重组牛IFN-λ3的制备及其与IFN-α/IFN-β/IFN-γ抗病毒活性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰素(Interferon,IFN)是由动物细胞产生的,具有抗病毒、抗肿瘤及免疫调节等作用的一类细胞因子。IFN分为I型、II型和新发现的III型,III型干扰素又称为IFN-λs,其氨基酸水平和蛋白质功能与I型相近。由于IFN-λs受体组织分布特异性,IFN-λs主要在呼吸道、消化道和皮肤黏膜组织以及上皮细胞或某些肿瘤细胞发挥抗病毒作用,与IFN-α相比,能够有效地降低毒副作用。在我国,奶牛病毒性传染病如口蹄疫(FMD)、牛病毒性腹泻病(BVD)和牛传染性鼻气管炎(IBR)等可通过消化道、呼吸道传播的疫病,至今危害仍比较严峻,因此牛IFN-λs成为继IFN-α和IFN-β后,抗病毒制剂研发的一个方向。为深入研究牛IFN-λs的抗病毒活性及其机制,揭示其用于防治牛病毒病的可行性,本研究利用毕赤酵母分泌表达系统表达了无冗余氨基酸的重组牛IFN-λ3,同时酵母分泌表达了重组牛IFN-α和IFN-β,大肠杆菌表达系统表达了重组牛IFN-β和IFN-γ,深入研究了各重组干扰素的抗病毒活性,比较了IFN-λ3与I型和II型干扰素单独或联合应用抗病毒活性的异同,主要研究内容如下:
     1.首先在毕赤酵母表达系统实现了无冗余氨基酸重组牛IFN-λ3的可溶性表达。参考酵母密码子使用偏好性,同时考虑自由能和二级结构等要素,将已知的牛IFN-λ3(boIFN-λ3)基因序列优化成适合酵母表达的最优序列,然后利用重叠延伸PCR技术将设计的相互重叠20bp左右的14条寡核苷酸融合,获得boIFN-λ3基因和及其等位基因命名为boIFN-λ3*(1个基因差异使得成熟肽第18位氨基酸不同)。通过酶切连接的方式,成功构建酵母分泌表达载体pPICZαA-boIFN-λ3和pPICZαA-boIFN-λ3*。在毕赤酵母表达系统中通过一系列的筛选鉴定,如阳性重组酵母菌的鉴定,高表达酵母菌株的筛选,诱导表达条件的优化等最终表达了重组boIFN-λ3和boIFN-λ3*蛋白,表达量均可达1.2g/L,均以糖基化蛋白(23kDa大小,占总蛋白70%左右)和非糖基化蛋白(18kDa大小,占总蛋白15%左右)2种形式表达。经硫酸铵盐析和阳离子交换层析获得了纯化蛋白,重组蛋白均具有良好的抗原性,同时制备了抗boIFN-λ3*多抗。在MDBK-VSV系统测定重组boIFN-λ3和boIFN-λ3*蛋白的生物学效价分别为2.39±0.15×10~6U/mg/ml和2.15±0.40×10~6U/mg/ml。理化特性方面,重组蛋白均对胰酶敏感,对热较为不敏感(63℃),对酸碱部分敏感(pH2活性下降2倍),可被特异性抗体中和。从重组蛋白的表达、纯化、糖基化分析、理化特性、生物学活性和致细胞毒性等综合分析,重组蛋白boIFN-λ3和boIFN-λ3*没有区别。
     2.表达纯化了重组牛IFN-α/IFN-β/IFN-γ并初步测定了它们的生物学活性。为比较重组boIFN-λ3与I型和II型IFN的抗病毒活性,酵母分泌表达系统表达了重组牛IFN-α和IFN-β,大肠杆菌系统表达纯化了重组牛IFN-β和IFN-γ,测定它们的生物学活性分别为1.50±0.98×10~7、1.25±0.38×10~4、2.44±0.91×10~3和0.81±0.21×10~5U/mg/ml。在MDBK-VSV系统中4种重组干扰素抗病毒效价大小排序为boIFN-α>boIFN-λ3> boIFN-γ>boIFN-β。在EBK和MDBK细胞上利用MTT法测定4种重组干扰素的细胞毒性,结果显示,重组boIFN-λ3和其他IFNs单独或联合应用致细胞毒性均较小。
     3.重组boIFN-λ3和boIFN-α/boIFN-β/boIFN-γ诱导Mx1蛋白和ISRE启动子活性的研究。经过Western blot检测重组boIFN-λ3在4种上皮细胞源细胞(EBK、BT、MDBK和BMEC)中均能够诱导产生Mx1蛋白。采用双荧光素酶报告基因系统,通过检测ISRE报告基因的表达水平来间接反映干扰素的生物活性。结果显示不同浓度的重组IFNs诱导启动子表达均呈一定程度的剂量依赖性,重组boIFN-λ3和boIFN-γ诱导报告基因的表达水平呈时间依赖性,48h达到较高水平;而boIFN-α和boIFN-β能够快速的诱导报告基因表达,干扰素作用12h即达到较高的水平,且维持到48h。联合应用时部分组合比单独应用时诱导ISRE活性高。因此各IFNs刺激产生的ISRE启动子活性的差异可能是重组boIFN-λ3与其他IFNs协同抗病毒活性的机理之一。
     4.比较研究了重组boIFN-λ3和重组boIFN-α/boIFN-β/boIFN-γ抗IBRV、FMDV和BVDV的研究。通过TCID50法测定抗IBRV和FMDV活性,抗cpBVDV采用噬斑减数法,抗ncpBVDV采用半定量RT-PCR法。结果显示重组boIFN-λ3和其他3种重组IFNs均具有抗IBRV和FMDV的活性,且呈一定程度的剂量和时间依赖性。其中抗FMDV活性较强,抗IBRV活性较弱。重组boIFN-λ3可条件性的抑制cpBVDV和ncpBVDV的增殖,即在先孵育干扰素后感染病毒时,重组boIFN-λ3可抑制BVDV增殖,反之则没有作用。
     5.重组boIFN-λ3和boIFN-α/boIFN-β/boIFN-γ协同抗病毒的研究。通过测定干扰素作用后的病毒-细胞混悬液的TCID50,结果显示重组boIFN-λ3抗IBRV时和boIFN-γ协同作用强,抗FMDV时,boIFN-λ3在EBK和BT细胞上均显示出和boIFN-α/boIFN-β明显的协同作用,提示在临床应用时可以联合应用重组boIFN-λ3和其他干扰素。推测协同机制可能与ISRE启动子活化水平及干扰素刺激基因(ISGs)的表达等有关。
     6. ncpBVDV持续性细胞感染是否影响重组boIFN-λ3抗病毒活性的研究。ncpBVDV(HLJ-11)感染MDBK细胞后在不同浓度重组boIFN-λ3和重组boIFN-α压力筛选下传代8次,通过半定量RT-PCR检测BVDV核酸,结果显示在干扰素压力下,病毒可以耐受干扰素,造成细胞持续性感染,而此种状态下的MDBK细胞仍能感染VSV,且不影响重组boIFN-λ3在此细胞上发挥抗VSV活性,因此这种细胞是耐受BVDV同时对IFN敏感的细胞。另一方面,ncpBVDV预先感染MDBK细胞不影响boIFN-λ3和其他IFNs在此细胞上发挥抗VSV和IBRV的作用。
     因此,牛IFN-λ3蛋白的研制及其与I型和II型干扰素抗病毒活性的深入比较研究为进一步了解牛IFN-λs的生物学功能提供了理论基础并为抗病毒制剂的制备提供了物质材料。
IFNs are key cytokines in the establishment of the activities with antiviral, antitumor andimmunomodulatory activities. Three distinct types of IFNs are now recognized (type I, II, and III)based on their structural features, receptor usage and biological activities. The type III interferon isalso known as the IFN-λs and for the amino acid level and protein functions, IFN-λs are morerelated to type I IFNs. However, the more limited tissue expression of IFN-λ receptors suggeststhat type III IFNs do not simply recapitulate the type I IFN antiviral system. It has the antiviraleffects in the respiratory tract, gastrointestinal tract, skin mucosa, epithelial cells and some tumorcells, which can effectively reduce the toxic side effects. In our country, the foot-and-mouthdisease (FMD), bovine viral diarrhea disease (BVD) and infectious bovine rhinotracheitis (IBR)which spread through the digestive tract, respiratory tract is still relatively severe. Therecombinant bovine IFN-λs may play an important role in the control the diseases by its antiviralactivity. For in-depth reseach of antiviral activity of the bovine IFN-λs, revealing its feasibility forthe control of bovine viral disease, the non-redundant amino acid recombinant bovine IFN-λ3wassoluble expressed in Pichia pastoris. The recombinant bovine IFN-α and the recombinant bovineIFN-β was also expressed in Pichia pastoris. On the other hand, the recombinant bovine IFN-β andthe recombinant bovine IFN-γ was espressed from the E.coli expression system. In the direction offurther understand the biological function of bovine IFN-λ, the in-depth reseach of the antiviralactivities of the IFN-λ3was carried out and compared with type I and type II interferons alone orcombination used. The main contents are as follows:
