八氧化三铀和金属铀表层结构的XRD研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用X射线衍射(XRD)并结合Rietveld方法较系统地对金属铀和八氧化三铀(U_3O_8)在不同温度、压力条件下的表层氧化情况和结构变化进行了分析研究。主要的研究结果如下:
     对U_3O_8的相变和结构随温度的变化进行的分析研究结果显示:在300℃附近U_3O_8发生了相变,由底心正交结构(空间群为Amm2)的低温相转变为简单六方结构(空间群为P-62m)的高温相。在两种相结构各自稳定的温度范围内,U_3O_8的点阵参数以及衍射峰半高宽(FWHM)出现了有规律的变化,这种变化表明U_3O_8的晶体结构依赖于环境温度的变化。文中利用FWHM的变化对材料中的微晶尺寸和点阵畸变进行了一定的分析。
     对金属铀表层在大气环境中的氧化情况进行分析研究,结果表明:所有温度条件下,金属铀的氧化都是在表层形成一定厚度的UO_(2+x),只有在较高的温度条件下(如300℃)氧化物才会进一步转化为U_3O_8。室温~150℃下的氧化动力学曲线表明:金属铀表层氧化形成UO_(2+x)的过程中存在一个转折点,转折点前后形成两个反应阶段:非线性增长阶段和线性增长阶段。200℃条件下,金属铀表层所形成的氟化钙结构的UO_(2+x)的点阵参数a_0和FWHM随着氧化时间的增加逐渐减小,然后出现稳定。室温~150℃下金属铀表层的氧化反应符合阿累尼乌斯公式,活化能计算结果为52.4kJ/mol。
     在论文中,对金属铀表层在纯氧环境中和低压(100~300Pa)环境中的氧化情况也进行了分析研究,结果表明:相同温度条件下,金属铀表层的氧化产物与大气环境中相同,点阵参数和FWHM的变化也很相似。但氧化速度有所差异,100℃条件下,第一阶段的氧化速率都比大气环境中的氧化速率慢。对比各种实验环境,发现300℃下U_3O_8的生成速度随着氧气分压的减小而变慢。
The structure of triuranuim octaoxide (U3O8) and the oxidation of uranium metal were studied by X-ray diffraction (XRD) and Rietveld method in different partial pressure of oxygen and temperatures. The conclusions are reported as following:
    The structure change of triuranium octaoxide (U3O8) was studied by XRD at ambient atmosphere at temperature form 25 ℃ to 850℃. There are two kind of phases of U3O8 in the temperature range studied, and the transformation temperature is about 300℃. The low temperature phase is orthorhombic with space group Amm2, and it change to another phase with better symmetry around 300℃. Another phase, the high temperature phase, is hexagonal with space group P-62m, which is stable from 300℃ to 800℃. The lattice parameter and the full width of half maximum (FWHM) of XRD peaks of U3O8 were also investigated at different temperature, and it were found that they change with the temperature under rules. The mean crystallite size and microstrain of U3O8 in different temperature were also discussed in the paper.
    The specimens of uranium flat were heated in air, oxygen or low pressure, to investigate the formation of UO2+x and U3O8 on the surface layer of specimens. The processes of oxidation to UO2+x and U3O8 were analyzed by XRD to determine the extent of surface layer oxidation and the structure of oxidations. The XRD patterns were fitted by Rietveld method to refine the structure of different phases and to calculate quantificationally. The results indicate that the kinetic expression for the formation of UO2+x in 25-150℃ was initially nonlinear, but switched to linear at long reaction times, that is, there exist two stages in the UO2 growth kinetics: nonlinear portion and linear portion. The activation energy is about 52.4kJ/mol. The lattice parameter, a0, and FWHM of the UO2+x (fluorite type) decrease initially and stabilize later as the increasing of reaction times at 200℃. The UO2+X is progressively replaced by U3O8 as the oxidation proceeds at 300℃. The formation rate of U3O8 is insensitive to the partial pre
    ssure of oxygen, and decreased with the pressure of oxygen drop.
引文
1 王英华.X光衍射技术基础[M].北京:原子能出版社.1993.
    2 丘利,胡玉和.X射线衍射技术及设备[M].北京:冶金工业出版社.2001.
    3 唐为华,梁敬魁,刘泉林.X射线粉末衍射法测定LaFe_9Si_4的晶体结构[J].自然科学进展,1997;7(5):537~543.
    4 章福平,胡祝庆,纪佩珍.用粉末X射线衍射数据确定晶胞参数的方法[J].纺织高校基础科学学报,1996;9(2):170~173.
    5 李家宝.利用X射线衍射和方法确定金属工艺表面的应力-应变关系[J].材料研究学报,1998;12(3):284~290.
