基于图和网络的学习算法及其在系统生物学中的一些应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会和科学技术的不断发展,人们正在积累越来越多的各个层次的数据和信息,但是这并没有从根本上解决许多具有挑战性的问题。最典型的例子是,二十世纪分子生物学的迅速发展只是获得了细胞各个组分的知识,而并没有攻克很多复杂的疾病,比如癌症等。这意味着我们需要从系统的水平整合不同的知识和数据,研究它们内部的相互关系和作用,从而才能最终掌握复杂系统的规律,对它们进行控制和优化。同时由于海量数据的复杂性,我们需要机器学习和数据挖掘技术对信息进行自动加工。图和网络是表达复杂系统内部不同尺度、不同组分之间相互作用和关联的最直观的方式。因此,我们迫切需要结合实际应用领域,例如系统生物学,发展基于图和网络的学习算法对系统进行研究。
     本文针对基于图和网络的学习算法,以实际分类问题和系统生物学中的一些应用为驱动背景,以图论、统计、优化方法为基本工具,以数据整合为核心,以结点分类、链接预测、子网发现和图匹配问题为对象和目标,对基于图和网络的学习算法进行了深入的研究。本文的主要研究内容和创新点包括以下几个方面:
     1.本文综述了基于图和网络的学习算法,介绍了系统生物学的定义和当前的发展,阐述了图和网络在当前系统生物学中的核心作用,指出了图和网络的方法在以系统生物学为代表的实际应用中的巨大潜力。
     2.考虑基于链接的半监督结点分类问题,以图的拉普拉斯矩阵的谱变换来构造半监督核为目标,本文提出了一种基于图的同时学习最优非参数谱变换和构建分类器的半监督学习方法。该算法的基本思想是以最大化特征空间的Fisher判别率作为谱变换图核学习和分类器构建的共同准则,并转化为一个半定规划的凸优化问题来求解。与利用核配准进行半监督核学习的算法比较,该算法不需要再进行分类器训练,因为分类器的学习和最优核的构造是同时完成的。在7个分类数据集上,该算法性能均优于或相当于当前基于核校准准则的半监督学习算法。
     3.考虑药物-蛋白相互作用网络的预测问题,本文以最大化集成网络中结点属性、链接信息以及未标记样本的信息为目标,提出应用流形正则化的半监督学习算法,并利用核方法整合药物化学分子结构信息、蛋白质序列信息和药物-蛋白网络拓扑结构信息来对未知的药物-蛋白相互作用进行预测,从而提高了预测的精度。用我们提出的方法预测的一些药物-蛋白相互作用已经被最新的药物数据库证实。
     4.从系统生物学的角度出发,考虑把蛋白质-DNA和蛋白质-蛋白质相互作用网络整合到基因微阵列数据的分析中。为了辨识与疾病相关的基因功能模块,本文提出了一个新的基于相互作用网络的正则化项来鼓励系数的绝对值在网络上的平滑,结合(?)_1范数的稀疏特性,得到一种基于图的弹性网算法,并从理论上分析了新的正则化项的数学特性,开发了一种新的求解算法,该算法具有全路径计算的优点。理论分析和仿真结果表明,基于图的弹性网算法能得到更小的预测误差。最后,将我们的算法应用到一个阿尔茨海默病的微阵列基因表达数据集上,辨识出了四个与阿尔茨海默病相关的基因功能模块。
     5.为了融合不同尺度和模态的信息,考虑把反映分子功能信息的三维荧光分子断层扫描(FMT)图像和反映解剖结构的CT图像进行配准,从而在一幅图像上同时表达多方面的信息。但是直接配准最大直径只有几个毫米的肿瘤的三维FMT图像和体长有近十厘米的整个小鼠的三维CT图像是非常困难的。由于我们可以得到二维平面图像跟FMT图像的坐标关系。因此本文提出一个新的思路,即先对FMT成像过程中得到的二维平面图像与三维的CT图像进行预配准,预配准的结果再作为下一步FMT和CT三维配准的初始值,这样就减小了最终三维配准时两个对象的大小差异所导致的配准难度。在配准过程中,对两个对象分别进行分割得到点集,将问题转化为点集图匹配,使配准完全不同模态的图像成为可能。对于匹配的优化算法,结合全局和局部优化的思想,提出了两种优化方法:结合最小二乘进行局部搜索的序贯蒙特卡罗采样算法;结合差分进化和把最小二乘作为另一种搜索方式的单纯形法。大量的仿真实验结果验证了结合全局搜索和局部搜索优化算法在减少迭代次数和寻优能力上的优越性。最后,在两个实际小鼠数据上的运行结果显示这种预配准的方法为下一步三维FMT和CT图像的配准提供了很好的初始值。
With the on-going development of human society and technology, more and more data and information from different scales are accumulated. However, many problems are still unsolved and unclear to us. For example, the dramatic development of molecular biology just provided much knowledge of different parts of cells and does not conquer any complex disease such as cancer. We can not understand complex systems and handle them without integrating so many data and knowledge from the system view and investigating their internal correlation. We also need machine learning and data mining techniques to help us process the huge data automatically. Graph and network are natural ways to describe the correlation between different components from different scale of a complex system. So it is emergent to develop graph and network based learning algorithms to analyze systems from real application such as systems biology.
     The dissertation targets graph and network based learning algorithms motivated from real classification and systems biology. From the data integration view, it presents in-depth study of link based node classification, link prediction, subnetwork searching and graph match problems employing graph theory, statistics and optimization tools. The main contributions of the dissertation are as follows:
     1. We surveyed the graph and network based learning algorithms and introduced the definition and current development of systems biology. It was shown that graph and network is the core of systems biology and has huge potential applications in systems biology.
     2. Link based node classification on the graph is a semi-supervised learning method. In order to construct a semi-supervised kernel by spectral transform on a graph Laplacian matrix, we proposed an graph based algorithm to learn the optimal non-parametric spectral transform and construct a classifier simultaneously. The main ideal is to use the Fisher discriminate ration in the feature space as the common criterion of spectral transform graph kernel learning and classifier construction which can be maximized by a convex semidefinite programming. Compared with kernel alignment method, our algorithm integrated optimal kernel construction and classifiers learning rather than separating into two steps. We compared our method with the kernel alignment method on 7 data sets and find our method is competitive with kernel alignment,and outperforms its competitor in some data sets.
