肝炎病毒检测条件的优化及藻胆蛋白相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒性肝炎是对人类健康危害严重的传染病之一。由于HBV和HCV混合感染不仅是原发性肝癌发生的原因,也是导致肝组织纤维变,加快向肝硬化发展的重要因素。所以研究HBV、HCV的病理机制为临床早期抗病毒干预治疗,控制肝组织纤维化进程,提供了理论依据,对肝癌防治具有重要意义。
     一般对HBV和HCV检测有免疫学方法和核酸检测法,免疫学方法主要包括放射性标记免疫分析技术、酶免技术分析(ELISA)、时间分辨荧光免疫分析(TRFIA)和化学发光免疫分析(CLIA)等;核酸检测方法主要有斑点杂交技术和PCR技术,其中PCR技术检测存在假阳性和假阴性的情况,本实验通过优化PCR的检测条件达到快速灵敏检测,降低假阳性和假阴性的目的。
     本实验用已经构建好的pGEM-T-HBV(C区/C基因)和pGEM-T-HCV(核心蛋白)作为PCR检测的质粒模板,通过改变Mg~(2+)浓度、退火温度以及采用不同的酶进行PCR检测条件的优化。其中检测HBV病毒时共设了1.5μl-4.0μl共6个Mg~(2+)浓度梯度,设了58.0~62.0℃共12个温度梯度,质粒模板稀释浓度从10~(-1)-10~(-9)共9个浓度梯度。检测HCV病毒时,共设了1.5~2.0μl共6个Mg~(2+)浓度梯度,设了56.0~60.0℃共12个温度梯度,质粒模板稀释浓度从10~(-1)~10~(-9)共9个浓度梯度。实验结果证明检测HBV病毒时,4.0μl为最佳Mg~(2+)浓度,59℃为最佳退火温度,天源公司的Taq DNA聚合酶灵敏性最高,对质粒浓度的要求达到10~(-9)。当检测HCV病毒时,1.5μl为最佳Mg~(2+)浓度,57℃为最佳退火温度,Bio-Rad公司的iTaq聚合酶灵敏性最高,对质粒浓度的要求达到10~(-6)。
     藻胆体(phycobilisome)是存在于蓝藻和红藻中的一类捕光蛋白复合物,它由藻胆蛋白(phycobiliprotein)和连接蛋白组成。藻胆蛋白由藻胆色素(phycobilin)与相应的脱辅基蛋白中保守性半胱氨酸的巯基以硫醚键共价结合而成。藻胆蛋白是一类结构相似的色素蛋白。目前已发现了一种能催化β-CPC84、β-PEC84、α-APC82和β-APC82位半胱氨酸残基与PCB连接的裂合酶基因cpeS,其编号为alr0617。为了研究PCB与层理鞭枝藻藻红蓝蛋白连接的机制β亚基(β-PEC)第84位Cys连接机制,现通过同源性分析,筛选出四个同源性较高的基因片段,即alr0617,all5339, all5292,alr0647。现根据国际标准,将编号为alr0617,all5339,all5292,alr0647基因编码的蛋白命名为CpeS1,CpeT1,CpeS2,CpeT2, CpeT1能分别与CpeT2、CpeS1、PecE形成比较明显的复合物,但是只有CpeT1与CpeT2之间形成大约1:1的复合物。
     本研究成功构建质粒pBT- CpeS1、pBT- CpeS2、pBT- CpeT2、pBT- 3357、pTRG- CpeS1、pTRG- CpeT_1、、pTRG- 3357基因。
     将pBT- CpeS_1、pBT- CpeS_2、、pBT- CpeT_2、pBT- 3357和pTRG- CpeT_1;pBT- CpeS_1、pBT- CpeS_2、pBT- CpeT_2和pTRG- 3357;pBT- CpeS_2、、pBT- CpeT_2和pTRG- CpeS_1共转化大肠杆菌,利用细菌双杂交系统,证明pBT- CpeT2、pBT-CpeS2、pBT-CpeS1和pBT-3357的重组子与pTRG-CpeT1的重组子有相互作用,pBT-CpeS2和pBT-CpeS1与pTRG-3357的重组子的蛋白质间有相互作用,而pBT-CpeS2和pTRG-CpeS1间没有相互作用。
Hepatitis is one of infectious diseases which could harm human health seriously. The mixed infection of HBV and HCV is not only the causes of primary liver cancer, but also the main factor of making liver tissue fibosis and accelerating the development of liver cirrhosis. Research on the pathological mechanisms of HBV, HCV which provides the theoretical basis of doing early anti-virus treatment and controlingf liver fibrosis process, has great significance for prevention and treatment of liver cancer.
