Ti-Zr-Ni(-Pd)二十面体准晶的形成与储氘特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bergman型结构的Ti-Zr-Ni准晶具有储氢量高且吸氢快的优点,是一种极具潜力的储氢材料,有望在氢能或氘氚核聚变能领域得到广泛应用。然而,不同Ti-Zr-Ni准晶的储氢量的报道结果差异较大,且它们的放氢动力学特性较差,对其应用不利。Pd是一种重要的准晶合金组元,具有优良的吸放氢动力学特性。为此,本论文研究了Pd添加对Ti-Zr-Ni准晶合金的结构与氘化性能的影响。
     首先,利用吸铸方法制备合金,结合X射线衍射技术(XRD)、金相技术(OM)、透射电镜技术(TEM)、差示量热扫描计(DSC)等手段,研究Ti-Zr-Ni-Pd准晶的形成特征,探究Pd加入对合金的准晶形成能力、原子结构、电子结构与热力学稳定性的影响。其次,采用自制的气固反应系统、程序升温热脱附仪与X射线光电子谱仪(XPS)等技术,对照研究Ti-Zr-Ni准晶在Pd添加前后的氘化行为,并探讨Ti-Zr-Ni基准晶的储氢共性。得到结论如下:
     1)Ti40Zr40Ni20、Ti45Zr38Ni17、Ti41.5Zr41.5Ni17三种合金的准晶形成能力与制备过程中的冷却速率密切相关。合金熔体直接冷却将形成MgZn2结构C14 Laves相(简称C14相)。在吸铸条件下,主要形成二十面体准晶相(IQC),另有少量六角结构的α-Ti、体心立方β-(Ti, Zr)与C14等杂相析出。适量Pd替代Ti或Zr使前两个合金完全形成IQC相,其中Ti40Zr40Ni20合金中Ti与Zr的可替代量分别为2at.%~4at.%与2 at.%,而Ti45Zr38Ni17合金中Ti、Zr可替代量为4 at.%~6at.%与4at.%。Ti的可替代性优于Zr,主要因为前者与Pd原子尺寸更接近。
     2)Pd添加对Ti-Zr-Ni合金的原子密堆性、电子结构与热稳定性产生影响。由于Pd原子尺寸适中,促使合金的原子密堆性提高,趋向于得到更高配位数的拓扑密堆相,其电子结构偏离准晶相的稳定机制—Hume-Rothery规律。Pd替代Ti使准晶的热力学稳定性降低,初始相转变温度下降约300℃,这与Pd原子较小而易扩散有关。
     3)室温下,双相合金Ti40Zr40Ni20、Ti41.5Zr41.5Ni17、Ti45Zr38Ni17的饱和吸氘浓度分别达到11.6mmol/g、12.9mmol/g、12.7mmol/g。其中,Ti40Zr40Ni20的储氢能力超过文献报道值的2倍,而Ti41.5Zr41.5Ni17的储氢量接近最高文献值的65%。Ti36Zr40Ni20Pd4与Ti39Zr38Ni17Pd6纯准晶合金的饱和吸氘浓度约11.0mmol/g(~4.4wt.%),相当于氘金属比D/M=1.56,跟Bergman团簇中空位数目与金属原子数目的比值很接近。这反映出,理想的Bergman型Ti-Zr-Ni基准晶应该具有一致的储氘(或氢)能力,且接近11mmol/g(相当于2.2wt.%H2)。报道结果的差异,很大程度上源于准晶合金中各种结构缺陷的影响。
     4) Ti-Zr-Ni(-Pd)准晶吸氘后未观察到TiD2与ZrD2等产物析出。氘在Ti-Zr-Ni基准晶中绝大部分是固溶在四面体间隙位置。约4.4wt%的固溶氘,仅引起低于7%的准晶格膨胀,不会导致准晶相发生相转变,这反映出准晶在氢化过程中较强的结构稳定性。氘溶解引起的化学位移揭示氘占位更靠近Zr与Ti,这与它们之f间的化学亲和力较大密切相关。
     5) Ti-Zr-Ni基准晶吸氢快速而放氢困难的特性进一步得到证实。其吸氘(或氢)行为符合一级反应特征,吸氘快的原因是氘原子在准晶中的扩散激活能较低。Pd的添加可提高Ti-Zr-Ni准晶的吸氘动力学性能,使得Ti36Zr40Ni20Pd4准晶的室温吸氘速率常数达到0.03s-1,接近Ti40Zr40Ni20的两倍。放氘(或氢)困难应该与准晶格的收缩有关。
     6)初步结果显示,Ti-Zr-Ni-Pd准晶的氘离解坪台压与U、Ti相差不大,揭示出氘在Ti-Zr-Ni基准晶中的高稳定性。Ti36Zr40Ni20Pd4准晶的氕氘分离因子接近0.8,显示出负的氢同位素效应,这反映出氚相比于氕、氘在Ti-Zr-Ni-Pd准晶合金中更高的热力学稳定性。
Bergman-type Ti-Zr-Ni quasicrystals can absorb hydrogen rapidly in a large quantity, and have been regarded as a highly promising hydrogen storage material, which are unveiling their potential applications in fields of hydrogen energy or deuterium-tritium nuclear fusion energy. However, their potential applications have been restricted due to the reported large differences in hydrogen storage quantity in literature for various Ti-Zr-Ni quasicrystals and inferior hydrogen desorption kinetics. Palladium, as an important alloying element for quasicrystal formation, possesses superior hydrogen absorption/desorption kinetics. Therefore, this thesis aims to study the effect of Pd addition on the structures and deuterium storage/release properties of Ti-Zr-Ni quasicrystals.