     3. We considered the drug-protein interaction prediction. Aiming at extracting information from node properties, link and unlabeled samples, we applied a manifold regularized semi-supervised learning method as well as constructing a new kernel which integrated the chemical structure of drugs, sequence information of proteins and the topology information of drug-protein interaction network. The proposed method improved the prediction accuracy on 4 data sets. Furthermore, some predicted drug-protein interactions by our method are confirmed by latest drug bank data set.
     4. From the view of systems biology, it is important to integrate protein-DNA and protein-protein interaction into the microarray data analysis. To identify the disease related gene functional module, we put forward a new network based regularization term to encourage the smoothness of the absolute values of the coefficients on the network. This new term was combined with (\ norm term which imposed sparsity to form a graph-based elastic network method. The group effect of the new method is analyzed mathematically. A new whole path optimization algorithm is also proposed to solve the proposed graph-based elastic network. The simulation results and theoretical analysis demonstrated our method can get better prediction accuracy. Finally we applied the new method to a gene expression data set of Alzheimer's disease and identified 4 gene functional modules which are related with the progress of Alzheimer's disease.
     5. Systems biology intrinsically required the integration of data from different scale. We considered the registration of three dimensional fluorescent molecular tomography revealing molecular functions and the three dimensional CT images containing anatomical structure information to get more information. However it is difficult to directly co-register the 3D FMT (Fluorescence Molecular Tomography, FMT) image of a small tumor in a mouse whose maximal diameter is only a few mm with a larger CT image of the entire animal that spans about ten cm. The exact coordinates of 3D FMT in the 2D flat images is known. So we proposed to co-register the two dimensional flat image and 3D CT images as the initial position for the final 3D registration between FMT and CT. which bridged the gap between the 3D FMT image and 3D CT image of the animal. During registration, two data points were obtained from the segmentation of the two objects. So the problem was casted as a data points matching which made the registration of images from totally different modalities feasible. We proposed two matching optimization methods by combining the global and local searching methods. One improved sequential monter carlo sampling method by incorporating least squares as a local search. Another combined differential evolution and improved simplex method endowed with least squares as a new local searching. A number of simulation results verified the advantages of combining local search and global search in reducing iteration number and finding better solutions. The visualization of the alignments of the 3D FMT and CT images through 2D pre-registration on two mice data shows promising results.
引文
[1] Newman M, Watts D, Strogatz S. Random graph models of social networks. Proceedings of the National Academy of Sciences, 2002,99(90001):2566-2572
    [2] Aittokallio T, Schwikowski B. Graph-based methods for analysing networks in cell biology. Brief Bioinform, 2006, 7(3):243-55
    [3] Nicolaou C A, Apostolakis J, Pattichis C S. De Novo Drug Design Using Multiobjective Evolutionary Graphs. J Chem Inf Model, 2009,49(2):295-307
    [4] Stam C, Reijneveld J. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 2007, 1(1):3
    [5] Wang C, Chen J, Sun Y, et al. Wireless Sensor Networks Localization with Isomap. Proceedings of IEEE International Conference on Communications, 2009
