燃气轮机及燃气—蒸汽联合循环在部分工况下的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪火电站发展要求有较高的能源利用效率,较好的经济性并且具有良好的环保性能,即达到能源(Energy)、经济(Economy)、环境(Environment)三者结合(3E),这一要求动摇了目前世界火电站汽轮机长期占统治地位的局面。燃气轮机及其联合循环以比投资费用低、建设周期短、供电效率高、排放污染小的明显优势,将逐步取代传统的汽轮机电站。通过建立联合循环系统的动态模型以预测其特性并优化其运行策略,已成为基础研究和工程应用两方面都很迫切的现实需要。
     由于压气机的特性严重依赖于转速,在燃气轮机及其联合循环各主要部件中压气机的特性计算最为困难也最为关键,压气机特性图计算的准确性对燃气轮机整机计算的可靠性具有重要影响,现代重型燃气轮机及其联合循环系统高压比、高精度的计算要求对基于部件特性的系统仿真提出严峻挑战,迫切需要改进压气机特性外推计算方法,建立适合大幅度变工况的燃气轮机及其联合循环仿真系统,并研究其运行策略已成为一个有重要意义的课题。本课题的研究网标就是寻找能够由有限的压气机高转速特性线定量计算定几何多级轴流式压气机在大幅度变工况下特性的计算方法,最终建成一套由模块化部件构成的能适应大幅度变工况特性计算的燃气轮机及其联合循环动态仿真模型;对燃气轮机及其联合循环系统的运行策略进行动态仿真研究,确定各阶段机组的运行策略。
     本文主要研究内容和研究成果如下:
     1.提出特征级方法估算压气机部分工况特性。
     由于压气机压比通常较大,压气机部分工况下进出口流量系数不匹配,与设计工况下的叶栅气流角差异较大,直接相似外推压气机特性时不满足相似条件,外推误差很大。通过讨论工质可压缩性对压气机效率的影响引入特征级的概念,将压气机的压缩过程分解为若干个串联的低压比特征级,可以利用相似外推方法计算完整的特征级特性图,由特征级特性图逐级计算重构出完整的压气机特性图。特征级代表对原压气机压缩过程的虚拟分解,而不考虑实际压气机各级压比分配和各级间的特性关系,物理意义在于它表征了压气机整体特性的平均级特性,只要分解级数足够多,在部分工况特性计算时可以充分逼近相似条件。采用单纯形最优化方法,以重构出压气机特性图与原压气机特性线误差最小为目标函数,由已知的有限的压气机高转速特性线确定多级轴流式压气机特征级特性。
     2.用SVM方法回归压气机特征级特性
     用支持向量机(SVM)回归算法,对由压气机多条转速特性线计算所得的不同特征级特性线进行回归分析,得到统一的特征级特性线,能够充分利用已有的数据,并且采用压气机的自身特性计算,可以充分体现压气机自身特性,进一步降低了重构后整机特性图的误差。
     3.外推部分工况特征级特性,并提出变几何级特性计算方法
     将参考转速下的特征级特性外推得到完整的特征级特性图,提出了轴流式压气机非设计工况特性换算方法,并对对相似系数的修正进行了讨论。燃气轮机部分工况特性计算问题除低速特性线的获取问题外,还面临转静叶时特性图的获取问题,利用轮周功与进出口气流角的关系,推算出特性图中转动叶片前后对应的相似点,从而解决转导叶转静叶的特性计算问题。
     4.建立燃气轮机动态仿真模型并对其进行部分工况运行的策略分析
     基于部件特性,采用模块化建模方法建立了压气机静叶可调的单轴变几何燃气轮机动态仿真系统,并进行了燃气轮机在启动、加载、减载、停机等变工况特性分析。结果表明,变几何调节后燃气和排气温度都高,排热损失的增大抵消了T_3~*增加对效率的提高。但在低负荷下,关小静叶可减少空气流量,减少机组的空载燃料耗量。启动过程中T_4~*有一峰值,在此过程中T_3~*温度也是先升后降且有一个峰值,在点火之后到脱扣之前应限制燃料供给量随转速升高的增量,控制机组启动速度,避免超温。
     5.建立燃气轮机联合循环仿真系统并对其进行部分工况运行策略分析
     建立了包括自然循环余热锅炉的燃气轮机联合循环仿真系统,并对余热锅炉的动态特性进行了分析,仿真结果指出,在燃机和汽机工况变化剧烈的条件下,汽包会出现明显的虚假水位现象,在实际运行管理中应引起重视。分析了联合循环系统在启动、加载、减载、停机等变工况下的运行策略。在负荷下降时,采取等T_4方案调节压气机可调静叶较好,它既能达到等T_3调节时的联合循环效率η_(CC)~N,又能在降低负荷时满足燃气温度不超温,并避免余热锅炉在超温下工作。由于启动过程中主要时间用于余热锅炉暖炉,余热锅炉的热惯性对启动速度影响最大,因此应尽可能采用热态启动的方式来减少启动时间。
     本文研究工作得到了国际合作项目[200310]和国家自然科学基金项目[5997022]的支持。
In the 21 century,the development of power station required of high efficiency,good economics,low pollution,that's to say,to combine the energy,economic,environment together. This requirement broke down the long time governing status of steam turbine in the world power generation,and gas turbine and its combined cycle will replace it,because of their advantage of low cost rate,short building time,high efficiency,low pollution.So it is very necessary to predict the characteristics of the combined cycle system and optimize its operating strategy by developing a simulation system.
     The most troublesome part in developing component based gas turbine simulation system is the performance characteristics estimation of the compressors at low rotational speed, due to the strong dependency of its performance on rotational speed and variable geometry. Thus the accuracy of compressor characteristic calculation is the critical factor in gas turbine system simulation.