    6 李祖刚,杨南如.X射线粉末衍射数据的整体分解法及其应用[J].南京华工学院学报,1994;16(2):77~82.
    7 邵建达,范正修,殷功杰,袁利祥.薄膜结构分析中的低角X射线衍射方法[J].物理学报,1996;43(6):958~964.
    8 Yumiko Nakamura, Etsuo Akiba. In-situ X-ray diffraction study on LaNi_5 and LaNi_(4.75)Al_(0.25) in the initial activation process[J]. J. Alloys. and Comp., 2000; 308: 309~318.
    9 Temst K, Van Bael MJ, C. Van Haesendonck, et al. An X-ray diffraction study of interface roughness and diffusion in Ag/Pd superlattices. Thin Solid Films, 1999, 342: 174~179
    10 Jyung-dong lin, Jenq-gong Duh. The use of X-ray in profile analysis to investigate crystallite size and microstrain for zirconia powders[J]. J. Mater. Sci., 1997; 32: 5779~5790.
    11 Ying DY, Zhang DL. Solid-state reactions between Cu and At during Mechanical alloying and heat treatment[J]. J. Alloys. and Comp., 2000; 311: 275~282.
    12 Yuh Fukai, Yasuyuki Ishii, Yoshihiro Goto, et al. Formation of superabundant vacancies in Pd-H alloys[J]. J. Alloys. and Comp., 2000; 313: 121~132.
    13 Lisnyak VV, Stus NV, Slobodyanik NS, et al. Crystal structure of a novel cubic pyrophosphate WP_2O_7[J]. J. Alloys. and Comp., 2000; 309: 83~87.
    14 Héctor J Dorantes-Rosales, Víctor M López-Hirata, José L Méndez-Velzquez, et al. Microstructure characterization of phase transformations in a Zn-22 wt%A1-2 wt%Cu alloy by XRD, SEM, TEM and FIM[J]. J. Alloys. and Comp., 2000; 313: 154~160.
    15 Brunet F, Germi P, Pernet M. Microstructural study of boron doped diamond films by X-ray diffraction profiles analysis[J]. Thin Solid Films, 1998; 322: 143~147.
    16 Nicholas M. Martyak, kerry Drake. Peak-profile analysis of electroless nickel coations[J]. J. Alloys. and Comp., 2000; 312: 30~40.
    17 Iwanaga H, Kunishige A, Takeuchi S. Anisotropic thermal expansion in wurtzite-type crystals[J]. J. Mater. Sci., 2000; 35: 2451~2454.
    18 Tavares CJ, Rebouta L, Alves EJ. Structure determination of (Ti, A1) N/Mo multilayers. Thin Solid Films, 2000; 373: 278~292.
    
    
    19 Ming Xu, Chunlin Chai, Guangming Luo, et al. Structural study of Ni_(80)Fe_(20)/Cu multilayers by X-ray diffraction[J]. Thin Solid Film, 2000; 375: 205~209.
    20 Huang L, Gong H, Gao W. Phase Change of sputtered LaNi_5 thin films due to hydrogenation[J]. Thin Solid Film, 1999; 339: 78~81.
    21 Joseph J, Vimala TM, Sivasubramanian V, et al. Structural investigations on Pb(Zr_xTi_(1-x)O_3 solid solutions using the X-ray Rietveld method[J]. J. Mater. Sci., 2000; 35: 1571~1575.
    22 Chanda A, De M. X-ray characterization of the microstructure of α-CuTi alloys by Rietveld's method[J]. J. Alloys. and Comp., 2000; 313: 104~114.
    23 Yumiko Nakamura, Keisuke Oguro, Itsuki uehara, et al. X-ray diffraction peak broadening and lattice strain in LaNi_5-based alloys[J]. J. Alloys. and Comp., 2000; 298: 138~145.
    24 Bloch J, Atzmony U, Dariel MP, Mintz MH, et al. Surface spectroscopy studies of the oxidation behavior of uranium[J]. J. Nucl. Mater., 1982; 105: 196~200.
    25 Vandermeer RA,邱从亮译.铀和铀合金的组分、结构及相变概述[J].特种材料,1987;1:1~17.
    26 稀有金属手册(下册)[M].北京:冶金工业出版社,1985:1121.
    27 Harry L YaKel. A review of x-ray diffraction studies in uranium alloys.[s. 1.], 1974.
    28 Lehmann J and Hills RJ. Proposed nomenclature for phases in uranium alloys[J]. J. Nucl. Mater., 1960; 2: 261-268.
    29 Anagnostides M, Baschwitz R, and Cobmbie C. Metastable phases in uranium-titanium alloys[J]. Rev. Met., 1966; 63: 163~168.