    [6] Kranton R, Minehart D. A theory of buyer-seller networks. American Economic Review, 2001. 485-508
    [7] Zhu X. Semi-supervised learning literature survey. Computer Science, University of Wisconsin-Madison, 2008.
    [8] Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using gaussian fields and harmonic functions. Proceedings of The Twentieth International Conference on Machine Learning, 2003. 912
    [9] Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts. Proceedings of International Conference on Machine Learning (ICML), 2001
    [10] Zhou D, Bousquet O, Lal T N, et al. Learning with local and global consistency. Proceedings of Advances in Neural Information Processing Systems, 2004. 321-328
    [11] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 2006, 7:2399-2434
    [12] Sindhwani V, Niyogi P, Belkin M. Beyond the point cloud: from transductive to semi-supervised learning. Proceedings of International Conference on Machine Learning, 2005. 824-831
    [13] Wang J, Chang S, Zhou X, et al. Active microscopic cellular image annotation by superposable graph transduction with imbalanced labels. Proceedings of CVPR, 2008
    [14] Kondor R, Lafferty J. Diffusion kernels on graphs and other discrete input spaces. Proceedings of International Conference on Machine Learning, 2002. 315-322
    [15] Zhu X, Kandola J, Ghahramani Z, et al. Nonparametric transforms of graph kernels for semi-supervised learning. Proceedings of Advances in Neural Information Processing Systems, 2005. 1641-1648
    [16] Valencia A, Pazos F. Computational methods for the prediction of protein interactions. Current Opinion in Structural Biology, 2002,12(3):368-373
    [17] Jacob L, Vert J P. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 2008, 24(19):2149-56
    [18] Clauset A, Moore C, Newman M. Hierarchical structure and the prediction of missing links in networks. Nature, 2008,453(7191):98-101
    [19] Huang Z. Link prediction based on graph topology: The predictive value of the generalized clustering coefficient. Proceedings of Workshop on Link Analysis: Dynamics and Static of Large Networks (LinkKDD2006), 2006
    [20] Koller D, Pfeffer A. Probabilistic frame-based systems. Proceedings of the National Conference on Artificial Intelligence, 1998. 580-587
    [21] Getoor L, Friedman N, Koller D, et al. Learning probabilistic models of link structure. The Journal of Machine Learning Research, 2003, 3:679-707
    [22] Huang Z, Zeng D, Chen H. A unified recommendation framework based on Probabilistic Relational Models. Proceedings of In Fourteenth Annual Workshop on Information Technologies and Systems, 2004. 8-13
    [23] Taskar B, Abbeel M, Koller D. Link prediction in relational data. Proceedings of Advances in Neural Information Processing Systems Conference, 2003
    [24] Domingos P, Richardson M. Markov Logic: A Unifying Framework for Statistical Relational Learning. Proceedings of In ICML-2004 Workshop on Statistical Relational Learning and its Connections to Other Fields, 2004. 49-54
    [25] Popescul A, Ungar L. Statistical relational learning for link prediction. Proceedings of IJCAI workshop on learning statistical models from relational data, 2003
    [26] Ninagawa A, Eguchi K. Link Prediction in Metabolic Networks using Topology-based Mixture Models . Poster Abstracts on 19th Interantional Conference on Genome Informatics, 2008
    [27] Paradesi M, Caragea D, Hsu W. Structural Prediction of Protein-Protein Interactions in Saccharomyces cerevisiae. Proceedings of 7th IEEE Internation Conference on Bioinformatics and Bioengineering, 2007. 1270-1274
    [28] Yildirim M, Goh K, Cusick M, et al. Drug-target network. Nature biotechnology, 2007, 25(10):1119-26
    [29] Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24(13):i232—40
    [30] Kashima H, Tsuda K, Inokuchi A. Marginalized kernels between labeled graphs. Proceedings of The International Conference on Machine Learning, 2003. 321-328
    [31] Gartner T. Exponential and geometric kernels for graphs. Proceedings of NIPS Workshop on Unreal Data: Principles of Modeling Nonvectorial Data, 2002