     Firstly, the formation characteristics of Ti-Zr-Ni-Pd quasicrystals prepared by suction-casting method were investigated by using X-ray diffraction (XRD), Optical Microscopy (OM), Transition Electron Microscopy (TEM), Differential Scanning Calorimeter (DSC) apparatus. The effects of Pd addition on quasicrystal formation, atomic structure, electronic structure and thermodynamic stability were also evaluated. Secondly, the deuteration behaviors before/after Pd addition of Ti-Zr-Ni quasicrystalline alloys were studied by using home-made solid-gas reaction systems, Temperature Programmed Desorption (TPD) and X-ray Photoelectron Spectroscopy (XPS) techniques. Besides, the common features of hydrogen storage for Ti-Zr-Ni based quasicrystals were discussed.
     The results are concluded as follows:
     1) The quasicrystal forming abilities of Ti4oZr4oNi2o, Ti45Zr38Ni17 and Ti41.5Zr41.5Ni17 are close related to the cooling rate during preparation. Directly cooling the alloy melt led to the formation of a MgZn2-typed C14 Laves phase (abbr. C14), while suction casting it resulted in the formation of a main phase of icosahedral quasicrystal(IQC) together with the presence of a few hcp a-Ti, bcc (3-(Ti, Zr) and C14 phases. Moderate Pd substitution for Ti/Zr conduced to the formation of a single IQC phase in the Ti4oZr4oNi2o and Ti45Zr38Ni17 alloys. In the former alloy, the substitution quantity is 2 at.%-4 at.% for Ti and 2 at.% for Zr, while it is 4 at.%-6 at.% for Ti and 4at.% for Zr in the latter. Ti is more prone to be substituted than Zr, which should be owing to that Ti possesses the comparable atom size with that of Pd.
     2) Pd addition affects the close packness of atoms, electronic structure and thermal stability of Ti-Zr-Ni quasicrystals. Possessing a moderate atom size, Pd can increase the topological close packness of atoms, which makes the alloys tend to form a topologically densely-packed phase having higher coordination number and the deviation of the electronic structure from the Hume-Rothery rule for quasicrystal formation. The substitution of Pd for Ti caused Ti-Zr-Ni quasicrystals less stable and resulted in a decrease of 300℃for the initial phase transformation temperature, which could be attributed to easier diffusion of Pd with a smaller atom size.
     3) At room temperature, double-phase alloys Ti40Zr40Ni20, Ti41.5Zr41.5Ni17 and Ti45Zr38Ni17 can load deuterium up to 11.6 mmol/g,12.9 mmol/g and 12.7 mmol/g, respectively. The first value is 2 times larger than that in literature while the second is about 65% of the result reported in literature. For Ti36Zr4oNi2oPd4 and Ti39Zr38Ni17Pd6 containing a pure IQC phase, the saturated deuterium concentration is 11.0 mmol/g (-4.4wt%), which corresponds to the deuterium/metal ratio D/M of 1.56, close to the number ratio between the interstices and the metal atoms in Bergman-type cluster. Thus, it can be deduced that ideal Bergman-type Ti-Zr-Ni-based quasicrystals must possess almost the same deuterium (hydrogen)-absorbing ability~11.0mmol/g (corresponding to 2.2 wt.%). The difference in the amount of deuterium (or hydrogen) storage must lie in the variation in structure defects in the quasicrystal alloys.
     4) TiD2 and ZrD2 phases were not observed in the Ti-Zr-Ni(-Pd) quasicrystal after deuterium absorption. Most of the deuterium atoms are located in the tetragonal interstice. A dissolution of about 4.4 wt.% of deuterium caused the expansion of quasicrystal lattice of less than 7% without phase transformation, which reflects the structural stability of quasicrystal during hydrogenation. The chemical shift due to deuterium dissolution reveals that deuterium atoms are preferentially located near Zr and Ti, which is related to their strong chemical affinities.
     5) The characteristics of rapid absorption and difficult desorption for Ti-Zr-Ni based quasicrystals were confirmed in the study. The hydrogen absorption obeys the law of 1-stage reaction. Rapid absorption should be due to the low activation energy for deuterium diffusion in the quasicrystals. Pd addition improved the kinetic property of deuterium absorption for Ti-Zr-Ni quasicrystals, resulting in that the deuterium absorption velocity constant for Ti36Zr40Ni20Pd4 (0.03s-1) is almost two times of that for Ti40Zr40Ni20. The difficulty in deuterium desorption should be related to the shrink of the quasicrystal lattice.
     6) Preliminary results show similar deuterium-release equilibrium pressure between Ti-Zr-Ni-Pd quasicrystal and U/Ti, revealing the high thermo-stability of deuterium in the quasicrystals. In addition, due to the negative hydrogen isotope effect of Ti-Zr-Ni-Pd quasicrystals with H-D separate factor of about 0.8, higher thermodynamic stability of tritium in quasicrystals than that of hydrogen/deuterium can be expected.
引文
1 陆洪文,费奔.二维准晶准周期结构的算术理论[J].自然科学进展,2004;14(11):1322-1324.
    2 周公度,郭可信.晶体和准晶体的衍射[M].北京:北京大学出版社,1999: 211.
    3 Friedel J,Denoyer F. Diffraction des rayons X par un mono-quasicristal Al-Li-Cu[J]. CR Academc Science Paris, series Ⅱ,1987; 305B:171.
    4 Friedel J. Do metallic quasicrystals and associated Frank and Kasper phases follow the Hume Rothery rules?[J]. Helvetica Physica Acta,1988; 61:538-556.
    5 董闯.准晶材料[M].北京:国防工业出版社,1998.
    6 Dong C, Perrot A, Dubois J M, Belin E. Hume-Rothery phases with constant e/a value and their related electronic properties in Al-Cu-Fe (-Cr) quasicrystalline systems[J]. Materials Science Forum,1994; 150-151:403-416.
    7 羌建兵.三元准晶形成判据及其在Al-Fe-Ni、Ti-Zr-Ni系中的应用[D].博士论文.大连:大连理工大学,2002
    8 Qiang J B, Huang H G, Wang Y M, Jiang N, Dong C. Compositional characteristic of ternary quasicrystals in Ti-Zr-Ni system[J]. Acta Metallurgica Sinica,2004; 40(7):677-682.