     1. The recombinant bovine IFN-λ3was soluble expression in Pichia pastoris. Taking into theyeast codon uasage, the free energy and the secondary structure of the bovine IFN-λ3, theoptimized bovine IFN-λ3sequence which named as boIFN-λ3and its allele (named as theboIFN-λ3*that one gene was different which caused the eighteen amina acid of the mature peptideof the bovine IFN-λ3was variability) was designed and the sequences were amplified using thegene splicing by overlap extension (SOE) with the synthesized14oligonucleotide. Then thesecretion expression vector pPICZαA-boIFN-λ3and pPICZaA-BoIFN-λ3*was successfullyconstructed. With the screening and identification of the positive recombinantGS115-pPICZαA-boIFN-λ3, the selection of the high expression stain and the optimization of the induced expression system, we expressed the recombinant boIFN-λ3and boIFN-λ3*with theexpression levels up to1.2g/L. The glycosylated protein (23kDa, about70%of the total protein)and non-glycosylated protein (18kDa, about15%of the total protein) was detected byglycoprotein staining. The protein was purified by the ammonium sulfate precipitation and thecation exchange chromatography. The recombinant protein has good antigenicity with thedeveloped polyclonal antibody. The antiviral activity of the recombinant boIFN-λ3and boIFN-λ3*was2.39±0.15×106U/mg/ml and2.15±0.40×106U/mg/ml in MDBK-VSV detecting system. Therecombinant proteins were inactivatied with the trypsin, not sensitive to heat(63℃) and partlysensitive to pH (pH2activity decreased by2times). With the comprehensive analysis, theexpression, purification, physical and chemical properties, biological activity and inducedcytotoxicity was no difference between the recombinant boIFN-λ3and the boIFN-λ3*.
     2. The recombinant bovine IFN-α/IFN-β/IFN-γ was expressed, purified and preliminarydetermined their biological activity. For comparison antiviral activity of boIFN-λ3with type I andtype II IFN, The recombinant boIFN-α and the recombinant boIFN-β was expressed in Pichiapastoris and the biological activity was1.50±0.98×107U/mg/ml and1.25±0.38×104U/mg/ml. Thebiological activity of the prokaryotic expressed and purified recombinant boIFN-β and the boIFN-γwas2.44±0.91×103U/mg/ml and0.81±0.21×105U/mg/ml. The antiviral potency was therecombinant boIFN-α>boIFN-λ3>boIFN-γ>boIFN-β in MDBK-VSV system. Cytotoxicitymeasurements by MTT assay in EBK and MDBK cells showed that boIFN-λ3and other IFNsinduced lower cytotoxicity alone or in combination.
     3. The Mx1protein and the ISRE promoter activity was induced by IFNs. The Mx1proteinwas induced by recombinant boIFN-λ3and other IFNs in epithelial cell-derived cells (EBK, BT,MDBK and BMEC). We used the ISRE (interferon-stimulated response element) luciferasereporter assay to assess activity downstream of the JAK-STAT signaling pathway. The resultsshowed that the every recombinant boIFN induced ISRE luciferase activity in a dose-dependentmanner; and the recombinant boIFN-λ3and boIFN-γ induced reporter gene expression level wastime-dependent and reached a high level at48h, while the recombinant boIFN-α and boIFN-βinduced ISRE luciferase more rapidly that reached the high level at12h and maintained to48h.The combination of the recombinant boIFN-λ3with other IFNs was high than alone except theboIFN-λ3plus the boIFN-γ.
     4. The anti-FMDV/IBRV/BVDV was comparative research on the recombinant boIFN-λ3andboIFN-α/boIFN-β/boIFN-γ. The methods were about TCID50assay and the plaque reduction assay.The results showed that the recombinant boIFN-λ3and other three recombinant IFNs haveanti-IBRV and anti-FMDV activity, with a certain degree of dose and time-dependent manner. Theactivity of anti-IBRV was weak while anti-FMDV strong. The inhibitory effect of the recombinantboIFN-λ3on cytopathic BVDV (cpBVDV) and noncytopathic BVDV (ncpBVDV) replication wasobvious while treatment of MDBK cells with IFN before and in a dose-dependent manner. While treatment of MDBK cells with IFN after and the BVDV infecton first, any of the IFNsconcentration has no activity to inhibate the BVDV replication.