    [32]G(a|¨)rtner T.A survey of kernels for structured data.ACM SIGKDD Explorations Newsletter,2003,5(1):49-58
    [33]Inokuchi A,Washio T,Motoda H.An apriori-based algorithm for mining frequent substructures from graph data.Lecture Notes in Computer Science,2000.13-23
    [34]Kuramochi M,Karypis G.Frequent subgraph discovery.Proceedings of the 2001 IEEE International Conference on Data Mining,2001.313-320
    [35]Yan X,Han J.gSpan:Graph-based substructure pattern mining.Proceedings of the 2002 IEEE International Conference on Data Mining(ICDM'02),2002
    [36]毛勇.基于支持向量机的特征选择方法的研究与应用:[PhD Thesis].浙江大学,四月,2006
    [37]Mao Y,Zhou X,Pi D,et al.Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection.Journal of Biomedicine and Biotechnology,2005,2:160-171
    [38]Zhu J,Rosset S,Hastie T,et al.l-norm support vector machines.Proceedings of Advances in Neural Information Processing Systems,2004
    [39]Tibshirani R.Regression shrinkage and selection via the lasso.Journal of the Royal Statistical Society.Series B(Methodological),1996.267-288
    [40]Wale N,Watson I,Karypis G.Comparison of descriptor spaces for chemical compound retrieval and classification.Knowledge and Information Systems,2008,14(3):347-375
    [41]Saigo H,Nowozin S,Kadowaki T,et al.gBoost:a mathematical programming approach to graph classification and regression.Machine Learning,2009,75(1):69-89
    [42]Umeyama S.An eigendecomposition approach to weighted graph matching problems.IEEE transactions on pattern analysis and machine intelligence,1988,10(5):695-703
    [43]Carcassoni M,Hancock E.Weighted graph-matching using modal clusters.Lecture notes in computer science,2001.142-151
    [44]Luo B,Hancock E.Structural graph matching using the EM algorithm and singular value decomposition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2001.1120-1136
    [45]Van Wyk M,Durrani T,Van Wyk B.A RKHS Interpolator-Based Graph Matching Algorithm.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002.988-995
    [46]Suganthan P,Yan H.Recognition of handprinted Chinese characters by constrained graph matching.Image and Vision Computing,1998,16(3):191-201
    [47]Suganthan P.Attributed relational graph matching by neural-gas networks.Proceedings of Neural Networks for Signal Processing X,2000.Proceedings of the 2000 IEEE Signal Processing Society Workshop,2000
    [48]王凌.智能优化算法及其应用.清华大学出版社,2001
    [49]Cross A,Wilson R,Hancock E.Inexact graph matching using genetic search.Pattern Recognition,1997,30(6):953-970
    [50]Zhou T,Chen L,Tang Y,et al.Aligning multiple protein structures by deterministic annealing.Journal of Bioinformatics and Computational Biology,2005,3(4):837-860
    [51]Florin C,Williams J,Khamene A,et al.Registration of 3D angiographic and X-ray images using sequential monte carlo sampling.Lecture Notes in Computer Science,2005,3765:427-436
    [52]Cao Y,Jiang T,Girke T.A maximum common substructure-based algorithm for searching and predicting drug-like compounds.Bioinformatics,2008,24(13):i366
    [53]Bandyopadhyay S,Sharan R,Ideker T.Systematic identification of functional orthologs based on protein network comparison.Genome research,2006,16(3):428
    [54]Kelley B,Sharan R,Karp R,et al.Conserved pathways within bacteria and yeast as revealed by global protein network alignment.Proceedings of the National Academy of Sciences,2003,100(20):11394-11399
    [55]Lander E,Linton L,Birren B,et al.Initial sequencing and analysis of the human genome.Nature,2001,409(6822):860-921
    [56]Hood L.Systems biology:integrating technology,biology,and computation.Mechanisms of ageing and development,2003,124(1):9-16
    [57]Zhou X,Wong S.Computational Systems Bioinformatics and Bioimaging for Pathway Analysis and Drug Screening.Proceedings of the IEEE,2008,96(8):1310-1331
    [58]杨胜利.系统生物学研究进展.中国科学院院刊,2004,19(001):31-34
    [59]张自立,王振英.系统生物学.科学出版社,2008
    [60]贺福初,杨芃原,朱云平.系统生物学的理论、方法和应用.复旦大学出版社,2007
    [61]Kitano H.Computational systems biology.Nature,2002,420(6912):206-210