     The high pressure and high accuracy calculation requirement of modern heavy duty gas turbine and its combined cycle system has resulted in acid challenge on modeling and simulation based on components characteristic,which request improve the compressor characteristic extrapolate computational method.Consequently,developing a wide margin varying duty gas turbine and its combined cycle simulation system then to study its operation stratagem become an significance task.The aim of this study is to research compressor characteristic extrapolate estimation method based on limited compressor high rotational speed lines to quantitative analysis compressor characteristic at wide margin varying duty,then develop a wide margin varying duty gas turbine and its combined cycle dynamic simulation system.Furthermore,study the characteristic at various work condition and to determine its corresponding operation stratagem.
     Main contents and conclusions of the research are described in the following:
     1.Introduce feature-stage method to compressor part load characteristic
     The inlet and outlet flow coefficient of compressor are mismatch in part load,and the gas flow angle deviate from designed flow angle,due to the high pressure ratio of compressor. Thus,the analogy theory is not appropriate to extrapolate the characteristic map for compressors directly.Based on the discussion of the compressibility of work medium effect on compressor efficiency,the feature-stage is introduced.With the idea of dividing the compression process into infinite number of infinitesimal processes,the feature-stage characteristics are determined based on analogy theory and system identification method,and the total characteristic of compressor can be calculated stage by stage based on the characteristic of feature-stage.The feature-stage present theoretical dividing of the compressor compression process,but unnecessary to consider the pressure ratio distribution and stage characteristic relation.The physical meaning of feature-stage is it presents the average stage feature of total compressor.The similarity condition can be approach while the number of feature-stage is big enough.
     2.Regress compressor feature-stage characteristic based SVM
     Based SVM(SVM)regression method,the global feature-stage characteristic line is regressed from multiple feature-stage characteristic lines identified from different compressor rotational speed lines.Instead of statistic the characteristics of any other compressors, this method can reflect the own characteristics of the original compressor accurately.Since the stage characteristics are estimated from multi-curves of the compressor characteristic maps,this method can make a good use of available information. Furthermore,SVM method decreases the error of compressor reconstruction characteristic map.
     3.Extrapolate part load characteristic of feature-stage,and study variable geometry characteristic calculation method
     Based on the feature-stage characteristic at referenced rotational speed,the overall performance characteristic map of compressor is reconstructed by analogy theory.Beside the part load performance characteristic estimation problem,the variable stationary vane performance characteristic estimation is a critical problem in gas turbine performance estimation.Based on the interdependence between the blade work and the blade flow angle,the relationship of the feature-stage pressure ratio and efficiency characteristic between fix and variable geometry are derivate.