     5. The synergistic antiviral research of the recombinant boIFN-λ3with the recombinantboIFN-α/boIFN-β/boIFN-γ. Using the cytopathic inhibition assay (TCID50assay), the virus-cellsuspension harvested from the MDBK or EBK cells treated before with the recombinant boIFN-λ3alone or combination with the boIFN-α/IFN-β/IFN-γ was assessed. In combination, therecombinant boIFN-λ3and the boIFN-γ had a synergistic anti-IBRV effect in MDBK cells, and therecombinant boIFN-λ3with the recombinant boIFN-α or boIFN-β could significantly inhibit theFMDV replication in EBK cells and BT cells. Thus, the synergistic anti-FMDV effect was apparentby combination with the recombinant boIFN-λ3and the boIFN-α/boIFN-β. It was prompted to bewidely used with the combination of the recombinant boIFN-λ3and other IFNs in clinicalapplications in the future. The synergistic enhancement was observed may relate to the ISREactivity or up regulation of the interferon stimulated genes (ISGs).
     6. The impact on the activity of the recombinant boIFN-λ3when ncpBVDV persisitly infected.To determine whether ncpBVDV can be eliminated from the infected cell monolayer by prolongedinterferons treatment, we passaged ncpBVDV infected in MDBK cells8times in the presence ofvarious amounts of the recombinant boIFN-λ3, which the recombinant boIFN-α as the control.Using the semi-quantitative RT-PCR to detect BVDV nucleic acid, the cell culture passages ofMDBK cells infected with the HLI-11strain in the presence of up to100U/ml recombinantboIFN-λ3were not able to eliminate the virus infection,which was to say the BVDV can toleratethe interferon and the MDBK cells tolerate the BVDV, resulting in the persistent infection of cells.But this type cells was sensitive to VSV virus and the recombinant boIFN-λ3could prevent theinfection of the cell monolayer with VSV. This ncpBVDV pre-infected MDBK cells does not affectboIFN-λ3and other IFNs on to play anti-VSV and anti-IBRV effect.
     In conclusion, the generation of the bovine IFN-λ3, the research of the antiviral activites ofthe recombinant boIFN-λ3and its synergistic effects with type I or type II interferons will help usto further understand the biological function of bovine IFN-λs. In addition, there is one moreantiviral agents was provided for future use.
引文
[1]候云德.干扰素研究现状和展望[J].国外医学(微生物学分册),1985(06):241-245.
    [2] ISAACS A., LINDENMANN J. Virus interference. I. The interferon.[J]. Proc R Soc Lond BBiol Sci,1957,147(927):258-267.
    [3] Galligan C. L., Murooka T. T., Rahbar R., et al.Interferons and viruses: signaling forsupremacy.[J]. Immunol Res,2006,35(1-2):27-40.
    [4] Pestka S., Krause C. D., Walter M. R. Interferons, interferon-like cytokines, and theirreceptors.[J]. Immunol Rev,2004,202:8-32.
    [5] Billiau A. Interferon: the pathways of discovery I. Molecular and cellular aspects.[J].Cytokine Growth Factor Rev,2006,17(5):381-409.
    [6] Oritani K., Kanakura Y. IFN-zeta/limitin: a member of type I IFN with mildlympho-myelosuppression.[J]. J Cell Mol Med,2005,9(2):244-254.
    [7]Roberts R. M., Ealy A. D., Alexenko A. P., et al.Trophoblast interferons.[J]. Placenta,1999,20(4):259-264.
    [8] Lefevre F., Guillomot M., D'Andrea S., et al. Interferon-delta: the first member of a noveltype I interferon family.[J]. Biochimie,1998,80(8-9):779-788.
    [9] Lindenmann J. Interferon and before.[J]. J Interferon Cytokine Res,2007,27(1):2-5.
    [10] Kondo Y., Ueno Y., Ninomiya M., et al. Sequential immunological analysis of HBV/HCVco-infected patients during Peg-IFN/RBV therapy.[J]. J Gastroenterol,2012,47(12):1323-1335.
    [11] Morisco F., Amoruso D., Stroffolini T., et al. PEG-IFN and ribavirin re-treatment ofHCV-1b cirrhosis non responder to conventional combination therapy.[J]. Dig Liver Dis,2008,40(5):391-392.
    [12] Hige S., Sho T., Nakanishi M., et al.[Interferon therapy for chronic hepatitis B].[J]. NihonRinsho,2011,69Suppl4:481-485.
    [13] Schroecksnadel K., Fuchs D. Interferon-gamma for counteracting T-cell activation.[J].Trends Immunol,2006,27(9):398.
    [14] Dunn G. P., Koebel C. M., Schreiber R. D. Interferons, immunity and cancerimmunoediting.[J]. Nat Rev Immunol,2006,6(11):836-848.
    [15] Dorman S. E., Picard C., Lammas D., et al. Clinical features of dominant and recessiveinterferon gamma receptor1deficiencies.[J]. Lancet,2004,364(9451):2113-2121.
    [16] Lu B., Ebensperger C., Dembic Z., et al. Targeted disruption of the interferon-gammareceptor2gene results in severe immune defects in mice.[J]. Proc Natl Acad Sci U S A,1998,95(14):8233-8238.
    [17] Huang S., Hendriks W., Althage A., et al. Immune response in mice that lack theinterferon-gamma receptor.[J]. Science,1993,259(5102):1742-1745.
    [18] Wang B. X., Rahbar R., Fish E. N. Interferon: current status and future prospects in cancertherapy.[J]. J Interferon Cytokine Res,2011,31(7):545-552.
    [19] Fuertes M. B., Woo S. R., Burnett B., et al. Type I interferon response and innate immunesensing of cancer.[J]. Trends Immunol,2013,34(2):67-73.
    [20] Kotenko S. V., Gallagher G., Baurin V. V., et al. IFN-lambdas mediate antiviral protectionthrough a distinct class II cytokine receptor complex.[J]. Nat Immunol,2003,4(1):69-77.
    [21] Sheppard P., Kindsvogel W., Xu W., et al. IL-28, IL-29and their class II cytokine receptorIL-28R.[J]. Nat Immunol,2003,4(1):63-68.
    [22] Dumoutier L., Tounsi A., Michiels T., et al. Role of the interleukin (IL)-28receptortyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda1:similarities with type I interferon signaling.[J]. J Biol Chem,2004,279(31):32269-32274.
    [23] Donnelly R. P., Sheikh F., Kotenko S. V., et al. The expanded family of class II cytokinesthat share the IL-10receptor-2(IL-10R2) chain.[J]. J Leukoc Biol,2004,76(2):314-321.
    [24] Kelly C., Klenerman P., Barnes E. Interferon lambdas: the next cytokine storm.[J]. Gut,2011,60(9):1284-1293.