    [62]Ideker T,Galitski T,Hood L.A new approach to decoding life:systems biology.Annu Rev Genomics Hum Genet,2001,2:343-372
    [63]Bruggeman F J,Westerhoff H V.The nature of systems biology.Trends Microbiol,2007,15(1):45-50
    [64]Hood L,Heath J,Phelps M,et al.Systems biology and new technologies enable predictive and preventative medicine.Science,2004,306(5696):640-643
    [65]Weiss K,Terwilliger J.How many diseases does it take to map a gene with SNPs? nature genetics,2000,26(2):151-157
    [66]Prokisch H,Scharfe C,Camp D,et al.Integrative analysis of the mitochondrial proteome in yeast.PLoS Biology,2004,2:795-804
    [67]Troyanskaya O.Putting microarrays in a context:integrated analysis of diverse biological data.Briefings in Bioinformatics,2005,6(1):34-43
    [68]Yamanishi Y,Vert J,Kanehisa M.Protein network inference from multiple genomic data:a supervised approach.Bioinformatics,2004,20:363-370
    [69] Nam S, Li M, Choi K, et al. MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Research, 2009.
    [70] Jin G, Zhou X, Wang H, et al. The knowledge-integrated network biomarkers discovery for major adverse cardiac events. Journal of Proteome Research, 2008, 7(9):4013-4021
    [71] Gevaert O, Smet F, Timmerman D, et al. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 2006,22(14):184—190
    [72] Frieboes H, Edgerton M, Fruehauf J, et al. Prediction of drug response in breast cancer using integrative experimental/computational modeling. Cancer Research, 2009, 69(10):4484-4492
    [73] Tomita M, Hashimoto K, Takahashi K, et al. E-CELL: software environment for whole-cell simulation. Bioinformatics, 1999, 15(1):72-84
    [74] Noble D. Modeling the heart-from genes to cells to the whole organ. Science, 2002, 295(5560):1678-1682
    [75] Levchenko A. Dynamical and integrative cell signaling: challenges for the new biology. Biotechnology and bioengineering, 2003, 84(7):773-782
    [76] Ideker T, Lauffenburger D. Building with a scaffold: emerging strategies for high-to low-level cellular modeling. TRENDS in Biotechnology, 2003,21(6):255-262
    [77] Przulj N, Wigle D, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics, 2004,20(3):340-348
    [78] De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. Journal of computational biology, 2002, 9(1):67-103
    [79] Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. Journal of computational biology, 2000, 7(3-4):601-620
    [80] Sharan R, Ideker T, Kelley B, et al. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. Journal of Computational Biology, 2005, 12(6):835-846
    [81] Sharan R, Ideker T. Modeling cellular machinery through biological network comparison. Nature Biotechnology, 2006, 24(4):427-433
    [82] Gat-Viks I, Tanay A, Raijman D, et al. The factor graph network model for biological systems. Lecture Notes in Computer Science, 2005, 3500:31-47
    [83] Palop J, Chin J, Mucke L. A network dysfunction perspective on neurodegenerative diseases. Nature, 2006,443(7113):768-773
    [84] Schadt E, Friend S, Shaywitz D. A network view of disease and compound screening. Nat Rev Drug Discov, 2009, 8(4):286-295
    [85] Chuang H, Lee E, Liu Y, et al. Network-based classification of breast cancer metastasis. Molecular Systems Biology, 2007, 3(1)
    [86]Ideker T,Ozier O,Schwikowski B,et al.Discovering regulatory and signalling circuits in molecular interaction networks.Bioinformatics,2002,18(Suppl 1):S233-S240
    [87]Xue H,Xian B,Dong D,et al.A modular network model of aging.Molecular Systems Biology,2007,3(1)
    [88]Cline M,Smoot M,Cerami E,et al.Integration of biological networks and gene expression data using Cytoscape.Nature Protocols,2007,2(10):2366-2382
    [89]维纳N.控制论:或关于在动物和机器中控制和通讯的科学.科学出版社,1963
    [90]Efron B,Hastie T,Johnstone I,et al.Least angle regression.Annals of statistics,2004.407-451
    [91]Zou H,Hastie T.Regularization and variable selection via the elastic net.Journal of the Royal Statistical Society Series B-Statistical Methodology,2005,67:301-320
    [92]赵静,俞鸿,骆建华等.应用复杂网络理论研究代谢网络的进展.科学通报,2006,51(011):1241-1248
    [93]Chung F R K.Spectral graph theory.American Mathematical Society,1997