    30 Virot A. Characteristics of a 6wt% zirconium-uranium alloy[J]. J. Nucl. Mater., 1962; 5: 109~119.
    31 Anagnostides M, Colombie M, and Monti H. Metastable phases in uranium-niobium alloys[J]. J. Nucl. Mater., 1964; 11: 67~76.
    32 Hills R F, Howlett BW, and Butcher BR. Further studies on the decomposition of the γ phase in uranium-low molybdenum alloys[J]. J. Less-common Metals, 1963; 5: 369~373.
    33 Hills RF, Howlett BW, Butcher BR, and Stewart D. The effect of cooling rate and composition on the transformation of the gamma-phase in uranium ruthenium alloys (with an appendix on ruthenium as a grain-refining element) [J]. J. Nucl. Mater., 1965; 16: 109~128.
    34 Jackson RJ, and Larsen WL. Transformations and structures in the uranium-rhenium system Ⅰ—Metastable α', α", γ~0 structures[J]. J Nucl. Mater., 1967; 21: 263~276.
    35 Jong-Won Choi, Rod J. McEachern, et al. The effect of fission products on the rate of U_3O_8 formation in SIMFUEL oxidized in air at 250℃[J]. J. Nucl. Mater., 1996; 230: 250~258.
    36 Peter Taylor, Donald D Wood and A Michael Duclos. The early stages of U_3O_8 formation on unirradiated CANDU UO_2 fuel oxidized in air at 200-300℃[J]. J. Nucl. Mater., 1992; 189: 116~123.
    37 Janeczek J, and Ewing RC. X-ray powder diffraction study of annealed uraninite[J]. J. Nucl. Mater. 1991; 185: 66~71.
    38 Jain GC and Ganguly C. Evaluation of phases in Pu-C-O and (U, P)-C-O systems low x-ray diffractometry and chemical analysis[J]. J. Nucl. Mater., 1993; 207: 169~176.
    
    
    39 Tempest P A, Tucker PM, Tyler JW. Oxidation of UO_2 fuel pellets in air at 503 and 543K studied using x-ray photoelectron spectroscopy and x-ray diffraction[J]. J. Nucl. Mater., 1988; 151: 251~268.
    40 Ravi Verma. Study of homogenization and cation interdiffusion in mixed UO_2-PuO_2 compacts by x-ray diffracti0n[J]. J. Nucl. Mater., 1984; 120: 65~73.
    41 Shisuke Yamanaka, Masahiro Karsura, et al. On the reaction between UO_2 and Zr[J]. J. Nucl. Mater., 1985; 130: 524~533.
    42 Hiroshi Ohashi, Etsuzo Noda and Takashi Morozumi. Oxidation of uranium dioxide[J]. J. Nucl. Sci. and technol., 1974; 11: 445~451.
    43 Peter Taylor, Elizabeth A. Burgess and Derrek G. Owen. An x-ray diffraction study of the formation of β-UO_(2.33) on UO_2 pellet surfaces in air 229 to 275℃[J]. J. Nucl. Mater., 1980; 88: 153~160.
    44 Silvio Rainho Teixeira and Kengo Imakuma. High temperature x-ray diffraction study of the U_4O_9 formation on UO_2 sintered plates[J]. J. Nucl. Mater., 1991; 178: 33~39.
    45 Hayward PJ, Evans DG, Toylor P, et al. Oxidation of uranium in steam[J]. J. Nucl. Mater., 1994; 217: 82~92.
    46 Janusz Janeczek, Rodney C. Ewing, Larry E. Thomas. Oxidation of uranium: Does tetragonal U_3O_7 Occur in nature? [J]. J. Nucl. Mater., 1993; 207: 177~191.
    47 Pillai CGS, Dua AK, Ta j R Thermal conductivity of U_3O_8 from 300 to 1100K[J]. J. Nucl. Mater., 2001; 288: 87~91.
    48 Whillock S, Pearce JG. A method of determining the distribution of U_4O_9 in oxidized UO_2[J]. J. Nucl. Mater., 1990; 175: 121~128.
    49 Tsuneo Matsui, Keiji Naito. Phase Relation and Defect Structures of Nonstoichiometric U_4O_(9±y) and UO_(2+x) at High Temperatures[J]. J. Nucl. Mater., 1975; 56: 327~335.
    50 Hoekstra H R, Siegel S, Fuchs L H, etc. The uranium-oxygen system: UO_(2.5) to U_3O_8[J]. The Journal of Phys. Chem., 1955; 59: 136~138.