    [25] Donnelly R. P., Kotenko S. V. Interferon-lambda: a new addition to an old family.[J]. JInterferon Cytokine Res,2010,30(8):555-564.
    [26] Li M., Liu X., Zhou Y., et al. Interferon-lambdas: the modulators of antivirus, antitumor,and immune responses.[J]. J Leukoc Biol,2009,86(1):23-32.
    [27] Gad H. H., Dellgren C., Hamming O. J., et al. Interferon-lambda is functionally aninterferon but structurally related to the interleukin-10family.[J]. J Biol Chem,2009,284(31):20869-20875.
    [28] Bartlett N. W., Buttigieg K., Kotenko S. V., et al. Murine interferon lambdas (type IIIinterferons) exhibit potent antiviral activity in vivo in a poxvirus infection model.[J]. J GenVirol,2005,86(Pt6):1589-1596.
    [29] Commins S., Steinke J. W., Borish L. The extended IL-10superfamily: IL-10, IL-19, IL-20,IL-22, IL-24, IL-26, IL-28, and IL-29.[J]. J Allergy Clin Immunol,2008,121(5):1108-1111.
    [30] Gad H. H., Hamming O. J., Hartmann R. The structure of human interferon lambda and whatit has taught us.[J]. J Interferon Cytokine Res,2010,30(8):565-571.
    [31] Karpala A. J., Morris K. R., Broadway M. M., et al. Molecular cloning, expression, andcharacterization of chicken IFN-lambda.[J]. J Interferon Cytokine Res,2008,28(6):341-350.
    [32] Wang D., Fang L., Zhao F., et al. Molecular cloning, expression and antiviral activity ofporcine interleukin-29(poIL-29).[J]. Dev Comp Immunol,2011,35(3):378-384.
    [33] Diaz-San Segundo F., Weiss M., Perez-Martin E., et al. Antiviral activity of bovine type IIIinterferon against foot-and-mouth disease virus.[J]. Virology,2011,413(2):283-292.
    [34] Zhou P., Cowled C., Todd S., et al. Type III IFNs in pteropid bats: differential expressionpatterns provide evidence for distinct roles in antiviral immunity.[J]. J Immunol,2011,186(5):3138-3147.
    [35] Onoguchi K., Yoneyama M., Takemura A., et al. Viral infections activate types I and IIIinterferon genes through a common mechanism.[J]. J Biol Chem,2007,282(10):7576-7581.
    [36] Ank N., West H., Bartholdy C., et al. Lambda interferon (IFN-lambda), a type III IFN, isinduced by viruses and IFNs and displays potent antiviral activity against select virusinfections in vivo.[J]. J Virol,2006,80(9):4501-4509.
    [37] Brand S., Beigel F., Olszak T., et al. IL-28A and IL-29mediate antiproliferative andantiviral signals in intestinal epithelial cells and murine CMV infection increases colonicIL-28A expression.[J]. Am J Physiol Gastrointest Liver Physiol,2005,289(5):G960-G968.
    [38] Siren J., Pirhonen J., Julkunen I., et al. IFN-alpha regulates TLR-dependent geneexpression of IFN-alpha, IFN-beta, IL-28, and IL-29.[J]. J Immunol,2005,174(4):1932-1937.
    [39] Coccia E. M., Severa M., Giacomini E., et al. Viral infection and Toll-like receptoragonists induce a differential expression of type I and lambda interferons in humanplasmacytoid and monocyte-derived dendritic cells.[J]. Eur J Immunol,2004,34(3):796-805.
    [40] Zhang S., Kodys K., Li K., et al. Human Type2Myeloid Dendritic Cells ProduceInterferon-lambda and Amplify Interferon-alpha in Response to Hepatitis C VirusInfection.[J]. Gastroenterology,2012.
    [41] Megjugorac N. J., Gallagher G. E., Gallagher G. IL-4enhances IFN-lambda1(IL-29)production by plasmacytoid DCs via monocyte secretion of IL-1Ra.[J]. Blood,2010,115(21):4185-4190.
    [42] Wolk K., Witte K., Sabat R. Interleukin-28and interleukin-29: novel regulators of skinbiology.[J]. J Interferon Cytokine Res,2010,30(8):617-628.
    [43] Pietila T. E., Latvala S., Osterlund P., et al. Inhibition of dynamin-dependent endocytosisinterferes with type III IFN expression in bacteria-infected human monocyte-derived DCs.[J].J Leukoc Biol,2010,88(4):665-674.
    [44] Hillyer P., Mane V. P., Schramm L. M., et al. Expression profiles of humaninterferon-alpha and interferon-lambda subtypes are ligand-and cell-dependent.[J].Immunol Cell Biol,2012,90(8):774-783.
    [45] Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system.[J]. IntRev Immunol,2011,30(1):16-34.
    [46] Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity.[J]. Cell,2006,124(4):783-801.
    [47] Ank N., West H., Paludan S. R. IFN-lambda: novel antiviral cytokines.[J]. J InterferonCytokine Res,2006,26(6):373-379.
    [48] Diebold S. S., Montoya M., Unger H., et al. Viral infection switches non-plasmacytoiddendritic cells into high interferon producers.[J]. Nature,2003,424(6946):324-328.
    [49] Pestka S., Krause C. D., Sarkar D., et al. Interleukin-10and related cytokines andreceptors.[J]. Annu Rev Immunol,2004,22:929-979.
    [50] Sommereyns C., Paul S., Staeheli P., et al. IFN-lambda (IFN-lambda) is expressed in atissue-dependent fashion and primarily acts on epithelial cells in vivo.[J]. PLoS Pathog,2008,4(3):e1000017.
    [51] Witte K., Gruetz G., Volk H. D., et al. Despite IFN-lambda receptor expression, bloodimmune cells, but not keratinocytes or melanocytes, have an impaired response to type IIIinterferons: implications for therapeutic applications of these cytokines.[J]. Genes Immun,2009,10(8):702-714.
    [52] Byrnes-Blake K. A., Pederson S., Klucher K. M., et al. Pharmacokinetics andpharmacodynamics of pegylated interferon lambda-1in cynomolgus monkeys.[J]. JInterferon Cytokine Res,2012,32(5):198-206.
    [53] Zhou Z., Hamming O. J., Ank N., et al. Type III interferon (IFN) induces a type I IFN-likeresponse in a restricted subset of cells through signaling pathways involving both theJak-STAT pathway and the mitogen-activated protein kinases.[J]. J Virol,2007,81(14):7749-7758.
    [54] Maher S. G., Sheikh F., Scarzello A. J., et al. IFNalpha and IFNlambda differ in theirantiproliferative effects and duration of JAK/STAT signaling activity.[J]. Cancer Biol Ther,2008,7(7):1109-1115.