    [94]Shi J,Malik J.Normalized cuts and image segmentation.IEEE Transactions on pattern analysis and machine intelligence,2000,22(8):888-905
    [95]Belkin M,Niyogi P.Semi-supervised learning on Riemannian manifolds.Machine Learning,2004,56(1):209-239
    [96]Chapelle O,Sindhwani V,Keerthi S.Branch and bound for semi-supervised support vector machines.Advances in Neural Information Processing Systems,2007.217-224
    [97]Cristianini N,Shawe-Taylor J.An introduction to support Vector Machines:and other kernelbased learning methods.Cambridge Univ Pr,2000
    [98]Lanckriet G,De Bie T,Cristianini N,et al.A statistical framework for genomic data fusion.Bioinformatics,2004,20(16):2626-2635
    [99]Sch(o丨¨)lkopf B,Smola A.Learning with kernels:Support vector machines,regularization,opti-mization,and beyond,the MIT Press,2002
    [100]Boyd S,Vandenberghe L.Convex optimization.Cambridge university press,2004
    [101]Donoho D.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306
    [102]Candes E,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on information theory,2006,52(2):489-509
    [103]Fan J,Li R.Variable selection via nonconcave penalized likelihood and its oracle properties.Journal of the American Statistical Association,2001,96(456):1348-1360
    [104]Zou H.The adaptive lasso and its oracle properties.Journal of the American Statistical Association,2006,101(476):1418-1429
    [105]Koh K,Kim S,Boyd S.An interior-point method for large-scale 1 1-regularized logistic regression.Journal of Machine learning research,2007,8:1519-1555
    [106]唐孝威,陈宜张,胡汛等.分子影像学导论.浙江大学出版社,2005
    [107]Ntziachristos V,Tung C,Bremer C,et al.Fluorescence molecular tomography resolves protease activity in vivo.Nature Medicine,2002,8(7):757-761
    [108]Ntziachristos V,Weissleder R.Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media.Medical Physics,2002,29(5):803-9
    [109]Kall L,Canterbury J D,Weston J,et al.Semi-supervised learning for peptide identification from shotgun proteomics datasets.Nat Methods,2007,4(11):923-5
    [110]Chapelle O,Sch(o丨¨)lkopf B,Zien A.Semi-supervised learning.MIT press,2006
    [111]Zhu X.Semi-supervised learning with graphs:[PhD Thesis].Carnegie Mellon University,2005
    [112]Mika S,R(a丨¨)tsch G,M(u丨¨)ller K R.A mathematical programming approach to the kernel fisher algorithm.Proceedings of Advances in neural information processing systems,2001.591-597
    [113]Shawe-Taylor J,Cristianini N.Kernel methods for pattern analysis.Cambridge Univ Pr,2004
    [114]Smola A,Kondor R.Kernels and regularization on graphs.Proceedings of the Annual Conference on Computational Learning Theory,2003.144-158
    [115]Chapelle O,Weston J,Sch(o丨¨)lkopf B.Cluster Kernels for Semi-Supervised Learning.Proceedings of Advances in Neural Information Processing Systems.MIT Press,2003.585-592
    [116]边肇祺,张学工等.模式识别(第二版).清华大学出版社,2000
    [117]Shawe-Taylor J,Cristianini N.Kernel methods for pattern analysis.Cambridge University Press,2004
    [118]Kim S,Magnani A,Boyd S.Optimal kernel selection in kernel fisher discriminant analysis.Proceedings of the 23rd International Conference on Machine Learning.ACM New York,NY,USA,2006.465-472
    [119]Sturm J F.Using SeDuMi 1.02,a MATLAB toolbox for optimization over symmetric cones.Optimization methods and software,1999,11(1):625-653
    [120]Saadi K,Talbot N,Cawley G.Optimally regularised kernel Fisher discriminant analysis.Proceedings of the 17th International Conference on Pattern Recognition(ICPR),2004.427-430
    [121]Yao L,Rzhetsky A.Quantitative systems-level determinants of human genes targeted by successful drugs.Genome Res,2008,18(2):206-213
    [122]Li Q,Lai L.Prediction of potential drug targets based on simple sequence properties.BMC Bioinformatics,2007,8:353
    [123]Manly C,Louise-May S,Hammer J.The impact of informatics and computational chemistry on synthesis and screening.Drug discovery today,2001,6(21):1101-1110
    [124] Byvatov E, Fechner U, Sadowski J, et al. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci, 2003, 43(6): 1882-1889
    