     General detection methods of HBV and HCV are immunological methods and nucleic acid testing. Immunological methods includes radioactive immune analysis technology, ELISA, TRFIA and CLIA; Nucleic acid testing methods includes speckle hybrid technology and PCR technology,and the PCR technology exists of false positive and false negative situation. This work can approach rapider detection, greater sensitivity, lower false positive and lower false negative through optimizing of PCR test conditions.
     This work uses the constructed plasmid (pGEM-T-HBV (C District/C gene) and pGEM-T- HCV (core)) as the template, optimizes the PCR test conditions by changing Mg~(2+) concentration, annealing temperature and types of the enzyme,
     The detection of HBV virus has established a Mg~(2+) concentration gradient from 1.5 to 4.0μl, a annealing temperature gradient from 58.0℃to 62.0℃, and a template plasmid diluted concentrations gradient from 10~(-1) to 10~(-9). The detection of HCV virus has established a Mg~(2+) concentration gradient from 1.5 to 2.0μl , a temperature gradient from 56.0℃to 60.0℃, and a template plasmid diluted concentrations gradient from 10~(-1) to 10~(-9). The result of experiments shows that the optimal conditions of HBV virus detection is 4.0μl as the best Mg~(2+) concentration, 59℃as the best annealing temperature. The Taq DNA polymerase (Tiangene company) has the highest sensitivity, which requires optimal plasmid concentration of 10~(-9).
     The result of experiments shows that the optimal conditions of HCV virus detection is 1.5μl as the best Mg~(2+) concentration, 57℃as the best annealing temperature. The iTaq DNA polymerase (Bio-Rad company) has the highest sensitivity, which requires optimal plasmid concentration of 10~(-6).
     Phycobilisomes serve as the light-harvesting antenna in cyanobacteria and red algae. These protein complexes, are primarily composed of phycobiliproteins, a brilliantly colored family of proteins bearing covalently attached, open-chain tetrapyrroles known as phycobilins. In additional, phycobilisomes also contain smaller amounts of linker peptides,which are required for proper assembly and functional organization of phycobilisomes. Phycobilin chromophores are generally bound to apoprotein at conserved positions by cysteinyl thioether linkages to generate phycobiliproteins. Has now found a catalyst toβ-CPC84,β-PEC84,β-APC82 cysteine residues Connected with the PCB crack synthaseβ- APC82 and gene cpeS , its No. alr0617. In order to study the PCB and bedding whip sticks was phycoerythrocyanin PEC No. Cys84 connecting mechanism, subunit connecting mechanism,Is through homology analysis, selected four high homology of the gene fragments, That is, alr0617, all5339, all5292, alr0647. In accordance with international standards, will be No. alr0617, all5339, all5292, alr0647 genes encoding proteins called CpeS1, CpeT1, CpeS2, CpeT2. CpeT1 respectively and CpeT2, CpeS1, PecE a more obvious complex, but only CpeT1 and CpeT2 about 1:1 between the formation of the complex.