    51 Rand MH, Kubascheveki O. The thermodynamic properties of uranium compounds[J]. Oliver and Boyd, 1963.
    52 Hayward PJ, Evans DG, Taylor P, et al. Oxidation of Uranium in argon-25% Oxygen at 190-610℃ [J]. J. Nucl. Mater., 1992; 187: 215~222.
    53 Masaki N. Similarities of the atomic arrays in U_4O_9 and γ-U_3O_7 structures[J]. J. Nucl. Mater., 1981; 101: 229~231.
    54 Sampath S, Chadha A, Chackraburtty DM. O/M variations in uranium oxides by X-ray diffractometry[J]. 1981; B. A. R. C.-1140.
    55 Dharwadkar SR, Chandrasekharaiah MS, Karkhanavala MD. A physicochemical study of the uranium-oxygen system between UO_(2.65) and UO_(2.67)[J]. J. Nucl. Mater., 1978; 71: 268~276.
    56 McEachern RJ. A review of kinetic data on the rate of U_3O_7 formation on UO_2[J]. J. Nucl. Mater., 1997; 245: 283~247.
    57 McEachern RJ, Choi JW, Kol M, et al. Determination of the activation energy for the formation of U_3O_8 on UO_2[J]. J. Nucl. Mater., 1997; 249: 58~69.
    
    
    58 Takeo Fujino, Hiroaki Tagawa, Takeo Adachi. On some factors affecting the monstoichiometry in U_3O_8[J]. J. Nucl. Mater., 1981; 93~103.
    59 Allen GC, Tempest PA, Tyler JW. The formation of U_3O_8, on crystalline UO2[J]. Philosophical Magazine B, 1986; 54(2): L67~L71.
    60 Herak R. The crystal structure of the high temperature modification of U_3O_8[J]. Acta Cryst., 1969; B25: 2505~2508.
    61 Loopstra BO. The structure of β-U_3O_8[J]. Acta Cryst., 1970; B26: 656~657.
    62 Loopstra BO. Neutron diffraction investigation of U_3O_8[J]. Acta Cryst. 1964; 17: 651~654.
    63 Rundle RE, Baenziger NC, Wilson AS, et al. The structures of carbides, nitrides and oxides of uranium[J]. J. Am. Chem. Sot., 1948; 70: 99~105.
    64 Wilkinson WD. Uranium metallurgy-Volume Ⅱ: Uranium corrosion and alloys[M]. Interscience Publishers, New York, London, 1962.
    65 利弗森E主编,叶恒强,等译.材料科学与技术丛书(第2A卷)—材料的特征检测(第1部分)[M].科学出版社,1998.
    66 余永宁,毛卫民.材料的结构.北京:冶金工业出版社,2001.
    67 顾永达.RieWeld法在多晶结构分析中的最新进展[A].理学X射线衍射仪用户协会论文选集[C],1999;12(1):1~11.
    68 Rafaja D, Lengauer W, Ettmayer P, et al. Rietveld analysis of the ordering in V_8C_7[J]. J. Alloys. and Comp., 1998; 269: 60~62.
    69 Hill RJ, Howard CJ. Quantitative phase analysis form neutron powder diffraction data using the Rietveld method[J]. J. Appl. Cryst., 1987; 20: 467~474.
    70 Wemer PE, Eriksson L, Westdahl M. TREOR a semi-exhaustive trial-and-error powder indexing program for all symmetries[J]. J. Appl. Cryst., 1985; 18: 367~370.
    71 Hill RJ, Howard CJ. The effect of profile step width on the determination of crystal structure parameters and estimated standard deviations by X-ray Rietveld analysis[J]. J. Appl. Cryst., 1986; 19: 10~18.
    72 Wiles DB, Young RA. A new computer program for Rietveld analysis of X-ray diffraction patterns[J]. J. Appl. Cryst., 1981; 14: 149~151.
    73 汪小琳,傅依备,谢仁寿.金属铀在CO气氛中表面反应的X射线光电子能谱研究[J].核技术,1998;21(4):233-237.
    74 杨江荣.金属铀表面经CO处理后的抗腐蚀性研究[D].中国工程物理研究院硕士论文.2001.
    75 汪小琳,傅依备,谢仁寿,等.八氧化三铀的X射线光电子能谱研究[J].核技术,1997;20(4):210~214.
    76 国际粉末衍射标准卡片数据库(PDF-2).
    77 Allen G C, Tempest P A, Tyler J W. Characterisation of crystalline UO_2 oxidised in 1 Tort of oxygen at 25, 225 and 300℃. J. Chem. Soc., Faraday Trans. 1, 1988; 84(11): 4061~4072.
    78 McGillivray G W.陈正译.铀金属在干湿空气中氧化的动力学和机理研究.特种材料,1999;1:41~62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700