    [55] Brand S., Zitzmann K., Dambacher J., et al. SOCS-1inhibits expression of the antiviralproteins2',5'-OAS and MxA induced by the novel interferon-lambdas IL-28A and IL-29.[J].Biochem Biophys Res Commun,2005,331(2):543-548.
    [56] Liu Y. C., Penninger J., Karin M. Immunity by ubiquitylation: a reversible process ofmodification.[J]. Nat Rev Immunol,2005,5(12):941-952.
    [57] Sadler A. J., Williams B. R. Interferon-inducible antiviral effectors.[J]. Nat Rev Immunol,2008,8(7):559-568.
    [58] Stunden H. J., Latz E. PKR stirs up inflammasomes.[J]. Cell Res,2013,23(2):168-170.
    [59] Hamdi N., El-Akel W., El-Serafy M., et al. Transcriptional response of MxA, PKR andSOCS3to interferon-based therapy in HCV genotype4-infected patients and contribution ofp53to host antiviral response.[J]. Intervirology,2012,55(3):210-218.
    [60] Ryman K. D., White L. J., Johnston R. E., et al. Effects of PKR/RNase L-dependent andalternative antiviral pathways on alphavirus replication and pathogenesis.[J]. Viral Immunol,2002,15(1):53-76.
    [61] Zhao L., Jha B. K., Wu A., et al. Antagonism of the interferon-induced OAS-RNase Lpathway by murine coronavirus ns2protein is required for virus replication and liverpathology.[J]. Cell Host Microbe,2012,11(6):607-616.
    [62] Nakanishi M., Tanaka N., Mizutani Y., et al. Functional characterization of2',5'-linkedoligoadenylate binding determinant of human RNase L.[J]. J Biol Chem,2005,280(50):41694-41699.
    [63] Matzinger S. R., Carroll T. D., Dutra J. C., et al. Myxovirus resistance gene A (MxA)expression suppresses influenza A virus replication in alpha interferon-treated primatecells.[J]. J Virol,2013,87(2):1150-1158.
    [64] Verhelst J., Parthoens E., Schepens B., et al. Interferon-inducible protein Mx1inhibitsinfluenza virus by interfering with functional viral ribonucleoprotein complex assembly.[J]. JVirol,2012,86(24):13445-13455.
    [65] Cilloniz C., Pantin-Jackwood M. J., Ni C., et al. Molecular signatures associated withMx1-mediated resistance to highly pathogenic influenza virus infection: mechanisms ofsurvival.[J]. J Virol,2012,86(5):2437-2446.
    [66] Meager A., Visvalingam K., Dilger P., et al. Biological activity of interleukins-28and-29:comparison with type I interferons.[J]. Cytokine,2005,31(2):109-118.
    [67] Pott J., Mahlakoiv T., Mordstein M., et al. IFN-lambda determines the intestinal epithelialantiviral host defense.[J]. Proc Natl Acad Sci U S A,2011,108(19):7944-7949.
    [68] Dellgren C., Gad H. H., Hamming O. J., et al. Human interferon-lambda3is a potentmember of the type III interferon family.[J]. Genes Immun,2009,10(2):125-131.
    [69] Li M., Huang D. Purification and characterization of prokaryotically expressed humaninterferon-lambda2.[J]. Biotechnol Lett,2007,29(7):1025-1029.
    [70] Li M., Huang D. On-column refolding purification and characterization of recombinanthuman interferon-lambda1produced in Escherichia coli.[J]. Protein Expr Purif,2007,53(1):119-123.
    [71] Li M., He S. Purification and characterization of recombinant human interleukin-29expressed in Escherichia coli.[J]. J Biotechnol,2006,122(3):334-340.
    [72] Osterlund P., Veckman V., Siren J., et al. Gene expression and antiviral activity ofalpha/beta interferons and interleukin-29in virus-infected human myeloid dendritic cells.[J].J Virol,2005,79(15):9608-9617.
    [73] Krause C. D., Pestka S. Evolution of the Class2cytokines and receptors, and discovery ofnew friends and relatives.[J]. Pharmacol Ther,2005,106(3):299-346.
    [74] Mordstein M., Kochs G., Dumoutier L., et al. Interferon-lambda contributes to innateimmunity of mice against influenza A virus but not against hepatotropic viruses.[J]. PLoSPathog,2008,4(9):e1000151.
    [75] Ruta S., Cernescu C. New interferons in the treatment of chronic hepatitis C.[J]. Roum ArchMicrobiol Immunol,2011,70(2):85-92.
    [76] Svetlikova D., Kabat P., Ohradanova A., et al. Influenza A virus replication is inhibited inIFN-lambda2and IFN-lambda3transfected or stimulated cells.[J]. Antiviral Res,2010,88(3):329-333.
    [77] Hong S. H., Cho O., Kim K., et al. Effect of interferon-lambda on replication of hepatitis Bvirus in human hepatoma cells.[J]. Virus Res,2007,126(1-2):245-249.
    [78] Doyle S. E., Schreckhise H., Khuu-Duong K., et al. Interleukin-29uses a type1interferon-like program to promote antiviral responses in human hepatocytes.[J]. Hepatology,2006,44(4):896-906.
    [79] Pagliaccetti N. E., Robek M. D. Interferon-lambda in HCV Infection and Therapy.[J].Viruses,2010,2(8):1589-1602.
    [80] O'Brien T. R. Interferon-alfa, interferon-lambda and hepatitis C.[J]. Nat Genet,2009,41(10):1048-1050.
    [81] Marcello T., Grakoui A., Barba-Spaeth G., et al. Interferons alpha and lambda inhibithepatitis C virus replication with distinct signal transduction and gene regulationkinetics.[J]. Gastroenterology,2006,131(6):1887-1898.
    [82] Orlent H., Reynaert H., Bourgeois S., et al. IL28B polymorphism and the control ofhepatitis C virus infection: ready for clinical use?[J]. Acta Gastroenterol Belg,2011,74(2):317-322.
    [83] Ge D., Fellay J., Thompson A. J., et al. Genetic variation in IL28B predicts hepatitis Ctreatment-induced viral clearance.[J]. Nature,2009,461(7262):399-401.
    [84] Ma D., Jiang D., Qing M., et al. Antiviral effect of interferon lambda against West Nilevirus.[J]. Antiviral Res,2009,83(1):53-60.
    [85] Zhang S. Y., Jouanguy E., Sancho-Shimizu V., et al. Human Toll-like receptor-dependentinduction of interferons in protective immunity to viruses.[J]. Immunol Rev,2007,220:225-236.
    [86] Li J., Hu S., Zhou L., et al. Interferon lambda inhibits herpes simplex virus type I infectionof human astrocytes and neurons.[J]. Glia,2011,59(1):58-67.