     This study successfully constructed plasmid pBT-CpeS1,pBT-CpeS2, pBT-CpeT2, pBT-3357,pTRG-CpeS1,pTRG-CpeT1,pTRG-3357.pBT-CpeS1,pBT-CpeS2,pBT-CpeT2.
     pBT-3357 and pTRG-CpeT1; pBT-CpeS1, pBT-CpeS2, pBT-CpeT2 and pTRG-3357; pBT-CpeS2, pBT-CpeT2 and pTRG-CpeS1 Were transformed into E. coli, bacteria use two-hybrid system that pBT-CpeT2, pBT-CpeS2, pBT-CpeS1 and pBT-3357 and the restructuring of pTRG-CpeT1 interactions with the recombinant, pBT-CpeS2,pBT-CpeS1 and pTRG-3357 Restructuring of the interaction between proteins and pBT-CpeS2 and pTRG-CpeS1 no interaction between.
引文
[1] WU Jiang-nan; CHEN Yu-ming; WANG Cui-ling. et al. Effects of HCV and HBV infections on primary hepatic carcinoma in Chinese adults: a meta-analysis of 26 case-control studies. Chinese Journal of Hepatology.2007,2:71-74
    [2]纪惠玲,郭燕等,乙型肝炎的分子流行病学研究方法概述,海峡预防医学杂志,2007,2
    [3]王晓晶韩梅芳等,乙型和丙型肝炎病毒感染的免疫学研究进展,国际免疫学杂志,2007,30(2)
    [4] Anna SuK-LoK. Hepatitis B infection: pathogenesis and management. Journal of Hepatology, 2000,32(Suppl 1):577-584
    [5] Ludek R, Tim J,Harrison, et al. Unusual hepatitis B surface antigen variation in a child immunized against hepatitis B[J]. J Med Virol 2000, 61:11-14
    [6] Xing Lihe; Ma Wenping; Wang Youchen; et al. Human CTLs-mediated anti-HBV effects of dendritic cells sensitized by HBsAg in vitro. Medical Journal of Chinese People's Liberation Army. 2007,2
    [7]靳海英,谢立,林尊慧等. HCV RNA检测与血清病毒学的关系及临床意义分析[J].天津医药, 2007,(05)
    [8] Prasun Bhattacharya; Partha Kumar Chandra; Sibnarayan Datta; Significant increase in HBV, HCV, HIV and syphilis infections among blood donors in West Bengal, Eastern India 2004-2005: Exploratory screening reveals high frequency of occult HBV infection. World Journal of Gastroenterology. 2007,27
    [9]韦筱斌,许燕,黎建源等荧光定量PCR测定HCV RNA对分片段ELISA法检测抗HCV可疑样本的分析[J].广西医学, 2007,2:44-45
    [10] GAO Qiuju; LIU Dianwu; ZHANG Shiyong; et al. Analyses of anti-HCV detected by ELISA and HCV RNA detected by RT-nPCR in chronic hepatitis C virus infectors. Journal of Hygiene Research.2007,2:73-75
    [11]沈阳,林矫等,应用基因重组抗原诊断丙型肝炎研究,中国病毒学,2005,20(2): 206—208
    [12] XIAO Xiao-guang, ZHANG Feng-hua,WANG Jing.Applicate method of real time PCR to detect YMDD variation in HBV.Journal of Dalian Medical University.2007.1
    [13]熊英,宋玉国,黄建文等,实时荧光聚合酶链反应技术检测乙型肝炎病毒YMDD变异的研究[J].临床荟萃, 2007,(17)
    [14]杨建荣,戴利亚,陈占国.单管巢式PCR结合熔解曲线分析检测乙肝病毒YMDD变异[J].实用医学杂志, 2007,(02)
    [15]杨松,王刚,明国辉等.慢性乙型肝炎患者肝组织中HBV DNA载量相关因素分析[J].临床检验杂志, 2007,1:50-51
    [16] Julian Bilous,Steven Wiersmg.世界卫生组织乙型肝炎控制目标和策略[J] .中国计划免疫,2004,10(3):178-179
    [17] Malik A H,Lee W M.Chronic hepatitis B virus infecti0n:treatment strategies for thenext millennium[J].Ann Intern Med.2000,132:723-732
    [18]庄辉.乙型肝炎流行病学研究进展[J].国外医学流行病学传染病学分册,2004,31(3):133-135
    [19]崔玉,詹林盛,乙型肝炎病毒动物模型研究进展,生物技术通讯,2007, 18( 2):307-309
    [20] Galibert , F. , Mandart , E. , Fitoussi , F. , et al. Nucleotide sequence of the hepatitis B virus genome ( subtype ayw) cloned in E.coli. Nature , 1979 ;281 :646-650
    [21]吴莹,乙型肝炎病毒正链转录及调节的研究进展,国际病毒学杂志,2007,14 (1):21-23
    [22] Alter H J.Detection of antibody to hepatitis C virus in prospectively followed transfusion recipient s with acute and chronic non-A . non-B hepatitis[J].Hepatology.1992:15:350-353.
