滇西保山核桃坪铅锌矿区F_1断裂构造变形及成矿关系解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇西保山核桃坪铅锌矿区位于保山—镇康地块北部保山—施甸复背斜与北西向澜沧江深大构造—变质带交汇处的核桃坪复式背斜北东倾伏端,处于保山、兰坪—思茅、昌宁—孟连三个微板块的汇聚地带而偏向保山地块一侧。F1断裂带是区内铅锌矿床的主要控矿构造,V1主矿体沿断裂走向分布,各种构造变形现象较为丰富。本论文主要立足现今Fl断裂展布的基本面貌及其构造地质特征,从构造岩及蚀变矿物晶内变形显微构造、流体包裹体迹面(FIP)特征分析入手,借助矿物微区分析和显微构造分析技术,从不同角度精细剖析构造成生发展中流体活动留下的显微构造特征,系统地研究矿床各成矿期(阶段)构造流体特征及其相互作用,确定F1断裂的时空演化序次,分析其发生、发展及演化过程,探讨断裂构造的控矿作用及构造对流体运移的影响。论文主要取得以下研究成果与认识:
     (1)本文首先从F1断裂宏观结构面力学性质入手,分析其构造型式、规模、力学性质,结果表明,F1断裂为一逆冲断层,先后至少发生了三期构造活动,经历了右行压扭性→左行扭压性→扭性的力学性质转变。
     (2)宏观构造变形,以围岩的透入性面理,非透入性的张、剪性节理以及受构造挤压形成的小褶皱等为主。
     (3)显微构造变形,包括显微裂隙、波状消光、机械双晶、动态重结晶、应力影及旋转残斑等,其中石英中发育大量的流体包裹体面(FIP),是矿液运移过程中应力及组成变化细节的原始记录器。显微构造变形特征反映,断裂构造是在韧性—脆性变形条件下发生的。共轭节理、微裂隙及脉体和FIP产状对主压应力方向的指示与宏观构造基本一致,为近南北向和近东西向两个方向。经石英动态重结晶法估算,成矿期的应力差为38.1-56.5 Mpa,构造变形强度属中等。利用石英动态重结晶颗粒分形温度计计算,确定变形温度为低绿片岩相(300℃~500℃)。石英贯穿整个成矿作用过程,石英中包裹体多为纯液相和气液两相类型。V,矿体中石英、方解石中的包裹体测温结果显示,热液成矿大致经历了中高温(250~300℃)和中低温(100~230℃)两个热液成矿阶段,前者可能对应热液矽卡岩化-硫化物矿化阶段,后者对应热液脉状硫化物-碳酸盐矿化阶段。
     (4)在宏观及显微构造分析的基础上,对核桃坪铅锌矿区成矿机理做了初步分析,铅锌成矿与F1断裂关系密切,整个断裂带体系控制着成矿流体的产生、演化、运移直至矿化。早期的构造变形为成矿流体运移提供了主要通道;中期的构造变形控制了整个矿化过程,创造了矿化所必需的物理化学条件和关键的应力机制,为矿质的沉淀富集提供了理想场所;晚期的剪切变形导致了中低温矿化作用的叠加。流体作为矿化的诱因,起着促进变形、裂隙扩容、富集和输送矿质的重要作用。
     (5)对矿区构造—流体—成矿作用系统中控矿断裂带构造变形特征的解析,一方面利于全面认识断裂带的力学性质与构造演化,也可为精细识别和重塑难识别热液脉型金属矿床成矿作用过程及其动力学机制提供有效的约束。
Hetaoping Pb-Zn deposit, Baoshan western Yunnan is located northeast pitching side of hetaoping double plunging anticline, which is intersection baoshan-shidian double plunging anticline of north baoshan-zhenkang massif and lancang river deeply structural-metamorphic belt, in convergence zone of baoshan, Lanping-Simao, Changning-Menglian three micro-plate, tend to baoshan massif. F1 fault is major controlling structures, and No. V1 ore body and some other ore bodies distributes along the fault strike, and which is rich in varieties of structural deformation phenomena. In this thesis, based on the current basic structural geology features of F1 fault, Start to analyze microstructure deformation of tectonic and alteration minerals, fluid inclusions plane features, with minerals microscopic region and micro-structure analysis technology, analyze microstructure characteristics of fluid flow leaving in construction formation and development process, study systematic structural fluid characteristics and their interaction of each metallogenic, define time-space evolution sequence of F1 fault, Analyze occurrence, development and evolution process of F1 fault, investigate impact ore-controlling of fault structures on fluid migration. The results are asfollows:
     (1) Starting from the macro-structure on mechanical properties, Analyze structure type, size, mechanical properties,the results shows that F1 fault is a thrust fault and has had three phases of structure activities. It has experienced the right-lateral compresso-shear→left-lateral shear-compressive→shear.