    [87] Stoltz M., Ahlm C., Lundkvist A., et al. Lambda interferon (IFN-lambda) in serum isdecreased in hantavirus-infected patients, and in vitro-established infection is insensitive totreatment with all IFNs and inhibits IFN-gamma-induced nitric oxide production.[J]. J Virol,2007,81(16):8685-8691.
    [88] Almeida G. M., de Oliveira D. B., Magalhaes C. L., et al. Antiviral activity of type Iinterferons and interleukins29and28a (type III interferons) against Apeu virus.[J]. AntiviralRes,2008,80(3):302-308.
    [89] Kumagai Y., Takeuchi O., Akira S. Pathogen recognition by innate receptors.[J]. J InfectChemother,2008,14(2):86-92.
    [90] Koyama S., Ishii K. J., Coban C., et al. Innate immune response to viral infection.[J].Cytokine,2008,43(3):336-341.
    [91] Randall R. E., Goodbourn S. Interferons and viruses: an interplay between induction,signalling, antiviral responses and virus countermeasures.[J]. J Gen Virol,2008,89(Pt1):1-47.
    [92] Lasfar A., Abushahba W., Balan M., et al. Interferon lambda: a new sword in cancerimmunotherapy.[J]. Clin Dev Immunol,2011,2011:349575.
    [93] Li W., Lewis-Antes A., Huang J., et al. Regulation of apoptosis by type III interferons.[J].Cell Prolif,2008,41(6):960-979.
    [94] Numasaki M., Tagawa M., Iwata F., et al. IL-28elicits antitumor responses against murinefibrosarcoma.[J]. J Immunol,2007,178(8):5086-5098.
    [95] Li W., Huang X., Liu Z., et al. Type III interferon induces apoptosis in human lung cancercells.[J]. Oncol Rep,2012,28(3):1117-1125.
    [96] Wu Q., Yang Q., Lourenco E., et al. Interferon-lambda1induces peripheral bloodmononuclear cell-derived chemokines secretion in patients with systemic lupuserythematosus: its correlation with disease activity.[J]. Arthritis Res Ther,2011,13(3):R88.
    [97] Steen H. C., Gamero A. M. Interferon-lambda as a potential therapeutic agent in cancertreatment.[J]. J Interferon Cytokine Res,2010,30(8):597-602.
    [98] Serra C., Biolchini A., Mei A., et al. Type III and I interferons increase HIV uptake andreplication in human cells that overexpress CD4, CCR5, and CXCR4.[J]. AIDS Res HumRetroviruses,2008,24(2):173-180.
    [99] Mennechet F. J., Uze G. Interferon-lambda-treated dendritic cells specifically induceproliferation of FOXP3-expressing suppressor T cells.[J]. Blood,2006,107(11):4417-4423.
    [100] Jordan W. J., Eskdale J., Boniotto M., et al. Modulation of the human cytokine response byinterferon lambda-1(IFN-lambda1/IL-29).[J]. Genes Immun,2007,8(1):13-20.
    [101] Pekarek V., Srinivas S., Eskdale J., et al. Interferon lambda-1(IFN-lambda1/IL-29)induces ELR(-) CXC chemokine mRNA in human peripheral blood mononuclear cells, in anIFN-gamma-independent manner.[J]. Genes Immun,2007,8(2):177-180.
    [102] Jordan W. J., Eskdale J., Srinivas S., et al. Human interferon lambda-1(IFN-lambda1/IL-29) modulates the Th1/Th2response.[J]. Genes Immun,2007,8(3):254-261.
    [103] Srinivas S., Dai J., Eskdale J., et al. Interferon-lambda1(interleukin-29) preferentiallydown-regulates interleukin-13over other T helper type2cytokine responses in vitro.[J].Immunology,2008,125(4):492-502.
    [104] Morrow M. P., Pankhong P., Laddy D. J., et al. Comparative ability of IL-12and IL-28B toregulate Treg populations and enhance adaptive cellular immunity.[J]. Blood,2009,113(23):5868-5877.
    [105] Velan B., Cohen S., Grosfeld H., et al. Isolation of bovine IFN-alpha genes and theirexpression in bacteria.[J]. Methods Enzymol,1986,119:464-474.
    [106] Ohmann H. B., Gilchrist J. E., Babiuk L. A. Effect of recombinant DNA-produced bovineinterferon alpha (BoIFN-alpha1) on the interaction between bovine alveolar macrophagesand bovine herpesvirus type1.[J]. J Gen Virol,1984,65(Pt9):1487-1495.
    [107]崔子寅,王艺萌,唐博,等.内含肽和麦芽糖结合蛋白介导具有抗病毒活性牛α干扰素的表达[J].中国兽医科学,2012(5):523-528.
    [108]刘颖,刘华兰,杨利国,等.奶牛α-干扰素克隆表达和生物学活性分析[J].中国兽医学报,2010(11):1495-1499.
    [109]孙仰峰,李文辉,李勐,等.牛IFN-α基因高效表达及纯化的研究[J].中国预防兽医学报,2008(11):889-892.
    [110]张永红,王长法,杨少华,等.重组鲁西黄牛α干扰素融合蛋白的表达及其抗病毒活性研究[J].生物工程学报,2007(4):730-734.
    [111]蔡进忠,史喜菊,李少勇,等.牦牛IFN-α基因的克隆表达及抗病毒活性研究[J].中国兽医杂志,2006(10):3-6.
    [112]李学仁,曹瑞兵,李斐,等.奶牛α干扰素在毕赤酵母中的分泌表达及其生物活性测定[J].中国生物工程杂志,2005(9):64-68.
    [113]汪明,史喜菊,夏春.荷斯坦奶牛IFN-α基因的克隆表达和抗病毒活性分析[J].中国兽医杂志,2004(1):13-17.
    [114]史喜菊,夏春,汪明.晋南黄牛IFN-α基因的克隆、表达及抗病毒活性研究[J].中国预防兽医学报,2004(2):31-35.
    [115] Gachet Y., Carpentier G., Chousterman S. Purification of an atypical bovine interferoninduced in response to heat shock in bovine cultured cells. Characterization in comparisonwith the classical alpha, beta and gamma interferon.[J]. Biochimie,1997,79(1):43-52.
    [116] Ahl R., Gottschalk M. Production and purification of bovine interferon beta.[J]. MethodsEnzymol,1986,119:211-220.
    [117] Da Silva LF, Jones C. Infection of cultured bovine cells with bovine herpesvirus1(BHV-1)or Sendai virus induces different beta interferon subtypes.[J]. Virus Res,2011,157(1):54-60.
    [118]葛金英,解希帝,丁玉林,等.牛β-干扰素在新城疫病毒La Sota疫苗株中的高效稳定表达及抗病毒活性检测[J].黑龙江畜牧兽医,2009(19):1-3.