    [23] Reifenberg K,Lohler J ,Pudollek HP,et al.Long-term expression of the hepatitis B virus core-e-and X protein does not cause pathologic changes in reansgenic mice. J Hepatol,1997,26:119-126
    [24]冯冰,龙尧,罗清逢. HBV感染者血清IL-18,IL-18BPa水平及外周血单个核细胞mRNA的表达[J].广东医学, 2007,(02):63-65
    [25]王文余,任从棉,张峰,黄兆松. HBV血清标志物与HBV-DNA、Pre-S1抗原检测的临床应用[J].检验医学与临床, 2007,(01):21-22
    [26] William K, Owiredu B A, Anna K,et al. Hepatitis B virus DNA in serum of helthy black African adults positive for hepatitis B surface antibody alone : possible association with recombination between genotypes A and D [J].J Med Virol 2001, 64: 441-454
    [27] Kfoury B EM, Zheng J, Mazuruk K,et al.Characterization of a novel hepatitis B virus mutant:demostration of mutation-induced hepatitis B virus surface antigen group specific"a" determinant conformation change and its application in diagnostic assays[J]. Transfus Med 2001,11(5): 355-362
    [28]翟向京.中西医结合治疗乙型肝炎128例疗效观察.四川中医,2004,22(1):48.
    [29]李超.中西医结合治疗乙型肝炎后肝硬化腹水66例.浙江中医杂志,2002,11:470—471.
    [30]朱庚甫.中西医结合治疗乙型肝炎肝硬化腹水体会.时珍国医国药,2001,12(7):663—664.
    [31]史海粤.中西医结合治疗乙型肝炎体会.青海医药杂志(中医药专辑),1999,29(11):20一21.
    [32]杨艳娇,李海龙,李松波.中西医结合治疗乙型肝炎126例体会.黑龙江医学,2002,26(12):974.
    [33]王立颖,赵景生,刘铁军.中西医结合治疗乙型肝炎病毒携带者60例疗效观察.现代中西医结合杂志,2003,12(1):26—27.
    [34]范汉淮.中西医结合治疗乙型肝炎37例疗效观察.湖南中医杂志,1999,15(3):16—17.
    [35]周汉高,顾公望.丙型肝炎与肝癌研究进展[J].国外医学肿瘤学分册,1998,25(3):167.
    [36]许哲荣,丙型肝炎病毒致病机理研究的新进展,口岸卫生控制,2003年02期
    [37]张春泽田志新等。抗HBc IgM阳性慢性乙型肝炎临床特性、病毒学和血清学研究。中华实验和临床病毒学杂志。2007,21(2):120-122
    [38]张智,张珍,李亚红, HBV共价闭环DNA预测对慢性乙型肝炎疗效的评价[J].中国医师杂志, 2007,(01)
    [39]吴英,马珍,李科. HBV感染常见血清学模式分析[J].重庆医学, 2007,(01)
    [40]李振甲.国内外标记免疫分析技术研究现状[J].中华医学检验杂志。1999,22(5):278-280.