     4.Develop gas turbine simulation model and analysis its part load operation strategy Based on component characteristic,a single shaft gas turbine simulation system with VSV compressor is developed,and analysis its performance during start up,loading, decreasing load and shutdown.Simulation test show that,the gas temperature and exhaust temperature are both increased after adjust VSVs,thus the increasing waste heat losses counteract the high T_3~* effect on efficiency.But at part load,the gas flow rate decrease after closing VSVs,which reduce idle fuel.During start up,there are a peak of T_4~* and T_3~*.So,the increment of fuel corresponding rotational speed incensement must be restricted during ignition and trip to control starting speed and to avoid over temperature.
     5.Develop gas turbine combined cycle simulation system and analysis its part load operation strategy
     A gas turbine combined cycle with natural cycle HRSG simulation system is developed and dynamical analysis.Simulation test show that,operating condition drastic variation of gas turbine and steam turbine lead to false drum water level,which should be paid attention to in exercise management,analysis of start up,loading,decreasing load and shutdown performance show that,constant T_4 adjust scheme is beneficial than constant T_3~* adjust scheme to control compressor VSVs angle while decreasing load. Which can attain high combined cycle efficiencyη_(CC)~N as constant T_3 adjust scheme and avoid turbine over temperature during decreasing load,then avoid HRSG over temperature. The HRSG thermal inertia is the most important influencing factor on starting speed,due to most of the startup process is spend on heating HRSG.Consequently,it should adopt warm start to decrease start period as far as possible.
引文
[1]焦树建。燃气-蒸汽联合循环.机械工业出版社,北京,2000。
    [2]焦树建。燃气轮机与燃气蒸汽联合循环装置.中国电力出版社,北京,2007.
    [3]吕崇德.大型火电机组系统仿真与建模.清华大学出版社,北京,2002.9.
    [4]倪维斗.燃气-蒸汽联合循环的可视化仿真.清华大学学报(自然科学版),(03),1999.
    [5]苏明.汽轮机系统仿真中一种容积环节仿真模型及其解.动力工程,18(2):75-78,1998.
    [6]苏明,陈德来.一种燃气轮机模块化非线性仿真模型.热能动力工程,13(006):435-437,1998.
    [7]谢志武,苏明.燃气轮机系统仿真集成概念及其分布对象实现.航空动力学报,15(3):307-310,2000.
    [8]刘永文,张会生,苏明.舰船柴油机的模块化建模与仿真.船舶工程,(001):14-17,2002.
    [9]谢志武,苏明.可扩展的燃气轮机仿真对象模型.航空动力学报,14(002):143-147,1999.
    [10]崔大龙,黄鹏,李政.核电汽轮机热力系统主导因素建模方法与故障诊断新思路.热力透平,(3):137-142,2003.
    [11]崔大龙,李政,江宁,倪维斗.核电汽轮机热力系统的主导因素变工况建模方法研究.核动力工程,24(6):521-525,2003.
    [12]倪维斗,黄仙.汽轮机转子热应力的在线监控模型.清华大学学报:自然科学版,38(4):102-104.1998.
    [13]渠福来.300MW联合循环机组变工况优化运行研究.浙江大学机械与能源工程学院(硕士学位论文),浙江,2003.
    [14]黄庆宏.汽轮机调节级通用仿真模型.机械制造与自动化,(006):74-76,2001.
    [15]G.Cerri.Parametric analysis of combined gas-steam cycles.J.Eng.Gas Turbines Power,109(1),1987.
    [16]Cz T.Polley K.Sarabchi.Thermodynamical Optimization of A Combined Cycle Plant Performance.J.Eng.Gas Turbines Power,304(1),1994.
    [17]吕泽华,黄志明.三轴燃气轮机变工况小偏差范围内的解析解.燃气轮机技术,8(002):31-38,1995.