    [119]陈伟业,肇慧君,王喜军,等.重组杆状病毒表达牛β干扰素及其生物学活性研究[J].微生物学报,2007(6):992-996.
    [120] Chen W. Y., Zhao H. J., Wang X. J., et al.[Expression of recombinant bovinebeta-interferon by baculovirus system and evaluation of its bioactivity].[J]. Wei Sheng WuXue Bao,2007,47(6):992-996.
    [121] Cerretti D. P., McKereghan K., Larsen A., et al. Cloning, sequence, and expression ofbovine interferon-gamma.[J]. J Immunol,1986,136(12):4561-4564.
    [122] Gaertner F. H., Babiuk L. A., Mutwiri G., et al. Amended recombinant cells (ARCs)expressing bovine IFN-gamma: an economical and highly effective adjuvant system.[J].Vaccine,2009,27(9):1377-1385.
    [123] Shi X. J., Wang B., Zhang C., et al. Expressions of Bovine IFN-gamma andfoot-and-mouth disease VP1antigen in P. pastoris and their effects on mouse immuneresponse to FMD antigens.[J]. Vaccine,2006,24(1):82-89.
    [124]陈祥,徐正中,时振华,等. γ-干扰素试验和皮试变态反应对检测奶牛结核病的比较[J].中国人兽共患病学报,2011(2):97-100.
    [125]胡文婷,曹瑞,张旭霞,等.牛结核γ干扰素ELISA检测方法的建立及应用[J].中国预防兽医学报,2011(2):122-125.
    [126]张喜悦,呼西旦,杨经纬,等. γ-干扰素试验及比较皮试在结核污染牛群的应用研究[J].中国人兽共患病学报,2010(01).
    [127]钱琨,尹天燕,赵士学,等.胶体金免疫层析检测牛结核γ干扰素方法的建立[J].中国动物传染病学报,2010(1):45-50.
    [128]李彤,张以芳,罗佳琴.牛γ-干扰素在牛结核检测中的研究应用[J].中国畜牧兽医,2006(11):53-57.
    [129]徐正中,陈祥,单锋丽,等.牛γ干扰素的表达及其抗病毒活性测定[J].生物工程学报,2011(2):269-276.
    [130]刘思莹,葛兰云,徐宗香,等.牛IFN-γ基因的原核表达及其产物卵黄抗体的制备[J].中国兽医杂志,2010(2):31-33.
    [131]李川,谭亚娣,陈颖钰,等.牛IFN-γ原核表达、单克隆抗体制备及其ELISA检测方法的建立[J].生物工程学报,2007(1):40-45.
    [132] Gentilomi G., Lelli R., D'Angelo M., et al. Expression of bioactive recombinant bovineinterferon-gamma using baculovirus.[J]. New Microbiol,2006,29(1):19-24.
    [133] Murakami K., Uchiyama A., Kokuho T., et al. Production of biologically activerecombinant bovine interferon-gamma by two different baculovirus gene expression systemsusing insect cells and silkworm larvae.[J]. Cytokine,2001,13(1):18-24.
    [134] Perez-Martin E., Weiss M., Diaz-San Segundo F., et al. Bovine type III interferonsignificantly delays and reduces the severity of foot-and-mouth disease in cattle.[J]. J Virol,2012,86(8):4477-4487.
    [135]柴玉波.大肠杆菌表达系统表达载体的类型及其研究进展[J].国外医学(分子生物学分册),1997(04):160-162.
    [136]朱红裕,李强.外源蛋白在大肠杆菌中的可溶性表达策略[J].过程工程学报,2006(1):150-155.
    [137]方敏,黄华樑.包涵体蛋白体外复性的研究进展[J].生物工程学报,2001(6):608-612.
    [138]龙建银,王会信.外源基因在大肠杆菌中表达的研究进展[J].生物化学与生物物理进展,1997,24(2):126-132.
    [139]田飞鹏,曹轶梅,卢曾军,等.杆状病毒介导外源基因在哺乳动物细胞中表达的研究进展[J].微生物学通报,2009(12):1876-1881.
    [140]张国强,刘志刚,俞炜源.哺乳动物细胞高效表达系统研究进展[J].生物技术通讯,2005(01):56-59.
    [141]刘定燮,周晓巍,黄培堂.哺乳动物细胞表达系统及其研究进展[J].生物技术通讯,2003(04):308-311.
    [142]杨梅,温真,林丽玉,等.毕赤酵母蛋白表达系统研究进展[J].生物技术通报,2011(4):46-51.
    [143]关波,金坚,李华钟.改良毕赤酵母分泌表达外源蛋白能力的研究进展[J].微生物学报,2011(7):851-857.
    [144] Damasceno L. M., Huang C. J., Batt C. A. Protein secretion in Pichia pastoris and advancesin protein production.[J]. Appl Microbiol Biotechnol,2012,93(1):31-39.
    [145]张勇,毛若雨,胡小媛,等.信号肽与分泌通路在毕赤酵母表达异源蛋白中的作用机制[J].中国饲料,2013(1):13-17.
    [146]张倩,宋海峰.毕赤酵母N-糖基化改造的研究进展[J].中国新药杂志,2008(14):1206-1208.
    [147]王黎明,王琦,梅汝鸿.巴斯德毕赤酵母表达系统研究进展[J].微生物学杂志,2004(2):42-45.
    [148]欧阳立明,张惠展,张嗣良,等.巴斯德毕赤酵母的基因表达系统研究进展[J].生物化学与生物物理进展,2000,27(2):151-154.
    [149] Ghosalkar A., Sahai V., Srivastava A. Secretory expression of interferon-alpha2b inrecombinant Pichia pastoris using three different secretion signals.[J]. Protein Expr Purif,2008,60(2):103-109.
    [150] Zhang W., Liu C. P., Inan M., et al. Optimization of cell density and dilution rate in Pichiapastoris continuous fermentations for production of recombinant proteins.[J]. J Ind MicrobiolBiotechnol,2004,31(7):330-334.
    [151] Gao M. J., Li Z., Yu R. S., et al. Methanol/sorbitol co-feeding induction enhanced porcineinterferon-alpha production by P. pastoris associated with energy metabolism shift.[J].Bioprocess Biosyst Eng,2012,35(7):1125-1136.
    [152] Shi Q. Q., Hao Y. Y., Wu K. H., et al.[The effect of induction temperature on aggregationof consensus interferon-alpha expressed by Pichia pastoris].[J]. Sheng Wu Gong Cheng XueBao,2006,22(2):311-315.
    [153] Wu D., Chu J., Hao Y. Y., et al. Incomplete protein disulphide bond conformation anddecreased protein expression result from high cell growth during heterologous proteinexpression in Pichia pastoris.[J]. J Biotechnol,2012,157(1):107-112.