    [41]陶其敏.如何正确使用聚合酶链反应技术[J].中华医学检验杂志.1999, 22(3):185.
    [42]何晨光,王馨,丙型病毒性肝炎及其检测研究进展,口岸卫生控制, 2007年02期
    [43]谢立,吴晓东丙型肝炎病毒检测方法的研究进展及其临床意义,世界华人消化杂志, 2005 ,7
    [44] SHAO Jin-hui; HU Jie; ZHU You-ming. Cloning and Analysis of HCV Core Protein Gene in Pichia pastoris. Biotechnology.2007(02)
    [45]成军,慢性丙型肝炎抗病毒治疗的研究进展,传染病信息,2005,18(z1)
    [46]陈丽娟,陈美珠.前S2抗原的检测与血清标志物及HBV-DNA相关性分析[J].检验医学与临床, 2007,(01):23-24
    [47]时红波,李秀惠,谢立等.检测HBV和HCV重叠感染患者血清中IL-6及IFN-γ水平的意义[J].细胞与分子免疫学杂志, 2007(02):46-47
    [48]史光军;肝癌病毒抗原表达与相关因素实验研究[D];华中科技大学; 2006年
    [49]陈朝霞,闵保华,陈延平.影响HCV-RNA荧光定量PCR检测的因素及其对策[J].国际检验医学杂志. 2007(02):85-86
    [50] Chan HL, Tsang SW, Liew CT. et al. Viral genotype and hepatitis B virus DNA levels are correlated with histological liver damge in HBeAg-negative chronic hepatitis B virus nfection. Am J Gastroenterol, 2002, 97: 406-412
    [51] Seme K, Poljak M, Babic D Z, et al. The role of core antigen detection in management of hepatitis C: a critical review. J Clin V irol, 2005, 32 (2) : 92~101
    [52] Jolivet-Reynaud C, Dalbon P, Viola F, et al. HCV core immunodominant region analysis using mouse monoclonal antibodies and human sera: Characterization of major epitopes useful for antigen detection. JMed Virol, 1998, 56(4):300~309
    [53] Barban V, Fraysse-Corgier S, Paranhos-Baccala G, et al.Identification of a human epitope in hepatitis C virus (HCV) core protein using a molecularly cloned antibody repertoire from a non-symptomatic, anti-HCV-positive patient. J Gen Virol,2000, 81(2): 461~469
    [54] Sallberg M, Ruden U, Wahren B, et al. Immuneresponse to a single peptide containing an immunodominant region of hepatitis C virus core protein: The isotypes and the recognition site. Immunol Lett, 1992, 33 (1) : 27~33
    [55]郜金荣,徐进平,叶林柏等.人丙型肝炎病毒研究进展[J].武汉大学报(自然科学学报),1997,43(6):823-828.
    [56]陈勤.丙型肝炎病毒及其生物学检测方法[J].现代医院,2004,4(5):56-58.
    [57]钟骄博,吕小欧.HCV的检测方法[J].华夏医学,2002,6(15):889-890.