     (2) Macro-structural deformation, to the main penetrative foliation of wall rock、Non-penetrative sexual tension、shear joints and small folds formed by tectonic compression etc.
     (3)Microstructure deformation, including microscopic cracks, wavy extinction, mechanical twins, dynamic recrystallization, the stress shadow and rotation spots and other residue etc. A large number of fluid Inclusion plans in quartz are original record device of the migration of ore fluid composition changes during the stress and details. Microscopic structure features reflect that faults occurred under the conditions of the ductile-brittle deformation. The principal compressive stress direction of Conjugate joints, micro cracks and veins, and the FIP occurrence is consistent with the macro-structure, Nearly north-south and east-west direction. The stress difference is 38.1-56.5 Mpa by estimation method of dynamic recrystallization quartz, this value reflect medium intensity of tectonic deformation. Calculate by thermometer fractal of dynamic recrystallization quartz, deformation temperature is lower greenschist facies (300℃-500℃).Quartz throughout the mineralization process, inclusions in quartz are mostly pure liquid and gas-liquid two-phase. inclusion temperature results in quartz、calcite of V1 ore body showed that hydrothermal mineralization has gone through Middle-high temperature(250-300℃) and middle-low temperature(100-230℃) hydrothermal mineralization. the former may correspond to hydrothermal skarn-sulphide mineralization stage, the latter corresponds to hydrothermal vein sulfide-carbonate mineralization stage.
     (4)At the macro and micro structural analysis based on, analyze pb-zn ore-forming mechanism of Hetaoping preliminarily, there have a close link F1 fault and the ore between.The fault system control that ore fluid generation, evolution, migration until mineralization. The early construction provided the main channel for fluid; Medium-term structural control the mineralization process, created physical and chemical conditions and critical stress mechanism for mineralization necessarily, provided the ideal place for the precipitation of mineral enrichment; Late shearing led to the superposition of mineralization. Fluid as the incentive of mineralization, played the important role for deformation, expansion cracks, mineral concentration and transportion.
     (5) Resolve to tectonic deformation of F1 ore-controlling fault in the mining structure-fluid mineralization system, on the one hand, understand the mechanical nature of the F1 fault zone and tectonic evolution helply fully, provide an important constraint for precise identification and remodeling process of mineralization and difficult to recognize hydrothermal vein-type metal deposits and region dynamic mechanism.
引文
[1]秦德先,高建国,田毓龙.滇中铅锌矿地质研究[M].昆明:云南科技出版社,1998
    [2]韩润生,陈进,黄智龙,等.构造成矿动力学及隐伏矿定位预测:以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版社,2006
    [3]姜朝松,周瑞琦,周真恒,等.滇西地区及邻区构造单元划分及其特征[J].地震研究,2000,23(1):21-29
    [4]吴淦国.构造控矿的若干规律[J].矿床地质,1994,20:62-63
    [5]郑庆鳌,俞国芬,王维贤.云南地质(断裂)构造骨架新认识[J].云南地质,2006,25(2):119-124
    [6]段建中,薛顺荣,钱祥贵.滇西“三江”地区新生代地质构造格局及其演化[J].云南地质,2001,20(3):243-252
    [7]孙家聪.矿田地质力学方法(提纲)[J].昆明工学院学报,1988,13(3):120-126
    [8]刘志刚,王连忠.应用地质力学[M].北京:煤炭工业出版社,1994
    [9]王杯祥,杨丙中,叶挺松等.构造形迹[M].北京:地质出版社,1979
    [10]孙希贤,陈文仁.地质力学[M].武汉:中国地质大学出版社,1991
    [11]单文琅,宋鸿林,傅昭仁,等.构造变形分析的理论、方法和实践[M].武汉:中国地质大学出版社.1991.
    [12]Boullier A M. Fluid inclusions:tectonic indications [J]. J. Struct. Geol.,1999,21(6): 1229-1235.
    [13]Lesspinasse M, Pecher A. Microfacturing and regional stress field:a study of the preferred orientations of fluid-inclusion planes in granite from the Massif Central, France[J]. J. Struct Geol.,1986,8(2):169-180.
    [14]Onasch C M. Microfactures and their role in deformation of a quartz arenite from the central Appalachian foreland[J]. J. Struct. Geol.,1990,12(7):883-894
    [15]谭凯旋,郝新才,戴培根.中国断裂构造的分形特征及其大地构造意义[J].大地构造与成矿学,1998,22(1):17-20
    [16]何绍勋.构造地质学中的赤平极射投影[M].北京:地质出版社.1979.
    [17]覃礼貌,刘援朝,等.溪洛渡地区节理构造特征及解析.[J].矿物岩石.2003,23(1):51-54.