    [125] Shoichet B K, McGovem S L, Wei B, et al. Lead discovery using molecular docking. Curr Opin Chem Biol, 2002, 6(4):439-446
    
    [126] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006,7:2399-2434
    
    [127] Hattori M, Okuno Y, Goto S, et al. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc, 2003,125(39): 11853-65
    
    [128] Smith T F, Waterman M S. Identification of common molecular subsequences. J Mol Biol, 1981, 147(1):195-7
    
    [129] Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res, 2006, 34(Database issue):D354-7
    
    [130] Chapelle O, Scholkopf B, Zien A. Semi-supervised learning. MIT press, 2006
    [131] Scholkopf B, Smola A J. Learning with kernels. MIT press Cambridge, Mass, 2002
    
    [132] Sing T, Sander O, Beerenwinkel N, et al. ROCR: visualizing classifier performance in R. Bioin- formatics, 2005,21(20):3940-3941
    
    [133] Wishart D, Knox C, Guo A, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 2006,34(Database Issue):D668-72
    
    [134] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B, 2006,68(1):49-67
    
    [135] Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics, 2008,24(9): 1175-82
    
    [136] Efron B, Hastie T, Johnstone I, et al. Least angle regression. Annals of Statistics, 2004,32(2):407- 451
    
    [137] Tibshirani R, Saunders M, Rosset S, et al. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2005, 67:91-108
    
    [138] Wei Z, Li H. A Markov random field model for network-based analysis of genomic data. Bioin- formatics, 2007,23(12): 1537-44
    
    [139] Wei P, Pan W. Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model. Bioinformatics, 2008,24(3):404-11
    
    [140] Pan W, Xie B, Shen X. Incorporating predictor network in penalized regression with application to microarray data. Biometrics,To appear, 2009.
    