    [1] Mullineaux C W. Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium[J]. Biochim Biophys Acta, 1992, 1100:285-292
    [2] Bald D, Kruip J, R?gner M. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems[J]. Photosyn Res, 1996, 49:103-118
    [3] Glazer A N. Light harvesting by phycobilisomes[J]. Ann Rev Biophys Chem, 1985, 14:47-77
    [4] MacColl R. Cyanobacterial phycobilisomes[J]. Struct Biol.1998, 124: 311-334
    [5] Frank G, Sidler W, Widmer T, et al. The complete amino acid sequence of bilin subunits of C-phycocyanin from the cyanobacterium Mastigocladus laminosus[J]. Hoppe Seyler's Z Physiol Chem, 1978, 359:1491-1507
    [6] Reuter W, Wiegand G, Huber R, et al. Structural analysis at 2.2? of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus[J]. Proc Natl Acad Sci USA, 1999, 96(4):1363-1368
    [7] Schneider S, PrenzeL C J, Brehm G, et al. Resonance-enhanced cars spectroscopy of biliproteins-influence of aggregation and linker proteins on chromophore structure in allophycocyanin (Mastigocladus Laminosus) [J]. Photochem Photobiol, 1995, 62(5):847-854
    [8] Zhao K H, Hong Q, Siebzehnruebl S, et al. Phycoerythrocyanin: A photoreceptor pigment with two faces [J]. Frontiers of Photobiol, 1993, 31-36
    [9] Ong L J, Glazer A N. R-phycocyanin II, a new phycocyanin occurring in marine Synechococcus species. Identification of the terminal energy acceptor bilin in phycocyanins. J Biol Chem, 1987, 262: 6323-6327.
    [10] Houmard J, Capuano V, Colombano M V, et al. Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA, 1990, 87: 2152-2156.
    [11] Troxler R F, Ehrhardt M M, Brown-Mason A S, et al. Primary structure of phycocyanin from the unicellular rhodophyte Cyandiom caldarium. Complete amino acid sequence of theβ-subunit. J Biol Chem, 1981, 256: 12176-12184.
    [12] Apt K E, Collier J L, Grossman A R. Evolution of the phycobiliproteins, J Mol Biol,1995, 248: 79-96.
    [13]王广策、邓田、曾呈奎。藻胆蛋白的研究概况(I)-藻胆蛋白的种类与组成,海洋科学,2000,24(2)
    [14] Manodori A, Alhadeff M, Glazer A N, et al. Photochemical apparatus organization in Synechoccus 6301 (Anacystis nidulans) Effect of phycobilisome mutation[J]. Arch Microbiol, 1984, 139:117-123
    [15] Zhou J, Gasparich G E, Stirewalt V L, et al. The cpcE and cpcF genes of Synechococcus sp. PCC 7002[J]. Biol Chem, 1992, 267(28):16138-16144]
    [16] Cai Y A, Murphy J T, Wedemayer G J, et al. Recombinant phycobiliproteins -Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal Biochem, 2001, 290(2): 186-204.
    [17] Glazer A N. Phycobilisome, a macromolecular complex, optimized for light energy transfer[J]. Biochim Biophys Acta, 1984, 768:29-51
    [18] Tooley A J, Cai Y A, Glazer A N. Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host[J]. Proc Natl Acad Sci USA, 2001, 98(19):10560-10565
    [19] Tooley A J, Glazer A N. Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-alpha subunit in a heterologous host[J]. J Bacteriol, 2002, 184(17):4666-4671
    [20] Cai Y A, Murphy J T, Wedemayer G J, et al. Recombinant phycobiliproteins -Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains[J]. Anal Biochem, 2001, 290(2):186-204
    [21] Suter G W, Holzwarth A R. A kinetic model for the energy transfer in phycobilisomes. Biophys J, 1987, 52: 673-683.
    [22] Searle G F W, Barber J, Porter G, et al. Picosecond time-resolved energy transfer in Porphyridium cruentumⅡ. In the isolated light-harvesting complex (phycobilisomes). Biochim Biophys Acta, 1978, 501: 246-256..
    [23] Glazer A N. Light harvesting by phycobilisomes. Ann Rev Biophys Chem, 1985, 14: 47-77.
    [24] Kahn K, Mazel D, Houmard J, et al. A role for cpeYZ in cyanobacterial hycoerythrin biosynthesis. J Bacteriol, 1997, 179(4): 998-1006.
    [25] Zhao, K.H., Su, P. B?hm, S., Song, B., Zhou, M., Bubenzer, C., and Scheer, H. (2005) Reconstitution of phycobilisome core-membrane linker, LCM, by autocatalytic chromophore binding to ApcE, Biochim. Biophys. Acta-Bioenergetics. 1706, 81-87.