    [18]陈华清,张宁,敖晨阳.基于matlab的三轴燃气轮机动态仿真模型研究.热能动力工程,16(05),2001.
    [19]江丽霞.整体煤气化联合循环系统特性及其蒸汽系统综合优化的研究.北京:中国科学院,2000.
    [20]段立强.IGCC系统全工况特性与设计优化以及新系统开拓研究博士学位论文.PhD thesis,2002.
    [21]林汝谋,段立强,金红光,江丽霞,蔡睿贤.整体煤气化联合循环热力系统设计优化研究.燃气轮机技术,17(002):3-11,2004.
    [22]郑莉莉.整体煤气化联合循环燃气侧子系统热力学研究.北京:中国科学院,1999.
    [23]林汝谋,段立强.IGCC发电分系统优化和整体优化的初步研究.“九五”国家科技攻关分专题(97-A26-01-01一02)科研研究报告,2147483647,2000.
    [24]林汝谋,段立强,金红光,邓润亚,邓世敏.IGCC系统全工况设计优化新方法.工程热物理学报,25(004):541-545,2004.
    [25]焦树建.论余热锅炉型联合循环中双压再热式余热锅炉的特性与汽轮机特性的优化匹配问题.燃气轮机技术,4(002):14-23,2001.
    [26]肖云汉,蔡睿贤,林汝谋.联合循环中蒸汽底循环优化设计的方法与模型.工程热物理学报,18(1):1-4,1997.
    [27]邓世敏,林万超.联合循环蒸汽系统参数分析研究.动力工程,18(004):68-73,1998.
    [28]R.K.Agrawal and M.Yunis.A generalized mathematical model to estimate gas turbine starting characteristics.Journal of Engineering for Power,104:194-201,1982.
    [29]T.W.Song,T.S.Kim,J.H.Kim,and S.T.Ro.Performance prediction of axial flow compressors using stage characteristics and simultaneous calculation of interstage parameters.Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,215(1):89-98,2001.
    [30]J.H.Kim,T.S.Kim,and T.W.Song.Comparative analysis of off-design performance characteristics of single and two-shaft industrial gas turbines.Journal of Engineering for Gas Turbines and Power,125:954-960,2003.
    [31]J.H.Kim,T.W.Song,and T.S.Kim.Model development and simulation of transient behavior heavy duty gas turbines.Journal of Engineering for Gas Turbines and Power,123(3):589-594,2001.
    [32]J.H.Kim,T.W.Song,and T.S.Kim.Dynamic simulation of full startup procedure of heavy-duty gas turbines.Journal of Engineering for Gas Turbines and Power,124:510-516,2002.
    [33]W.H.Robbins and J.F.Dugan.Prediction of off-design performance of multi-stage compressors.NASA SP-36,pages 297-310,1965.
    [34]A.Stone.Effects of stage characteristics and matching on axial-flow-compressor performance.Trans.ASME,80:1273-1293,1958.
    [35]D.E.Muir,H.I.H.Saravanamuttoo,and D.J.Marshall.Health monitoring of variable geometry gas turbines for the canadian navy.TRANS.ASME J.ENG.GAS TURBINES POWER.,111(2):244-250,1989.
    [36]A.R.Howell and R.E Bonham.Overall and stage characteristics of axial flow compressors.Journal of Mechanical Engineering,163(1):235-248,1950.
    [37]C.Kong,S.Kho,and J.Ki.Component map generation of a gas turbine using genetic algorithms.Journal of Engineering for Gas Turbines and Power,128:92-96,2006.
    [38]C.Kong,J.Ki,and M.Kang.A new scaling method for component maps of gas turbine using system identification.Journal of Engineering for Gas Turbines and Power,125:979-985,2003.
    [39]聂加耶夫.航空燃气涡轮发动机原理.国防工业出版社,北京,1984.
    [40]M.A.Chappell and E W.McLaughlin.Approach to modeling continuous turbine engine operation from startup to shutdown.AIAA 91-2373,9(3):466-471,1993.