    9 Qiang J B, Huang H G, Wang Q, Xia J H, Dong C. E/a-constant characteristics in Ti-Zr-Ni-Cu glass-forming system[J]. Acta Metallurgica Sinica,2006; 42(6):561-564.
    10 Wang Y M, Qiang J B, Wong C H, Shek C H, Dong C. Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion[J]. Journal of Materials Research,2003; 18(3):642-648.
    11 黄火根.基于团簇的三元准晶成分判据及其在Ti-Zr-TM系中的应用[D].硕士论文.大连:大连理工大学,2005
    12 Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses[J]. Journal of Physics D,2007; 40(15):R273-R291.
    13 Dong C, Qiang J B, Wang Y M, Jiang N, Wu J, Thiel P. Cluster-based composition rule for stable ternary quasicrystals in Al-(Cu, Pd, Ni)-TM systems[J]. Philosophical Magazine,2006; 86(3-5):263-274.
    14 Dong C, Chen W R, Wang Y G, Qiang J B, Wang Q, Lei Y, Calvo-Dahlborg M, Dubois J M. Formation of quasicrystals and metallic glasses in relation to icosahedral clusters[J]. Journal of Non-Crystalline Solids,2007; 353:3405-3411.
    15 Wang H B, Wang Q, Dong C, Yuan L, Xu F, Sun L X. Composition design for Laves phase-related body-centered cubic-V solid solution alloys with large hydrogen storage capacities[J]. Journal of Physics:Condensed Matter,2008; 20:114110-114114.
    16 王玲玲,黄维清,邓辉球,李小凡,唐黎明,赵立华.准晶合金形成规律的探讨[J].稀有金属材料与工程,2003;32(11):889-892.
    17 桂许春,廖树帜,谢浩文,张邦维.第四过渡族金属基准晶形成规律的抛物线模型[J].稀有金属材料与工程,2006;35(7):1080-1084.
    18 黄火根,羌建兵,董闯Ti/Zr基准晶研究进展[J].材料导报网刊,2007;2(1):17-22.
    19 Takasaki A, Kikuchi K, Furuya Y. Hydrogen absorption and desorption by quasicrystalline and related approximant powders produced by mechanical alloying in the Mg-Al-Zn system[J]. Materials Transactions JIM,2000; 41(2):306-311.
    20 Tsai A P, Niikura A, Aoki K, Masumoto T. Hydrogen absorption in an icosahedral ZnMgY alloy[J]. Journal of Alloys and Compounds,1997; 253:90-93.
    21 Viano A M, Stroud R M, Gibbons P C, McDowell A F, Conradi M S, Kelton K F. Hydrogenation of Titanium-based quasi-crystals[J]. Physical Review B,1995; 51(17):12026-12029.
    22 Kelton K F, Hartzell J J, Hennig R G, Huett V T, Takasaki A. Hydrogen storage in Ti-Zr and Ti-Hf-based quasicrystals[J]. Philosophical Magazine,2006; 86(6-8):957-964.
    23 Huett V T,Kelton K F. Formation and hydrogen adsorption properties of Ti-Hf-Ni quasicrystals and crystal approximants[J]. Philosophical Magazine Letters,2002; 82(4):191-198.
    24 Gibbons P C, Hennig R G, Huett V T, Kelton K F. Ti-Zr-Ni and Ti-Hf-Ni quasicrystals and approximants as hydrogen storage alloys[J]. Journal of Non-Crystalline Solids, 2004; 334:461-465.
    25 Zander D, Tal-Gutelmacher E, Jastrow L, Koster U, Eliezer D. Hydrogenation of Pd-coated Zr-Cu-Ni-Al metallic glasses and quasicrystals[J]. Journal of Alloys and Compounds,2003; 356:654-657.
    26 Zander D, Leptien H, Koster U, Eliaz N, Eliezer D. Hydrogenation of Zr-based metallic glasses and quasicrystals[J]. Journal of Non-Crystalline Solids,1999; 250-252:893-897.
    27 Zander D, Koster U, Khare V. Hydrogen induced transformations in Zr-Cu-Ni-Al quasicrystals[J]. Journal of Non-Crystalline Solids,2004; 334:247-252.
    28 Zander D, Koster U, Eliaz N, Eliezer D, Plachke D. Influence of hydrogen on the thermal stability of Zr-based quasicrystals[A]. In:Quasicrytals Proceedings of the Symposium [C], Boston, MA, USA,1998:49-53.
    29 Zander D, Koster U, Eliaz N, Eliezer D. Influence of hydrogen on formation and stability of Zr-based quasicrystals[J]. Materials Science and Engineering A,2000; 294:112-115.
    30 Koster U, Zander D, Triwikantoro, Hydrogenation and oxidation of Zr-based metallic glasses, quasicrystalline or nanocrystalline alloys, in Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2.2000, Trans Tech Publications Ltd:Zurich-Uetikon. p.203-212.
    31 Huett V T, Zander D, Jastrow L, Majzoub E H, Kelton K F, Koster U. Gaseous hydrogen charging of Zr-Cu-Ni-Al glasses and quasicrystals[J]. Journal of Alloys and Compounds,2004; 379(1-2):16-22.
    32 Eliaz N, Eliezer D, Abramov E, Zander D, Koster U. Hydrogen evolution from Zr-based amorphous and quasicrystalline alloys[J]. Journal of Alloys and Compounds, 2000;305(1-2):272-281.
    33 Kelton K F, Kim W J, Stroud R M. Stable Ti-based quasicrystal[J]. Applied Physics Letters,1997; 70(24):3230-3232.
    34 Qiang J B, Yu Z W, Huang H G, Nan J, Chuang D. Mechanical properties of the single-phase Ti-Zr-Ni quasicrystalline alloy at room-temperature[J]. Acta Physica Sinica,2005; 54(4):1909-1913.
    35 Qiang J B, Wang Y M, Yuan L J, Li D J, Dong C, Ren M F. Mechanical properties of the as-cast Ti-Zr-Ni bulk quasicrystalline alloys[J]. Acta Metallurgica Sinica,2004; 40(1):62-66.