    [18]韦德贵,贺灵,等.湖南桂阳县黄沙坪铅锌矿区岩石节理特征及其地质意义[J].矿产与地质.2007,21(5):555-559.
    [19]王令占,侯光久,等.构皮滩水电站坝区节理特征及对区域构造应力场的指示[J].贵州地质.2005,22(4):289-295.
    [20]张忠生.紫荆关断裂带构造应力场特征初步分析[J].沈阳黄金学院学报.1992,11(3):8-15.
    [21]刘瑞殉.显微构造地质学[M].北京:北京大学出版社.1988.
    [22]邹海俊.楚雄盆地构造变形及其成矿作用研究—以大姚六直铜矿区为例[D].昆明,昆明理工大学, 2007.
    [23]刘斌.地壳构造流体[M].北京:科学出版社.2008.
    [24]倪培,范建国,等.大别山花岗岩流体包裹体面的初步研究[J].高校地质学报.2003.9(4).691-700.
    [25]彭渤,陈广浩.地质过程中几种重要的构造-流体作用[J].地质论评,2002,48(5):495-504.
    [26]Krane R L. Microcracks in rocks a review[J]. Tectonophysics,1983,100:449-480.
    [27]Hanks C L, Parris T M,Wallace W K. Fracture paragenesis and microthermometry in Lisburne Group detachment folds:Implications for the thermal and structural evolution of the northeastern Brooks Range[J], Alaska. AAPG Bulletin,2006,90(1):1-20.
    [28]Brantley S. The effect of fluid chemistry on microcracks lifetimes[J]. Earth and planet Sci. Lett.,1992,113:145-156.
    [29]Brantley S, Evans B, Hikman S H, Crerar D A. Healing of microcracks in quartz:implications for fluid flow[J]. Geol.,1990,18:136-139.
    [30]Zhao Hongjing, Sun Weilin,He Baotion.2006. A preliminary evaluation model for resrvoir hydrocarbon-generating potenttial established based on dissolved hydrocarbons in oilfield water[J]. Chinese Journal of Geochemisrry,2006,25(1):85-89
    [31]Dashnor Hoxha, M. Lespinasse, Judith Sausse.2005. A microstructural study of natural and experimentally induced cracks in a granodiorite[J].Tectonophysics,2005, (395):99-112
    [32]Anastasia Moshchenko, Sergey Vorob ev, Vladimir Zinov ev.2006. Application of the geochemical prospecting to improve oilfield structure models[J]. Chinese Journal of Geochemisry,2006,25(1):225-230
    [33]Liu Weitao, Wu Qiang, Ji Baojing.2007. Analysis of deformation & destruction mechanism and stability of Fofault crush zone in Fangezhuang Coal Mine[J]. Journal of Coal Science & Engineering,2007,13(3):261-265
    [34]Liu Pengju, Yin Chongyu, Tang Feng.2006. Discovery of the budding phospatized globular fossils from the Neoproterozic Doushatuo Formation at weng an,Guizhou Province, China [J]. Progress in Natural Science,2006,16(10):1079-1083
    [35]、杨巍然,张文淮.构造流体—一个新的研究领域[J].地学前缘,1996,3(4):124-130.
    [36]邓必方.保山-镇康地区汞、铅锌矿床的成矿模式[J].云南地质,1995,14(4):355-364.
    [37]符德贵,崔子良,官德任.保山金厂河铜多金属隐伏矿综合找矿[J].云南地质,2004,23(2):188-198.
    [38]胡斌,戴塔根,谢力华.滇西澜沧江中北段铜(金)多金属成矿特征[J].地质找矿论丛,1999,14(3):78-82.
    [39]陈永清,卢映祥,夏庆霖,等.云南保山核桃坪铅锌矿床地球化学特征与其成矿模式与找矿模型[J].中国地质,2005,32(1):90-99.
    [40]Xue C D, Han R S, Hu Y Z, Zou H J and Zhu Y Y. Physical chemistry study on the ore-forming process of the Hetaoping Pb-Zn-polymetallic deposit, Baoshan County, Yunnan Province, China[J]. Geochimica et Cosmochimica Acta,2006,70(18):A715.
    [41]朱余银,韩润生,薛传东,等.云南保山核桃坪铅-锌矿床地质特征[J].矿产与地质,2006,20(1):32-35.
    [42]李志国,曾普胜,符得贵,喻学惠.云南核桃坪矿集区矿床特征及成因初探[J].东华理工学院学报,2006,29(3):211-215.
    [43]薛传东,韩润生,杨海林,等.滇西北保山核桃坪铅锌矿床成矿物质来源的同位素地球化学证据[J].矿床地质,2008,27(2):243-252.
    [44]韩淑琴,邴颖,胡玲.准噶尔盆地南缘断裂带显微构造特征与活动时代[J].地质力学学报,2006,12(4):423-428.