    [41]W.R.Sexton.A METHOD TO CONTROL TURBOFAN ENGINE STARTING BY VARYING COMPRESSOR SURGE VALVE BLEED.PhD thesis,2001.
    [42]王占学,乔渭阳,李文兰.基于部件匹配技术的涡扇发动机起动过程数值模拟.航空动力学报,19(004):444-448,2004.
    [43]陈玉春,王菊金.涡扇发动机炮式起动数学模型及起动特性研究.航空学报,23(006):568-570,2002.
    [44]乔洪信,夏爱国,杨立.某型航空发动机高原使用起动供油量调整研究.航空动力学报,18(004):534-537,2003.
    [45]黄家骅,冯国泰,牛军,于达仁.涡轮效率改变对发动机加速特性的影响.推进技术,24(004):368-372,2003.
    [46]王建波.基于rbf网络的火箭发动机动态过程建模.推进技术,20(4),1999.
    [47]姜涛.基于动态rbf网络的发动机起动过程模型辨识.航空动力学报,17(003):381-384,2002.
    [48]刘建勋,王剑影,李应红,宋志平.某型发动机起动模型的支持向量机辨识及应用.推进技术,25(005):401-404,2004.
    [49]赵春光.军用涡喷涡扇发动机低温起动试验的优化.燃气涡轮试验与研究,(01),2002.
    [50]李文峰,王永生,雷震,罗华军.某涡扇发动机高原起动试验研究.航空动力学报,18(005):599-603,2003.
    [51]郭昕,杨志军.航空发动机高,低温起动及高原起动试验技术探讨.航空动力学报,18(003):327-330,2003.
    [52]刘昆,张育林.考虑入口和出口容积效应的涡轮动力学模型.国防科技大学学报,23(3):9-11,2001.
    [53]翁史烈.燃气轮机性能分析.上海交通大学出版社,上海,1987.
    [54]J.H.Kim,T.S.Kim,J.S.Lee,and S.T.Ro.Performance analysis of a turbine stage having cooled nozzle blades with trailing edge ejection.ASME Paper 96-TA-12,pages 1-8,1996.
    [55]T.S.Kim and S.H.Hwang.Part load performance analysis of recuperated gas turbines considering engine configuration and operation strategy.Energy,31(2-3):260-277,2006.
    [56]T.S.Kim and S.T.Ro.Comparative evaluation of the effect of turbine configuration on the performance of heavy-duty gas turbines.ASME Paper 95-GT-334,page 8,1995.
    [57]M.S.Johnson.Prediction of gas turbine on-and off-design performance when firing coal-derived syngas.Journal of Engineering for Gas Turbines and Power,114(4):380-385,1992.
    [58]Bruno Facchini Nicola Bettagli.Off-Design Performance of Multipressure Heat Recovery Boilers.Journal of Engineering for Gas Turbines and Power,154(4):1-7,1995.
    [59]T.Korakianitis and K.Svensson.Off-Design Performance of Various Gas-Turbine Cycle and Shaft Configurations.Journal of Engineerig for Gas Turbinrd and Power 121:649,1999.
    [60]江丽霞,林汝谋.IGCC中燃气轮机全工况网络特性.工程热物理学报,21(006):669-672,2000.
    [61]赵志立.叶轮式流体设备.重庆大学出版社,重庆,1997.
    [62]B.E.Boser,I.M.Guyon,and V.N.Vapnik.A training algorithm for optimal margin classifiers.Proceedings of the fifth annual workshop on Computational learning theory,pages 144-152,1992.
    [63]B.Sch61kopf,C.J.C.Burges,and A.J.Smola.Advances in Kernel Methods:Support Vector Learning.MIT Press,1999.
    [64]邓乃杨,田英杰.数据挖掘中的新方法—支持向量机.科技出版社,北京,2004.
    [65]Vladimir N.Vapnik.Statistical Learning Theory.John Wiley & Sons,Inc.,1998.
    [66]Vladimir N.Vapnik.The Nature of Statistical Learning Theory.Springer-Verlag,1999.
    [67]B.E.Boser,I.M.Guyon,and V.N.Vapnik.A training algorithm for optimal margin classifiers.In Proceedings of the 5th Annual ACM Workshop on computational Learning Theory,pages 144-152,D.Haussler,1992.