    [141] Zhao P, Yu B. Boosted Lasso. Technical report, Journal of Machine Learning Research, 2004
    [142] Fu H Y, Ng M K, Nikolova M, et al. Efficient minimization methods of mixed 12-11 and 11-11 norms for image restoration. Siam Journal on Scientific Computing, 2006,27(6): 1881-1902
    [143] Jensen L J, Kuhn M, Stark M, et al. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res, 2009, 37(Database issue):D412-6
    [144] Rosset S, Zhu J. Piecewise linear regularized solution paths. Annals of Statistics, 2007, 35(3):1012-1030
    [145] 郭峰,张振馨. 痴呆的流行病学研究现状. 中华神经科杂志,2007,40(5)
    [146] Blalock E M, Geddes J W, Chen K C, et al. Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA, 2004,101(7):2173-8
    
    [147] Nacu S, Critchley-Thorne R, Lee P, et al. Gene expression network analysis and applications to immunology. Bioinformatics, 2007, 23(7):850-8
    [148] Rouaux C, Loeffler J P, Boutillier A L. Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders. Biochem Pharmacol, 2004, 68(6):1157—64
    [149] Orellana D I, Quintanilla R A, Gonzalez-Billault C, et al. Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons. Neurotox Res, 2005, 8(3-4):295-304
    [150] Dou F, Netzer W J, Tanemura K, et al. Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci U S A, 2003, 100(2):721-6
    [151] Zhu X, Rottkamp C A, Raina A K, et al. Neuronal CDK7 in hippocampus is related to aging and Alzheimer disease. Neurobiol Aging, 2000, 21(6):807-13
    
    [152] Huang da W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009,4(1):44-57
    [153] Varvel N H, Bhaskar K, Patil A R, et al. Abeta oligomers induce neuronal cell cycle events in Alzheimer's disease. J Neurosci, 2008, 28(43): 10786-93
    [154] Wu T T, Lange K. Coordinate Descent Algorithms for Lasso Penalized Regression. Annals of Applied Statistics, 2008, 2(1):224-244
    [155] Grimm J, Kirsch D G, Windsor S D, et al. Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc Natl Acad Sci U S A, 2005, 102(40): 14404-14409
    [156] Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999, 212(3):609-614
    [157] Ntziachristos V, Tung C H, Bremer C, et al. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med, 2002, 8(7):757-760
    [158] Tung C H, Mahmood U, Bredow S, et al. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res, 2000, 60(17):4953-4958
    [159] Ntziachristos V, Bremer C, Graves E E, et al. In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging, 2002, 1(2):82-88
    [160] Ntziachristos V, Ripoll J, Wang L V, et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol, 2005,23(3):313-320
    [161] Maes F, Vandermeulen D, Suetens P. Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Med Image Anal, 1999, 3(4):373-386
    [162] Graves E E, Ripoll J, Weissleder R, et al. A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med Phys, 2003,30(5):901—11
    [163] McLaughlin R A, Hipwell J, Penney G P, et al. Intensity-based registration versus feature-based registration for neurointerventions. Proc. Med. Image. Understanding Analysis, 2001.
    [164] Besl P, McKay H. A method for registration of 3-D shapes. IEEE Transactions on pattern analysis and machine intelligence, 1992,14(2):239-256
    [165] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm. Proceedings of Third International Conference on 3-D Digital Imaging and Modeling, 2001. 145-152
    [166] Xu C, Prince J L. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process, 1998, 7(3):359-69
    [167] Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International journal of computer vision, 1988,1(4):321—331
    [168] Otsu N. A Threshold Selection Method from Gray-Level Histograms. Automatica, 1975,11:285-296
    [169] Zhou X, Wang X, R. Dougherty E. A Bayesian approach to nonlinear probit gene selection and classification. Journal of the Franklin Institute, 2004,341(1-2):137-156
    [170] Wang Y, Zhou X, Wang H, et al. Reversible jump MCMC approach for peak identification for stroke SELDI mass Spectrometry using mixture model. Bioinformatics, 2008,24( 13):i407—i413
    [171] Isard M, Blake A. Condensation-conditional density propagation for visual tracking. International journal of computer vision, 1998,29(1):5—28
    [172] Moghari M H, Abolmaesumi P. A novel incremental technique for ultrasound to CT bone surface registration using unscented Kalman filtering. Proceedings of MICCAI(2), 2005. 197-204
    [173] Friedman J, Bentley J, Finkel R. An algorithm for finding best matches in logarithmic expected time. ACM transactions on mathematical software, 1977, 3(3):209-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700