    [45]胡玲,顾德林.沂沭断裂带显微构造及变形叠加分析[J].地质力学学报,1997,3(3):74-80.
    [46]刘文灿,李东旭,张达.碳酸盐岩石变形显微构造与宏观构造关系研究[J].地质力学学报,1996,2(2):47-54.
    [47]Ross J V et al. Stress dependenced of recrystalized grain and subgrain size in olirine[J]. Tectonophysics,1980,70(1-2):39-61.
    [48]Twiss R J. Theory and applicability of arecytalized grain size Paleopiezometer[J]. Pure Application Geophysics,1997,115:227-244.
    [49]张树良.小铁山矿区韧性剪切带显微构造分析及成矿研究[D].兰州,兰州理工大学,2008.
    [50]张波,张进江,郭磊.北喜马拉雅穹窿带然巴韧性剪切带石英动态重结晶颗粒的分维几何分析与主要流变参数的估算[J].地质科学,2006,41(1):158-169.
    [51]张宪依,唐菊兴,钟康惠,等.滇西保山地体东缘断裂带变形特征及运动学意义[J].成都理工大学学报(自然科学版),2005,32(3):315-321.
    [52]陈炳蔚,李永森,曲景川,等.三江地区主要大地构造问题及其与成矿的关系[M].北京:地质出版社,1991.
    [53]陈炳蔚,王凯元,刘万熹,等.怒江-澜沧江-金沙江地区大地构造[M].北京:地质出版社,1987.
    [54]叶庆同,石桂华,叶锦华,杨崇秋.怒江、澜沧江、金沙江地区铅锌矿床成矿特征和成矿系列[M]北京:北京科学技术出版社,1991.
    [55]钟康惠,刘肇昌,舒良树,等.澜沧江断裂带的新生代走滑运动学特点[J].地质论评,2004,50(1):1-8.
    [56]董文伟.保山镇康地块成矿条件及典型矿床成矿模式[J].云南地质,2007,26(1):56-61
    [57]李晓峰,华仁明.韧性剪切带内流体作用的研究[J].矿物岩石学杂志,2000,19(4):333-340
    [58]Kruhl, J. H. and Nega, M. Milla, H. The fractal shape of grain boundary sutures:model and application as a geothemometer.2nd.Int.Conf. on fractal and dynamic systems in geosciences[J]. Frankfurt. Book of A bstracts,1995,84:31-32
    [59]Kruhl, J. H. and Nega, M. The fractal shape of sutured quartz grain boundaries:application as a geothemometer[J]. Geologishe Rundschau,1996,85:38-43
    [60]Takahashi,M. Nagahama, H. Masuda,T. Fractal analysis of experimentally:dynamically recrystallized quartz grain and its possible appilcation as a strain rats meter[J]. Journal structural Geology.1998,20(2/3):269-275.
    [61]J. G. Rasmay, M. I. Huber.刘瑞珣,等译.现代构造地质学方法(第一卷褶皱和断裂)(第一版)[M].北京:地质出版社,1991.
    [62]王新社,郑亚东,王崇辉.用动态重结晶石英颗粒的分形确定变形温度及变形速率[J].岩石矿物学杂志,2001,20(Ⅰ):36--41.
    [63]Tapponier, P. Rrace, W, F. Devolument of stress induced microcracks in Westerly granite[J]. Intl. J. Rock. Mech. ineral Sci.,1976,13:103-112.
    [64]Krantz R L. Microcracks in rocks.A review[J]. Tectnophysics.1983,100:480-449.
    [65]Roedder, E. Fluid inclusion evidence. Reviews in mineralogy. Mineral Soc Amer[J].1984,12:1-644.
    [66]倪培,范建国,田京辉,等.辽南丹东地区中生代金成矿的FIP证据.岩石学报[J].2000,16(4):506-512.
    [67]Sibson R H. Faulting and fluid flow. In:Nesbitt B E(ed).MAC Short Course on Crustal Fluids,1990.93-132.
    [68]Tuttle 0 F. Structural petrology of planes of liquid inclusions [J]. Journal of Geology. 1949,57:331-356.
    [69]Wise. D. U. Microjointing in basement, middle Rocky mountains of Montana and Wyoming[J]. Geological Society of American Bulletin.1964,75:287-306.
    [70]Choukrotme, E. Gapals, D. Merle,0. Shear criteria and stmcmral symmetry [J]. J. Struct. Geol, 1987,9(5-6):525-530.
    [71]Cobbold, P. R. Gapais,19. Shear criteria in rocks:a introductory review [J]. J. Street. GeOl., 1987,9(5-6):521-523.
    [72]李永森,陈炳蔚.怒江、澜沧江、金沙江地区构造与成矿作用[J].矿床地质,1991,10(4):289-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700