    [68]Nello Cristianini and John Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods.The Syndicate of the Press of the University of Cambridge,England,2000.
    [69]H.I.H.Saravanamuttoo and B.D.MacIsaac.Thermodynamic models for pipeline gas turbine diagnostics.105:875-884,1983.
    [70]马文通,余南华,苏明.轴流式压气机特性线外推方法.机械工程学报,42(10):138-141,2006.10.
    [71]Joachim Kurzke.Noise development and design of bypass lift jet engines.ZUR LAERMENTWICKLUNG UND AUSLEGUNG VON BYPASS-HUBTRIEBWERKEN.,21(10):337-345,1973.
    [72]Joachim Kurzke.Advanced user-friendly gas turbine performance calculations on a personal computer.In Anon,editor,American Society of Mechanical Engineers(Paper),Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition,page 8,Houston,TX,USA,1995.ASME.
    [73]Joachim Kurzke.How to get component maps for aircraft gas turbine performance calculations.In American Society of Mechanical Engineers(Paper),Proceedings of the 1996 International Gas Turbine and Aeroengine Congress & Exhibition,Burmingham,UK,1996.ASME.
    [74]Joachim Kurzke.Some applications of the monte carlo method to gas turbine performance simulations.In American Society of Mechanical Engineers(Paper),Proceedings of the 1997 International Gas Turbine & Aeroengine Congress & Exposition,Orlando,FL,USA,1997.ASME.
    [75]Joachim Kurzke.Gas turbine cycle design methodology:A comparison of parameter variation with numerical optimization.In Anon,editor,American Society of Mechanical Engineers(Paper),Proceedings of the 1998 International Gas Turbine & Aeroengine Congress & Exhibition,Stockholm,Sweden,1998.ASME.
    [76]J.Kurzke.Performance modeling methodology:Efficiency definitions for cooled single and multistage turbines.In American Society of Mechanical Engineers,International Gas Turbine Institute,Turbo Expo(Publication)IGTI,volume 1 of Proceedings of the ASME Turbo Expo 2002;Aircraft Engine,Coal,Biomass and Alternative Fuels,Combustion and Fuels,Education,Electric Power,Vehicular and Small Turbomachines,pages 85-92,Amsterdam,2002.
    [77]J.Kurzke.Model based gas turbine parameter corrections.In American Society of Mechanical Engineers,International Gas Turbine Institute,Turbo Expo(Publication)IGTI,volume 1 of 2003ASME Turbo Expo,pages 91-99,Atlanta,GA,2003.
    [78]J.Kurzke.How to create a performance model of a gas turbine from a limited amount of information.In Proceedings of the ASME Turbo Expo,volume 1 of ASME Turbo Expo 200—Gas Turbie Technology:Focus for the Future,pages 145-153,Reno-Tahoe,NV,2005.
    [79]秦鹏.轴流式压气机气动设计.国防工业出版社,北京,1975.
    [80]李超俊,余文龙.轴流压缩机原理与气动设计.机械工业出版社,重庆,1987.
    [81]芶建兵.余热锅炉可视化模块建模研究.清华大学学报(自然科学版),3,1999.
    [82]裘浔隽,杨瑜文.余热锅炉的动态数学模型及数字仿真.动力工程,6,2002.
    [83]A.J.Fawke and H.I.H Saravanamuttoo.Digital computer simulation of the dynamic response of a twin-spool turbofan with mixed exhausts.Aeronautical Journal,1973.
    [84]Robert L.Behnken,Raffaello D'Andrea,and Richard M.Murray.Control of rotating stall in a lowspeed axial flow compressor using pulsed air injection:modeling,simulations,and experimental validation.In Proceedings of the IEEE Conference on Decision and Control,volume 3 of Proceedings of the 1995 34th IEEE Conference on Decision and Control.Part 1(of 4),pages 3056-3061,New Orleans,LA,USA,1995.IEEE.