    36 Qiang J B, Wang Y M, Wang D H, Kramer M, Thiel P, Dong C. Quasicrystals in the Ti-Zr-Ni alloy system[J]. Journal of Non-Crystalline Solids,2004; 334:223-227.
    37 Qiang J B, Wang Y M, Wang D H, Kramer M, Dong C A. Ti-Zr-Ni bulk quasicrystals prepared by casting[J]. Philosophical Magazine Letters,2003; 83(7):467-472.
    38 Qiang J B, Wang Y M, Wang D H, Dong C. On the phase transformation of bulk as-cast Ti40Zr40Ni20 quasicrystal[J]. Rare Metal Materials and Engineering,2004; 33(9):949-952.
    39 Shechtman D, Blech I, Gratias D. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters,1984; 53(20):1951-1953.
    40 Kim J Y, Kim W J, Gibbons P C, Kelton K F, Yelon W B.-Neutron diffraction determination of hydrogen atom locations in the alpha(TiCrSiO) 1/1 crystal approximant[J]. Physical Review B,1999; 60(6):3912-3919.
    41 Libbert J L,Kelton K F. The role of oxygen in the formation of Titanium-based icosahedral phases and crystal approximants[J]. Philosophical Magazine Letters,1995; 71(2):153-159.
    42 Libbert J L, Kelton K F, Goldman A I, Yelon W B. Structural determination of a 1/1 rational approximant to the icosahedral phase in Ti-Cr-Si Alloys[J]. Physical Review B,1994; 49(17):11675-11681.
    43 Hennig R G, Majzoub E H, Carlsson A E, Kelton K F, Henley C L, Yelon W B, Misture S. Structural modelling of the Ti-Zr-Ni quasicrystal[J]. Materials Science and Engineering A,2000; 294:361-365.
    44 Hennig R G, Kelton K F, Carlsson A E, Henley C L. Structure of the icosahedral Ti-Zr-Ni quasicrystal[J]. Physical Review B,2003; 67(13):134202-1-13.
    45 Kim W J, Gibbons P C, Kelton K F, Yelon W B. Structural refinement of 1/1 bcc approximants to quasicrystals:Bergman-type W(TiZrNi) and Mackay-type M(TiZrFe)[J]. Physical Review B,1998; 58(5):2578-2585.
    46 Kim J Y, Gibbons P C, Kelton K F. Hydrogenation of Pd-coated samples of the Ti-Zr-based icosahedral phase and related crystalline phases[J]. Journal of Alloys and Compounds,1998; 266:311-317.
    47 Viano A M, Majzoub E H, Stroud R M, Kramer M J, Misture S T, Gibbons P C, Kelton K F. Hydrogen absorption and storage in quasicrystalline and related Ti-Zr-Ni alloys[J]. Philosophical Magazine,1998; 78(1):131-141.
    48 Tal-Gutelmacher E, Eliaz N, Eliezer D, Zander D, Jastrow L, Koster U. Absorption/desorption behavior of hydrogen and deuterium in a Pd-coated Zr-based amorphous alloy[J]. Materials Science and Engineering A,2003; 358(1-2):219-225.
    49 Viano A M. Formation of titanium-based quasicrystalline hydrides and the characterization of semiconductor nanoparticles[D]. Ph.D. St.Louis, MO:Washington University,1996.
    50 Takasaki A, Zajac W, Okuyama T, Szmyd J S. Electrochemical hydrogenation of Ti45Zr38Nil7 quasicrystal and amorphous powders produced by mechanical alloying[J], Journal of the Electrochemical Society,2009; 156(7):A521-A526.
    51 Takasaki A, Okuyama T, Szmyd J S. Synthesis of Ti-Zr-Ni amorphous and quasicrystal powders by mechanical alloying, and their electrochemical properties[J]. Journal of Materials Research,2010; 25(8):1575-1582.
    52 Takasaki A,Kelton K F. Hydrogen storage in Ti-based quasicrystal powders produced by mechanical alloying[J]. International Journal of Hydrogen Energy,2006; 31(2):183-190.
    53 Takasaki A,Kelton K F. High-pressure hydrogen loading in Ti45Zr38Nil7 amorphous and quasicrystal powders synthesized by mechanical alloying[J]. Journal of Alloys and Compounds,2002; 347(1-2):295-300.
    54 Takasaki A, Huett V T, Kelton K F. Hydrogenation of Ti-Zr-Ni quasicrystals synthesized by mechanical alloying[J]. Journal of Non-Crystalline Solids,2004; 334:457-460.
    55 Takasaki A, Huett V T, Kelton K F. Hydrogen pressure-composition isotherms for Ti45Zr38Ni17 amorphous and quasicrystal powders produced by mechanical alloying[J]. Materials Transactions,2002; 43(8):2165-2168.
    56 Takasaki A, Han C H, Furuya Y, Kelton K F. Synthesis of amorphous and quasicrystal phases by mechanical alloying of Ti45Zr38Nil7 powder mixtures, and their hydrogenation[J]. Philosophical Magazine Letters,2002; 82(6):353-361.
    57 Liu B Z, Liu D M, Wu Y M, Li L Q, Wang L M. Hydrogen absorption in Ti45Zr35Ni17Cu3 amorphous and quasicrystalline alloy powders[J]. International Journal of Hydrogen Energy,2007; 32(13):2429-2433.
    58 Liu B Z, Wang J L, Wu Y M, Wang L M. Crystallographic and electrochemical characteristics of Ti45Zr35Ni17Cu3 quasicrystalline alloy ball-milled with nickel powder[J]. Electrochimica Acta,2006; 51(17):3586-3591.
    59 Liu B Z, Wu Y M, Wang L M. Crystallographic and electrochemical properties of ball-milled quasicrystalline Ti45Zr35Ni17Cu3 alloy with 20 mass% Ni[J]. Journal of Alloys and Compounds,2006; 425(1-2):296-301.