    [26] Kai-Hong Zhao,Ping Su,Jian Li,et al.Chromophore attachment to Phycobiliproteinβ-Subunits.Phycocyanobilin:cysteine-β84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena Sp.PCC7120[J].The Journal of Biological Chemistry,2006,281(14):8573-8581
    [27] Karimova G, Pidoux J , Ullmann A , Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway.Proc Natl Acad Sci USA , 1998 , 95 : 5752—5756
    [28] Field S,Song O K. A novel genetic system to detect protein-protein interactions. Nat ure , 1989 , 340 : 245—246
    [29] Rossi F,Charlton C A , Blau H M. Monitoring protein-protein interactions in intact eukaryotic cells byβ-galactosidase complementation. Proc Natl Acad Sci USA , 1997 , 94 : 8405—8410
    [30] Dove SL, Joung JK, Hochschild A. Activation of prokaryotic transcription through arbitrary protein-protein contacts〔J〕. Nature 1997, 386 (6625) : 627-630.
    [31] Dove SL, Hochschild A. A bacterial two-hybrid system based on transcription activation〔J〕. Methods Mol Biol 2004, 261: 231-246.
    [32] Joung JK, Ramm EI, Pabo CO. A bacterial two-hybrid selection system for studying protein-DNA and protein- protein interactions〔J〕. Proc Natl Acad Sci U S A 2000, 97 (13) : 7382-7387.
    [33] Hu JC, KornackerMG, Hochschild A. Escherich ia colione and two-hybrid systems for the analysis and identification of protein-protein interactions〔J〕. Methods 2000, 20 (1) : 80-94
    [34] Ladant D, Karimova G. Genetic systems for analyzing protein-protein interactions in bacteria〔J〕. ResMicrobiol 2000, 151 ( 9 ) :711-720
    [35] Pelletier JN, Campbell-Valois FX, Michnick SW. Oligomerization domain directed reassembly of active dihydrofolate reductasefrom rationally designed fragments〔J〕. Proc NatlAcad SciU SA1998, 95 (21) : 12141-12146.
    [36] Dautin N, Karimova G, LadantD. Bordetella pertussis adenylatecyclase toxin: a versatile screening tool〔J〕. Toxicon 2002, 40(10) : 1383-1387.
    [37] Ladant D, Karimova G. Genetic systems for analyzing protein-protein interactions in bacteria[J]. Res Microbiol, 2000,151(9) 711
    [38] Serebriiskii IG, Fang R, Latypova E, et al. A combined yeast/bacteria two-hybrid system: development and evaluation〔J〕. MolCell Proteomics 2005, 4 (6) : 819-826
    [39] ShaywitzAJ, Dove SL, Kornhauser JM, et al. Magnitude of theCREB-dependent transcriptional response is determined by thestrength of the interaction between the kinase-inducible domain of CREB and the KIX domain of CREB-binding protein〔J〕.MolCell Biol 2000, 20 (24) : 940929422.
    [40]李建华,细菌双杂交系统及其在病原微生物学中的应用,微生物学免疫学进展2006,4(3),34-39
    [41]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T著.分子克隆实验指南(第二版).金冬雁,黎孟枫译.北京:科学出版社, 1993
    [42]卢圣栋主编,现代分子生物学实验技术(第二版),中国协和医科大学出版社,北京,1999.
    [43]张弛,王梁华,焦炳华等.细菌双杂交系统在细胞外蛋白质相互作用中的应用.第二军医大学学报,2003,2424(10):1095-1098
    [44]萨姆布鲁克i,费里奇EF,曼尼阿蒂斯T,等著,分子克隆实验指南(第二版),北京,北京科学出版社,1999
    [45] Peter Uetz. Two-hybrid arrays. Curr. Opin. Chem.2001,6:57-62:廖贡献,俞冠翘,朱家壁.细菌双杂交系统的应用和改进.生物化学与生物物理学报,2001,33(3):331-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700