    [85]M.Cetin,A.S.Uecer,C.H.Hirsch,and G.K.Serovy.Application of modified loss and deviation correlations to transonic axial compressors.1987.
    [86]H.F.Creveling and R.H.Carmody.Axial flow compressor computer program for calculating off-design performance(program ⅳ).NASA Contract Report CR-72427,1968.
    [87]D.E.Culley,M.M.Bright,R S.Prahst,and A.J.Strazisar.Active flow separation control of a stator vane using embedded injection in a multistage compressor experiment.Journal of Turbomachinery,126:24,2004.
    [88]B.de Jager.Rotating stall and surge control:a survey.Decision and Control 1995,Proceedings of the 34th IEEE Conference on,2,1995.
    [89]J.C.Emery,L.J.Herrig,J.R.Erwin,and A.R.Felix.Systematic two-dimensional cascade tests of naca 65-series compressor blades at low speeds.NACA TR 1368,1958.
    [90]M.W.French.Development of a compact real-time turbofan engine dynamic simulation.SAE-821401,1982.
    [91]C.C.Koch and L.H.Smith.Loss sources and magnitudes in axial-flow compressors.Journal of Engineering for Power,98(2):411-416,1976.
    [92]J.Kurzke and C.Riegler.A new compressor map scaling procedure for preliminary conceptional design of gas turbines.In ASME TURBO EXPO 2000,Munich,Germany,2000.
    [93]B.A.Leishman,N.A.Cumpsty,and J.D.Denton.Effects of bleed rate and endwall location on the aerodynamic behaviour of a circular hole bleed off-take.In Proceedings of the ASME Turbo Expo 2004,volume 5 A of 2004 ASME Turbo Expo,pages 631-643,Vienna,2004.
    [94]C.A.Mansoux,D.L.Gysling,J.D.Setiawan,and J.D.Paduano.Distributed nonlinear modeling and stability analysis of axial compressor stall and surge.1994 American Control Conference,13th,Baltimore,MD,Proceedings.,2:2305-2316,1994.
    [95]Yu.Nanhua,Su.Ming,and Ma.Wentong.Application of adaptive grey predictor based algorithm to boiler drams level control.Energy Conversion and Management,47(18-19):2999-3007,2006.10.SCI收录:074PI;EI收录:062910012478.
    [96]D.M.Paulus Jr,R.A.Gaggioli,and W.R.Dunbar.Entropy production as a predictive performance measure for turbomachinery.Journal of Engineering for Gas Turbines and Power,123:17-21,2001.
    [97]Willard R,Westphal,William R,and Godwin.Comparison of naca 65-series compressor-blade pressure distributions and perform in a rotor and in cascade.NACA TR 3806,1957.
    [98]Hans Rick and Joachim Kurzke.On the off-design operation of bypass-engines with variable nozzles and turbines.ZUM BETRIEBSVERHALTEN VON VERBUND-ZWEISTROM-TURBOLUFTSTRAHLTRIEBWERKEN MIT VERSTELLBAREN DUESEN UND TURBINEN.,24(5):268-275,1976.
    [99]C.Riegler,M.Bauer,and J.Kurzke.Some aspects of modeling compressor behavior in gas turbine performance calculations.Journal of Turbomachinery,123:372,2001.
    [100]J.F.Sellers and C.J.Daniele.A program for calculating steady-state and transient performance of turbojet and turbofan engines.NASA TN D-7901,1975.
    [101]S.Shaaban,J.Seume,R.Bemdt,H.Pucher,and H.J.Linnhoff.Part-load performance prediction of turbocharged engines.In 8th International Conference on Turbochargers and Turbocharging,8th International Conference on Turbochargers and Turbocharging,pages 131-144,London,2006.
    [102]A.J.Volponi.Gas turbine parameter corrections.Journal of Engineering for Gas Turbines and Power,121(4):613-621,1999.
    [103]Ma.Wentong,Liu.Yongwen,and Su.Ming.Multi-stage axial flow compressors characteristics estimation based on system identification.Energy Conversion and Management,2007.08.
    [104]Ma.Wentong,Liu.Yongwen,and Su.Ming.A new scaling method for compressor maps using average infinitesimal stage.Chinese Journal of Mechanical Engineering,2007.12.