    60 Liu B Z, Wu Y M, Wang L M. Crystallographic and electrochemical characteristics of icosahedral quasicrysyalline Ti45-xZr35-xNil7+2xCu3 (x=0-8) powders[J]. Journal of Power Sources,2006; 162(1):713-718.
    61 Liu B Z, Wu Y M, Wang L M. Electrochemical properties of amorphous and icosahedral quasicrystalline Ti45Zr35Ni17Cu3 powders[J]. Journal of Power Sources, 2006;159(2):1458-1463.
    62 Liu B Z, Wu Y M, Wang L M. Kinetic and electrochemical properties of icosahedral quasicrystalline Ti45Zr35Ni17Cu3 powder[J]. International Journal of Hydrogen Energy,2006; 31(10):1394-1400.
    63 Huang H G, Dong P, Yin C, Zhang P C, Bai B, Dong C. Characterization and hydrogen absorption at low temperature of suction-cast Ti45Zr38Ni17 quasicrystalline alloy[J]. International Journal of Hydrogen Energy,2008; 33(2):722-727.
    64 Huang H G, Li R, Yin C, Zheng S T, Zhang P C. Hydrogenation Study of Suction-cast Ti40Zr40Ni20 Quasicrystal[J]. International Journal of Hydrogen Energy,2008; 33:4607-4611.
    65 Kocjan A, McGuiness P J, Kobe S. Desorption of hydrogen from Ti-Zr-Ni hydrides using a mass spectrometer[J]. International Journal of Hydrogen Energy,2010; 35(1):259-265.
    66 Nicula R, Jianu A, Biris A R, Lupu D, Manaila R, Devenyi A, Kumpf C, Burkel E. Hydrogen storage in icosahedral and related phases of rapidly solidied Ti-Zr-Ni alloys[J]. The European Physical Journal B,1998; 3:1-5.
    67 Majzoub E H, Kim J Y, Hennig R G, Kelton K F, Gibbons P C, Yelon W B. Cluster structure and hydrogen in Ti-Zr-Ni quasicrystals and approximants[J]. Materials Science and Engineering A,2000; 294:108-111.
    68 Kim J Y, Hennig R, Huett V T, Gibbons P C, Kelton K F. Hydrogen absorption in Ti-Zr-Ni quasicrystals and 1/1 approximants[J]. Journal of Alloys and Compounds, 2005; 404:388-391.
    69 Stroud R M, Viano A M, Gibbons P C, Kelton K F, Misture S T. Stable Ti-based quasicrystal offers prospect for improved hydrogen storage[J]. Applied Physics Letters, 1996;69(20):2998-3000.
    70 Kelton K F. Ti/Zr/Hf-based quasicrystals[J]. Materials Science and Engineering A, 2004; 375:31-37.
    71 Rud A D, Schmidt U, Zelinska G M, Lakhnik A M, Perekos A E, Kolbasov G Y, Danilov M O. Peculiarities of structural state and hydrogen storage properties of Ti-Zr-Ni based intermetallic compounds[J]. Journal of Alloys and Compounds,2005; 404:515-518.
    72 Sadoc A, Itie J P, Polian A, Kim J Y, Kelton K F. Icosahedral Ti-Zr-Ni and hydrogenated Ti-Zr-Ni quasicrystals under high pressure[J]. Materials Science and Engineering A,2000; 294:804-805.
    73 Coddens G, Viano A M, Gibbons P C, Kelton K F, Kramer M J. Time-of-flight neutron scattering study of hydrogen dynamics in icosahedral Ti45Zr38Ni17H150 quasicrystals[J]. Solid State Communications,1997; 104(3):179-182.
    74 Sadoc A, Kim J Y, Kelton K F. Local atomic order in icosahedral Ti-Zr-Ni and hydrogenated Ti-Zr-Ni quasicrystals[J]. Philosophical Magazine A,1999; 79(11):2763-2772.
    75 Sadoc A, Majzoub E H, Huett V T, Kelton K F. Local structure in hydrogenated Ti-Zr-Ni quasicrystals and approximants[J]. Journal of Alloys and Compounds,2003; 356:96-99.
    76 Foster K, Leisure R G, Shaklee J B, Kim J Y, Kelton K F. Ultrasonic study of hydrogen motion in a Ti-Zr-Ni icosahedral quasicrystal and a 1/1 bcc crystal approximant[J]. Physical Review B,2000; 61(1):241-245.
    77 Faust K R, Pfitsch D W, Stojanovich N A, McDowell A F, Adolphi N L, Majzoub E H, Kim J Y, Gibbons P C, Kelton K F. NMR second-moment study of hydrogen sites in icosahedral Ti45Zr38Nil7 quasicrystals[J]. Physical Review B,2000; 62(17):11444-11449.
    78 Sinning H R, Scarfone R, Golovin I S. Mechanical spectroscopy of hydrogen-absorbing quasicrystals[J]. Materials Science and Engineering A,2004; 370(1-2):78-82.
    79 Azhazha V, Grib A, Khadzhay G, Malikhin S, Merisov B, Pugachov A. Diffusion of hydrogen in Ti-Zr-Ni quasicrystals[J]. Journal of Physics,2003; 15:5001-5008.
    80 Shastri A, Majzoub E H, Borsa F, Gibbons P C, Kelton K F. H-1 NMR study of hydrogen in quasicrystalline Ti0.45-xVxZr0.38Ni0.17[J].Physical Review B,1998; 57(9):5148-5153.
    81 Liu B Z, Zhang Y D, Mi G F, Zhang Z, Wang L M. Crystallographic and electrochemical characteristics of Ti-Zr-Ni-Pd quasicrystalline alloys[J]. International Journal of hydrogen energy,2009; 34:6925-6929.
    82 Liu B Z, Liu J J, Mi G F, Zhang Z, Wu Y M, Wang L M. Crystallographic and electrochemical characteristics of melt-spun Ti-Zr-Ni-La alloys[J]. Journal of Alloys and Compounds,2009; 475:881-884.
