Reproducible high level infection of cultured adult human hepatocytes with hepatitis B virus: Effect of polyethylene glycol on adsorption and penetration. Virology, 1993, 192: 534-540.
    19. Rumin S, Gripon P, Seyec J L, et al. Long-term productive episomal hepatitis B virus replication in primary cultures of adult human hepatocytes infected in vitro. J Virol Hepatol, 1996, 3: 227-238.
    20. Bchini R, Capel F, Dauguet C, et al. In vitro infection of human hepatoma (HepG2) cells with hepatitis B virus. J Virol, 1990, 64: 3025-3032.
    21. Mabit H, Dubanchet S, Capel F, et al. In vitro infection of human hepatoma cells (HepG2) with hepatitis B virus: Spontaneous selection of a stable HBV surface antigen-producing HepG2 cell line containing integrated HBV DNA sequences. J Gen Virol, 1994,75:2681-2689.
    22. Galle P R, Hagelstein J, Kommerell B, et al. In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology, 1994, 106: 664-673.
    23. Ochiya T, Tsurimoto T, Ueda K, et al. An in vitro system for infection with hepatitis B virus that uses primary human fetal hepatocytes. Proc Natl Acad Sci, 1989, 86: 1875-1879.
    24. Yao Y Q, Huang A L, Zhang D F, et al. Replication and transfection of hepatitis B virus into primary duck hepatocytes. Chin J Hepatol, 2002, 10: 34-36.
    25. Yao Y Q, Zhang D F, Luo Y, et al. An in vitro model of hepatitis B virus gene replication and expression in primary rat hepatocytes transfected with circular viral DNA. Chin J Hepatol, 2002, 10: 275-279.
    26. Kock J, Nassal M, Macnelly S, et al. Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol, 2001, 75: 5084-5089.
    27. Greber U F, Way M. A superhighway to virus infection. Cell, 2006, 124: 741-754.
    28. Campbell E M, Perez O, Melar M, et al. Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology, 2007, 360: 286-293.
    29. Desai P, Person S. Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol, 1998, 72: 7563-7568.
    30. Le L P, Le H N, Nelson A R, et al. Core labeling of adenovirus with EGFP. Virology, 2006,351:291-302.
    31. Lux K, Goerlitz N, Schlemminger S, et al. Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. J Virol, 2005, 79: 11776-11787.
    32. Luxton G W, Haverlock S, Coller K E, et al. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci, 2005, 102: 5832-5837.
    33. McDonald D, Vodicka M A, Lucero G, et al. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol, 2002, 159: 441-452.
    34. Smith G A, Pomeranz L, Gross S P, et al. Local modulation of plus-end transport targets herpesvirus entry and egress in sensory axons. Proc Natl Acad Sci, 2004, 101: 16034-16039.
    35. Sampaio K L, Cavignac Y, Stierhof Y D, et al. Human cytomegalovirus labeled with green fluorescent protein for live analysis of intracellular particle movements. J Virol, 2005, 79: 2754-2767.
    36. Warrington K H, Jr., Gorbatyuk O S, Harrison J K, et al. Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol, 2004, 78: 6595-6609.
    37. Babcock H P, Chen C, Zhuang X. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys J, 2004, 87: 2749-2758.
    38. Keppler A, Pick H, Arrivoli C, et al. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci, 2004, 101: 9955-9959.
    39. Seisenberger G, Ried M U, Endress T, et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science, 2001, 294: 1929-1932.
    40. Cui Z Q, Zhang Z P, Zhang X E, et al. Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells. Nucleic Acids Res, 2005, 33: 3245-3252.
    41. Adams S R, Campbell R E, Gross L A, et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc, 2002, 124: 6063-6076.
    42. Griffin B A, Adams S R, Tsien R Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science, 1998, 281: 269-272.
    43. Day R N. Imaging protein behavior inside the living cell. Mol Cell Endocrinol, 2005, 230: 1-6.
    44. Gorelik J, Shevchuk A, Ramalho M, et al. Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: application to single virus-like particle entry into a cell. Proc Natl Acad Sci, 2002, 99: 16018-16023.
    45. Lawler C, Suk W A, Pitt B R, et al. Multimodal optical imaging. Am J Physiol Lung Cell Mol Physiol, 2003, 285: L269-280.
    46. Castell J V, Gomez-Lechon M J. Liver cell culture techniques. Methods Mol Biol, 2009, 481:35-46.
    47. Mitry R R, Hughes R D, Dhawan A. Progress in human hepatocytes: isolation, culture & cryopreservation. Semin Cell Dev Biol, 2002, 13: 463-467.
    48. Pichard L, Raulet E, Fabre G, et al. Human hepatocyte culture. Methods Mol Biol, 2006, 320: 283-293.
    49. Shafritz D A. A human hepatocyte factory. Nat Biotechnol, 2007, 25: 871-872.
    50. Wang Y J, Liu H L, Guo H T, et al. Primary hepatocyte culture in collagen gel mixture and collagen sandwich. World J Gastroenterol, 2004, 10: 699-702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700