    [105]常建忠,丰镇平.大负冲角下叶栅二次流特性的可视化实验研究.西安交通大学学报,32(003):68-71,1998.
    [106]陈矛章.风扇/压气机技术发展和对今后工作的建议.航空动力学报,17(1),2002.
    [107]黄开明,周剑波,刘杰,黄金泉,成本林.涡轴发动机起动过程的一种气动热力学实时模型.航空动力学报,19(005):703-707,2004.
    [108]冷步里,朱鸿义.模拟单转子发动机起动性能的计算模型.燃气涡轮试验与研究,12(001):25-29,1999.
    [109]李根深,陈乃兴,强国芳.船用燃气轮机轴流式叶轮机械气动热力学.国防工业出版社,1980.
    [110]李景银,王文坚.计算多级轴流压气机阻塞系数和减功系数的新方法.应用力学学报,16(003):84-88,1999.
    [111]刘红军,张恩昭.补燃循环发动机启动特性仿真研究.推进技术,20(003):5-9,1999.
    [112]马文通,刘永文,苏明.基于平均微元级特性的压气机特性线外推方法.动力工程,27(3):323-326,2007.06.
    [113]马文通,刘永文,苏明.多级轴流压气机平均基元级特性获取方法.上海交通大学学报,2007.12.
    [114]马文通,苏明.变几何多级轴流式压气机特性估算.中国电机工程学报,2007.12.
    [115]马文通,王岳人.自然循环余热锅炉的动态建模与仿真研究.系统仿真学报,19(17):4055-4060,2007.09.
    [116]马文通,余南华.基于部件间容积法的自然循环余热锅炉蒸发器动态仿真.锅炉技术,待审,2006.
    [117]马文通,余南华.容积法建模应用于单相流体网络的动态仿真.制冷与空调,6(5):20-22,2006.10.
    [118]马文通,余南华.汽包水位的一种快速动态简化模型.锅炉技术,38(3):4-6,2007.05.
    [119]马文通,余南华,苏明.一种实时快速热力系统仿真方法的研究.计算机仿真,23(7):87-89,2006.07.
    [120]马文通,余南华,苏明.燃气轮机启动过程研究综述与展望.热力发电,35(8):8-11,2006.08.
    [121]马文通,余南华,苏明.热力系统仿真中部件间容积简化方法研究.计算机仿真,23(8):215-217.2006.08.
    [122]牛军,于达仁,冯国泰.弹用涡喷发动机全工况闭环仿真平台.航空动力学报,18(005):709-712.2003.
    [123]彭泽琰and刘刚.航空燃气轮机原理.国防工业出版社,北京,2000.09.
    [124]屠秋野.涡扇发动机起动模型及起动控制规律的研究.推进技术,20(2),1999.
    [125]谢志武,陈德来.面向对象的燃气轮机仿真建模:综述与展望.热能动力工程,13(4):243-246,1998.
    [126]于军.弹用涡喷发动机飞行试验启动加速性能仿真.推进技术,(06),2001.
    [127]余南华,刘永文,张会生,马文通.余热锅炉汽包水位波动的不确定性成分研究.中国电机工程学报,25(7):18-23,2005.04.EI收录:05239147293.
    [128]余南华,马文通,王岳人.汽包水位多传感器测量中信号差异的研究.化工自动化及仪表,35(5):50-53,2005.05.EI收录:05479497680.
    [129]余南华,马文通,王岳人.消除汽包水位多传感器信号差异的方法.沈阳建筑大学学报(自然科学版),22(1):141-144,2006.01.EI收录:06219897237.
    [130]余南华,马文通,张会生.基于分形测度的软切换控制仿真研究.系统仿真学报,18(1):185-187,2006.01.EI收录:06099733508.
    [131]袁宁,刘振德,于守志.亚声s型进气道模型吹风试验特性的研究换.推进技术,23(1),2002.
    [132]张文渊.零流量工况下叶片泵装置工作过程分析.农机化研究(3):79-81,1999.08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700