    83 Poon S J, Drehman A J, Lawless, K.R. Glassy to icosahedral phase transformation in Pd-U-Si alloys[J]. Physical Review Letters,1985; 55(21):2324-2328.
    84 Tsai A P, Inoue A, Masumoto T. Chemical order in an Al-Pd-Mn icosahedral quasi-crystal[J]. Philosophical Magazine Letters,1990; 62(2):95-100.
    85 Tsai A P, Inoue A, Yokoyama Y, Masumoto T. New icosahedral alloys with superlattice order in the Al-Pd-Mn system prepared by rapid solidification[J]. Philosophical Magazine Letters,1990; 61(1):9-14.
    86 Zhu A Y,Fan T Y. Elastic analysis of a Griffith crack in icosahedral quasicrystal Al-Pd-Mn quasicrystal[J]. International Journal of Modern Physics B,2009; 23(16):3429-3444.
    87 Krajci M, Hafner J, Ledieu J, Fournee V, McGrath R. Quasiperiodic Pb monolayer on the fivefold i-Al-Pd-Mn surface:Structure and electronic properties[J]. Physical Review B,2010; 82(8):085417-085427.
    88 Krajci M,Hafner J. Magnetism and chemical ordering in icosahedral Al-Pd-Mn quasicrystal[J]. Physical Review B,2008; 78(22):224207-224223.
    89 Ledieu J, Krajci M, Hafner J, Leung L, Wearing L H, McGrath R, Lograsso T A, Wu D, Fournee V. Nucleation of Pb starfish clusters on the five-fold Al-Pd-Mn quasicrystal surface[J]. Physical Review B,2009; 79(16):165430-165439.
    90 Sato Y, Unal B, Lograsso T A, Thiel P A, Schmid A K, Duden T, Bartelt N C, McCarty K F. Periodic step arrays on the aperiodic i-Al-Pd-Mn quasicrystal surface at high temperature[J]. Physical Review B,2010; 81 (16):161406-161409.
    91 Smerdon J A, Cross N, Dhanak V R, Sharma H R, Young K M, Lograsso T A, Ross A R, McGrath R. Structure and reactivity of Bi allotropes on the fivefold icosahedral Al-Pd-Mn quasicrystal surface[J]. Journal of Physics,2010; 22(34):345002-345008.
    92 Saida J, Matsushita M, Li C, Inoue A. Formation of icosahedral quasicrystalline phase in Zr70Nil0M20(M=Pd, Au, Pt) ternary metallic glasses[J]. Applied Physics Letters, 2000; 76(24):3558-3560.
    93 Saida J, Matsushita M, Inoue A. Nano icosahedral phase in Zr-Pd and Zr-Pt binary alloys[J]. Journal of Alloys and Compounds,2002; 342(1-2):18-23.
    94 Saida J, Matsushita M, Inoue A. Stability of supercooled liquid and transformation Behavior in Zr-based glassy alloys[J]. Materials Transactions JIM,2002; 43(8):1937-1946.
    95 Saida J, Matsushita M, Inoue A. Nano icosahedral phase formation by crystallization of Zr-based ternary glassy alloys[J]. Scripta Materialia,2001; 44(8-9):1245-1249.
    96 Saida J, Matsushita M, Inoue A. Transformation of nano icosahedral phase in Zr65A17.5Nil0Cu17.5-xPdx (x=0 to 4) glassy alloys[J], Materials Transactions JIM, 2001; 42(8):1497-1501.
    97 Saida J, Matsushita M, Inoue A. Transformation kinetics of nano icosahedral phase from a supercooled liquid region in Zr70Pd30 binary glassy alloy[J]. Journal of Applied Physics,2000; 88(10):6081-6083.
    98 Saida J, Matsushita M, Inoue A. Precipitation of an icosahedral quasicrystal phase in Zr70Pd20Ni10 amorphous alloy[J]. Materials Transactions JIM,2000; 41(4):543-546.
    99 Saida J, Imafuku M, Sato S, Matsubara E, Inoue A. Local structure in quasicrystal-forming Zr-based metallic glasses correlated with a stability of the supercooled liquid state[J]. Journal of Non-Crystalline Solids,2007; 353:3704-3708.
    100 Saida J, El-Eskandarany M S, Inoue A. Change in primary phase from icosahedral quasicrystal to fcc Zr2Ni by mechanical disordering in Zr-Al-Ni-Cu-Pd glassy alloy[J]. Scripta Materialia,2003; 48(9):1397-1401.
    101 Luo D L, Xiong Y F, Song J F, Huang G Q. Hydrogen isotope separation factor measurement for single stage hydrogen separators and parameters for a large-scale separation system[J]. Fusion Science and Technology,2005; 48(1):156-158.
    102 Luo D L, Shen C S, Meng D Q. Hydrogen isotope separation factors on palladium alloy membranes[J]. Fusion Science and Technology,2002; 41 (3):1142-1145.
    103 Wileman R,Harris I. The permeability behavior of protium and deuterium through a Pd-7.5% Ymembrane[J]. Journal of Less-Common Metals,1985; 109:367-374.
    104 Ruda M, Crespo E A, de Debiaggi S R. Atomistic modeling of H absorption in Pd nanoparticles[J]. Journal of Alloys and Compounds,2010; 495(2):471-475.
    105 Delmelle R, Bamba G, Proost J. In-situ monitoring of hydride formation in Pd thin film systems[J]. International Journal of Hydrogen Energy,2010; 35(18):9888-9892.
    106 Goltsova M V. Reverse hydride transformations in the Pd-H system[J]. International Journal of Hydrogen Energy,2006; 31(2):223-229.
    107 Skryabina N E, Fruchart D, Miraglia S, Dos Santos D S. Time-temperature stability of the Pd-H system[J]. Hydrogen in Matter,2006; 837:118-124.
    108 蒋国强,罗德礼,陆光达,孙灵霞.氚和氚的工程技术[M].北京:国防工业出版社,2007.