    [154] Wu D., Chu J., Wang Y., et al.[Influence of methanol concentration on purificationrecovery of consensus interferon-a produced by Pichia pastoris].[J]. Sheng Wu Gong ChengXue Bao,2011,27(12):1789-1796.
    [155] Salunkhe S., Soorapaneni S., Prasad K. S., et al. Strategies to maximize expression ofrightly processed human interferon alpha2b in Pichia pastoris.[J]. Protein Expr Purif,2010,71(2):139-146.
    [156] Wu D., Hao Y. Y., Chu J., et al. Inhibition of degradation and aggregation of recombinanthuman consensus interferon-alpha mutant expressed in Pichia pastoris with complex mediumin bioreactor.[J]. Appl Microbiol Biotechnol,2008,80(6):1063-1071.
    [157] Hao Y., Chu J., Wang Y., et al. The inhibition of aggregation of recombinant humanconsensus interferon-alpha mutant during Pichia pastoris fermentation.[J]. Appl MicrobiolBiotechnol,2007,74(3):578-584.
    [158] Zhao H. L., Xue C., Wang Y., et al. Disruption of Pichia pastoris PMR1gene decreases itsfolding capacity on human serum albumin and interferon-alpha2b fusion protein.[J]. Yeast,2008,25(4):279-286.
    [159] Chang S. H., Gong X., Yang Z. Y., et al.[Expression in Pichia pastoris and properties ofhuman serum albumin-interferon alpha2b chimera].[J]. Sheng Wu Gong Cheng Xue Bao,2006,22(2):173-179.
    [160] Xie Y. F., Chen H., Huang B. R. Expression, purification and characterization of humanIFN-lambda1in Pichia pastoris.[J]. J Biotechnol,2007,129(3):472-480.
    [161] Cheng M., Si Y., Yang Y., et al. Recombinant human interleukin28B: anti-HCV potency,receptor usage and restricted cell-type responsiveness.[J]. J Antimicrob Chemother,2012,67(5):1080-1087.
    [162] Huang L., Cao R. B., Wang N., et al. The design and recombinant protein expression of aconsensus porcine interferon: CoPoIFN-alpha.[J]. Cytokine,2012,57(1):37-45.
    [163] Gao M. J., Zheng Z. Y., Wu J. R., et al. Improvement of specific growth rate of Pichiapastoris for effective porcine interferon-alpha production with an on-line model-basedglycerol feeding strategy.[J]. Appl Microbiol Biotechnol,2012,93(4):1437-1445.
    [164] Jin H., Liu G., Dai K., et al. Improvement of porcine interferon-alpha production byrecombinant Pichia pastoris via induction at low methanol concentration and lowtemperature.[J]. Appl Biochem Biotechnol,2011,165(2):559-571.
    [165] Zhang D., Sun L., Yang L., et al.[Fusion expression and bioactivity comparison of porcinebeta-defensin-2and porcine interferon-gamma in Pichia pastoris].[J]. Sheng Wu Gong ChengXue Bao,2010,26(12):1652-1659.
    [166] Cao R. B., Zhou G. D., Zhou H. X., et al.[Secreted expression of porcine interferon beta inPichia pastoris and its inhibition effect on the replication of Pseudorabies virus].[J]. WeiSheng Wu Xue Bao,2006,46(3):412-417.
    [167] Huang Z. Q., Hu H. Y., Chen X. L., et al.[Secreted expression of porcineinterferon-gamma gene in Pichia pastoris].[J]. Sheng Wu Gong Cheng Xue Bao,2005,21(5):731-736.
    [168] Gradoboeva A. E., Padkina M. V.[Nuclear localization sequence of bovinegamma-interferon provides translocation of recombinant protein to yeast Pichia pastoriscell nucleus].[J]. Tsitologiia,2010,52(10):863-868.
    [169] Wedlock D. N., Doolin E. E., Parlane N. A., et al. Effects of yeast expressed recombinantinterleukin-2and interferon-gamma on physiological changes in bovine mammary glandsand on bactericidal activity of neutrophils.[J]. J Dairy Res,2000,67(2):189-197.
    [170] Peek S. F., Bonds M. D., Gangemi D. G., et al. Evaluation of cytotoxicity and antiviralactivity of recombinant human interferon alfa-2a and recombinant human interferon alfa-B/Dhybrid against bovine viral diarrhea virus, infectious bovine rhinotracheitis virus, andvesicular stomatitis virus in vitro.[J]. Am J Vet Res,2004,65(6):871-874.
    [171] Luscombe C. A., Huang Z., Murray M. G., et al. A novel Hepatitis C virus p7ion channelinhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism withrecombinant interferon-alpha-2b and nucleoside analogues.[J]. Antiviral Res,2010,86(2):144-153.
    [172] Zhang N., Liu Z., Han Q., et al. Xanthohumol enhances antiviral effect of interferonalpha-2b against bovine viral diarrhea virus, a surrogate of hepatitis C virus.[J].Phytomedicine,2010,17(5):310-316.
    [173]Pagliaccetti N. E., Eduardo R., Kleinstein S. H., et al. Interleukin-29functions cooperativelywith interferon to induce antiviral gene expression and inhibit hepatitis C virus replication.[J].J Biol Chem,2008,283(44):30079-30089.
    [174]Shindo H., Maekawa S., Komase K., et al. IL-28B (IFN-lambda3) and IFN-alphasynergistically inhibit HCV replication.[J]. J Viral Hepat,2013,20(4):281-289.
    [175] Schweizer M., Matzener P., Pfaffen G., et al."Self" and "nonself" manipulation ofinterferon defense during persistent infection: bovine viral diarrhea virus resists alpha/betainterferon without blocking antiviral activity against unrelated viruses replicating in its hostcells.[J]. J Virol,2006,80(14):6926-6935.
    [176] Peek S. F., Bonds M. D., Schaele P., et al. Evaluation of antiviral activity and toxicity ofrecombinant human interferon alfa-2a in calves persistently infected with type1bovine viraldiarrhea virus.[J]. Am J Vet Res,2004,65(6):865-870.
    [177] Peterhans E., Schweizer M. BVDV: a pestivirus inducing tolerance of the innate immuneresponse.[J]. Biologicals,2013,41(1):39-51.
    [178] Hilton L., Moganeradj K., Zhang G., et al. The NPro product of bovine viral diarrhea virusinhibits DNA binding by interferon regulatory factor3and targets it for proteasomaldegradation.[J]. J Virol,2006,80(23):11723-11732
    [179] Szymanski M. R., Fiebach A. R., Tratschin J. D., et al. Zinc binding in pestivirus N(pro) isrequired for interferon regulatory factor3interaction and degradation.[J]. J Mol Biol,2009,391(2):438-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700