    109 唐涛,陆光达.钯-氢体系的物理化学性质[J].稀有金属,2003;27(2):278-285.
    110 钱晓静,熊义富,黄国强,饶咏初.钯在氢同位素分离和纯化工艺中的应用[J].原子能科学技术,2006;40(2):212-217.
    111 Lasser R,Powell G L. Solubility of H,D and T in Pd at low concentrations[J]. Physical Review B,1986; 34(2):578-586.
    112 Lasser R,Klatt K H. Solubility of hydrogen isotopes in palladium[J]. Physical Review B,1983;28(2):748-758.
    113 Lasser R. Solubility of protium,deuterium and tritium in the alpha-phase of palladium[J]. Physical Review B,1984; 29(8):4765-4768.
    114 Lasser R. Palladium-Tritium system[J]. Physical Review B,1982; 26(6):3517-3519.
    115 张桂凯,陆光达,陈淼,李炬.海绵钯表面CO、02、CH4的吸附特性[J].稀有金属材料与工程,2009;38(3):541-544.
    116 张桂凯,陆光达,陈虎翅,银陈.C0,02,CH4,C02对钯柱氢氘排代性能的影响[J].稀有金属材料与工程,2007;36(6):1106-1109.
    117 张桂凯,陆光达,陈虎翅,银陈.CO,02,H20预覆盖对钯吸氢速率的影响[J].稀有金属,2006;30(1):47-51.
    118 张桂凯,陆光达.PdY85Ru0.19合金吸放氢氘特性[J].稀有金属材料与工程,2005;34(7):1098-1101.
    119 唐涛,陈虎翅,陆光达,郭文胜.钯氢化物同位素分离因子的理论计算与实验测定[J].稀有金属,2004;28(4):652-656.
    120 宋江锋,罗德礼,熊义富,刘从贤.钯合金膜分离器的氕氘分离系数测定[J].原子能科学技术,2006;40(6):667-670.
    121 陆光达,蒋国强,李赣,汪小琳,傅依备.金属氢化物柱内氢同位素的快速排代[J].原子能科学技术,2003;37(增刊):176-180.
    122 李赣,陆光达,蒋国强.高流速下钯上氢氘的排代研究[J].核化学与放射化学,2003;25(1):18-21.
    123 李赣,陆光达,蒋国强.钯-氢体系中氢氘的排代研究[J].核化学与放射化学,2000;22(4):200-206.
    124 雷强华,罗德礼,熊义富.涂钯硅藻土的吸氢动力学[J].工程材料,2004;3(4):31-34.
    125 陈淼,陆光达,张桂凯,张延志,王小英,任大鹏.Pd粉及Pdg1.31Y8.5Ru0.19合金膜的氚老化效应[J].金属学报,2009;45(10):1277-1280.
    126 陈淼,陆光达,张桂凯,王小英,任大鹏.PdY8.5Ru0.19合金膜氚老化效应的TEM研究[J].稀有金属,2007;31(增刊):1-4.
    127 陈淼.氚老化对钯氢化物氢氘交换行为的影响[D].硕士论文.绵阳:中国工程物理研究院,2008
    128 Abell G C, Matson L K, Steinmeyer R H. Helium release from aged palladium tritide[J]. Physical Review B,1990; 41(2):1220-1223.
    129 冯开明.可控核聚变与国际热核实验堆计划[J].核电研发,2009;2(3):212-219.
    130 冯开明ITER实验包层计划综述[J].核聚变与等离子体物理,2006;26(3):161-169.
    131 黄火根,羌建兵,姜楠,董闯,李铁.铸态Ti-Zr-(Ni,Co)伪三元准晶合金研究[J].材料热处理学报,2005;26(2):6-9.
    132 Huang H G, Qiang J B, Bai B, Dong P, Zhang P C. Effect of Co substitution for Ni on the Ti-Zr-(Ni, Co) pseudo-ternary quasicrystal formation[J]. Journal of Non-Crystalline Solids,2007; 353(16-17):1670-1675.
    133 Qiang J B, Wang Q, Wang Y M, Huang H, Wu J, Dong C. Formation of e/a-constant phases in the Ti-Zr-Ni-Cu system[J]. Materials Science and Engineering A,2007; 449:565-568.
    134 Mayou D, Cyroy-lackmann F, Trambley de Laissaradiere F, Klein T. Electron properties and the role of d states in stable quasicrystals[J]. Journal of Non-Crystalline Solids,1993; 153-154:412-415.
    135 Cahn J W, Shechtman D, Gratias D. Indexing of icosahedral quasicrystal[J]. Journal of Materials Research,1986; 1:13-26.
    136 Charles K固体物理导论(Introduction to Solid State Physics)[M]北京:化学工业出版社,2006:55.
    137 Hirooka Y, Miyake M, Sano T. A Study of Hydrogen Absorption and Desorption by Titanium[J]. Journal of Nuclear Materials,1981; 96:227-232.
    138 黄利军,虞炳西,高树浚.钛吸氢和放氢动力学[J].金属功能材料,1998;5(3):124-126.
    139 王伟伟,龙兴贵Ti-Mo合金的吸放氢动力学[J].核化学与放射化学,2007;29(2):80-84.
    140 黄火根,银陈,吴江,张鹏程.铸态Ti-Zr-Ni准晶的贮氢特性[J].中国有色金属学报,2008;18(1):108-112.
    141 黄火根,吴江,张鹏程,白彬,董闯.吸铸Ti-Zr-Ni准晶棒的成分偏析[J].铸造技术,2007;28(11):1494-1497.
    142 侯增寿,卢光熙.金属学原理[M].上海:上海科学技术出版社,1990: 28.
    143 Mutschele T,Kirchheim R. Hydrogen as a probe for the average thickness of grain-boundary[J]. Scripta Metallurgica,1987; 21 (8):1101-1104.
    144 Mutschele T,Kirchheim R. Segregation and diffusion of hydrogen in grain-boundaries ofPd[J]. Scripta Metallurgica,1987; 21(2):135-140.
    145 Stafford S W,McLellan R B. Permeability of hydrogen in Ni[J]. Scripta Metallurgica, 1975; 9(11):1195-1199.
    146 Stafford S W,McLellan R B. Statistical mechanical models for interstitial solid-solutions of hydrogen in Nb, V and Ta[J]. Acta Metallurgica,1974; 22(9):1147-1153.
    147 Whiteman M B,Troiano A R. The influence of hydrogen on the stacking fault energy of an anstenitic stainless steel[J]. Physica Status Solidi,1964; 7(2):K109-K110.
    148 蒋利军,李谦,林勤,詹锋,周国治,雷霆权.制备方法对La1.5Mg17Nio.5储氢材料性能的影响[J].稀有金属材料与工程,2004;33(8):881-884.
    149 羌建兵,王英敏,袁力江,李德俊,董闯,任明法.铸态Ti-Zr-Ni准晶基合金的室温力学性能[J].金属学报,2004;40(1):62-66.
    150 羌建兵,于志伟,黄火根,姜楠,董闯Ti-Zr-Ni单相准晶合金的室温力学性能研究[J].物理学报,2005;54(4):1909-1913.
    151 Alefeld G,Volkl J, eds. Hydrogen in metals. Vol.1-2.1978, Springer-Verlag:Berlin.
    152 Hennig R G, Majzoub E H, Kelton K F. Location and energy of interstitial hydrogen in the 1/1 approximant W-TiZrNi of the icosahedral TiZrNi quasicrystal:retrievable refinement of x-ray and neutron diffraction data and density-functional calculations[J]. Physical Review B,2006; 73(18):184205-1-6.
    153 Somenkov V A, Entin I R, Chervyakov A Y, Shil'shtein S S, Chertkov A A. An unusual phase transition in vanadium deuteride V2D[J]. Soviet Physics Solid State,1971; 13(9):2595-2600.
    154 Chervyakov A Y, Entin I R, Somenkov V A, Shil'shtein S S, Chertkov A A. Order-disorder transition in VD0.8[J]. Soviet Physics Solid State,1971; 13(9):2587-2594.
    155 Shahi R R, Yadav T P, Shaz M A, Srivastava O N, Van Smaalen S. Effect of processing parameter on hydrogen storage characteristics of as quenched Ti45Zr38Ni17 quasicrystalline alloys[J]. International Journal of Hydrogen Energy,2011; 36:592-599.
    156 Morozov A Y, Isaev E I, Vekilov Y K. Charge state and diffusion of hydrogen in the TiZrNi icosahedral alloy[J]. Physics of the Solid State,2006; 48(9):1625-1628.
    157 Sadoc A, Kim J Y, Kelton K F. Extended X-ray absorption fine-structure study of the hydrogen location in a Ti-Zr-Ni icosahedral quasicrystal and a 1/1 bcc crystal approximant[J]. Philosophical Magazine A,2001; 81(12):2911-2924.
    158 Belin-Ferre E, Hennig R G, Dankhazi Z, Sadoc A, Kim J Y, Kelton K F. Theoretical and experimental investigation of the electronic structure of Ti-Zr-Ni and Ti-Zr-Ni:H alloys[J]. Journal of Alloys and Compounds,2002; 342(1-2):337-342.
    159 Tian Q F, Zhang Y, Wu Y. XPS study on Mg0.9-xTi0.1PdxNi (x=0.04,0.06,0.08,0.1) hydrogen storage electrode alloys after charge-discharge cycles[J]. Journal of Alloys and Compounds,2009; 484:763-771.
    160 Belin-Ferre E, Dankhazi Z, Fournee V, Sadoc A, Kim J Y, Kelton K F. Soft X-ray spectroscopy study of the electronic structure of hydrogenated Ti-Ni-Zr quasicrystal[J]. Materials Science and Engineering A,2001; 304:884-887.
    161 胡大伦,胡建华.实用无机物热力学数据手册(第二版)[M].北京:冶金工业出版 社,2002.
    162 Kehr K W, Theory of the diffusion of hydrogen in metals, in Hydrogen in Metals G Alefeld and J Volkl, Editors.1978, Springer-Verlag:Berlin p.197-226.
    163 McDowell A F, Adolphi N L, Sholl C A. Site and barrier energy distributions that govern the rate of hydrogen motion in quasicrystalline Ti45Zr38Ni17Hx [J]. Jounal of Physics,2001; 13(43):9799-9812.
    164 韩德刚,高执棣,高盘良.物理化学[M].北京:高等教育出版社,2001.
    165 郑华,刘实,马爱华,王隆保.Ti系合金的室温吸氢平衡压力[J].材料研究学报,2003;17(6):590-596.
    166 李嵘,孙颖,薛炎,郭文胜.老化氚化铀的解吸等温线测定[J].核化学与放射化学,2004;26(2):114-117.
    167 Fukada S, Tokunaga K, Nishikawa M. Recovery of low concentration hydrogen from different gas streams with Zr2Fe particle beds[J]. Fusion Engineering and Design, 1997;36(4):471-478.
    168 Fukada S,Tokunaga K. Enhancement of hydrogen absorption rate of Zr2Fe particles by NaOH pretreatment[J]. Fusion Engineering and Design,1998; 43(2):189-197.
    169 Fukada S,Nishikawa M. Empirical expression for the pressure-composition-temperature curve of the Zr2Fe-deuterium system[J]. Journal of Alloys and Compounds,1996; 234(2):L7-L10.
    170 黄志勇,刘从贤,宋江峰,刘卫东.Zr2Fe合金的氢化及惰性气氛氚捕集性能[J].化学工程,2010;38(10):205-209.
    171 胡子龙.储氢材料[M].北京:化学工业出版社与材料科学与工程出版中心联合,2003:73-75.
    172 Naik Y, Rao G A R, Venugopal V. Zirconium-cobalt intermetallic compound for storage and recovery of hydrogen isotopes[J]. Intermetallics,2001; 9(4):309-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700