金属钪的成膜特性与吸氘性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属Sc作为贮氢材料,具有热稳定性好、固溶体中H的浓度高等特点。与其他材料相比,Sc用于中子发生器的离子源或靶膜材料时,中子产额不理想但能在较短时间里达到稳态中子产额,而且,钪氘化物薄膜经氘粒子轰击后未出现烧蚀坑现象。因此,对金属Sc的研究除了具有一定的科学意义外,还具有非常重要的实际应用价值。
     要充分发掘Sc作为储氢材料的应用价值,必须深入、系统地解决以下几个科学问题:Sc吸氘的热力学和动力学行为;Sc膜的生长特性;Sc膜的微观结构及氘化条件对其吸氘性能的影响。针对上述问题,尽管国内外进行了相关的研究,但大多数只停留在Sc吸氢的热力学性能方面,对其吸氘热力学和动力学行为等的研究少见公开文献报道;另外,目前国内外对薄膜材料的研究日益重视,但针对Sc膜的研究却少之甚少。为此,本文首先系统地研究了体材Sc吸氘的热力学和动力学行为,其次实验和理论模拟相结合研究了Sc膜的生长特性,最后,综合分析了Sc膜的微观结构对其吸氘性能、力学性能的影响。
     (1)块材Sc吸氘的热力学和动力学行为
     Sc-D系统由两相组成:α-Sc和8-SCD2,它的P-C-T曲线具有倾斜的单平台特征,平台范围为0.5-1.3。各温度T下的平衡压P符合:lnP(Pa)=(-16374.4±188.88)/T+(23.56±0.18)。氘化反应是一个放热反应,其焓变为(-136.14±1.57)kJ·mol-1D2,熵变为(-100.06±1.5)J.mol-.K-1D2。从ln[(P0-Pf)/(P-Pf)]~t的关系可知:在650-800℃时,氘化反应为一级反应,而且温度越高,反应速率越慢,从650℃时的0.0717s-1降低至800℃时的0.0130s-1,在此温度区间反应的表观活化能为(-93.87±6.22)kJ·mol-1;当温度增大至850℃时,反应背离了一级反应,在最初的50s内,ln[(P0-Pf)/(P-Pf)]~t符合指数关系,随后转变为线性关系。
     (2)实验和理论模拟相结合研究Sc膜的生长特性
     实验和理论模拟相结合证明了Sc膜的生长符合岛状生长模式。Sc膜的表面形貌随衬底温度的变化基本符合结构区域模型(SZMs),其柱状生长主要是由沉积原子的入射方向和表面能最小原理决定的,但不同衬底、不同沉积条件下Sc膜的柱状生长具有各自不同的特征。Mo基Sc膜(衬底温度最高为650℃)和Si基Sc膜(衬底温度最高为550℃)具有c轴织构的结构特征,该织构的形成是由表面能最小原理决定的。在温度低至200℃时,Si基Sc膜与衬底Si发生微弱的界面反应生成ScSi化合物,而当衬底温度增大至650℃时,Sc膜完全与衬底Si发生反应。在Sc与Si反应时,生成的第一相是单硅化物ScSi,第二相是二硅化物ScSi2。
     与衬底温度相比,改变沉积速率并不能改变薄膜的物相组成,但却对薄膜的表面粗糙度和薄膜内各衍射峰的相对峰强产生较为显著的影响。对于Mo基Sc膜,沉积速率的提高有利于降低膜材料的表面粗糙度,但过大的沉积速率在一定程度上破坏了Sc膜的(002)织构生长;在研究沉积速率对Sc膜晶粒大小的影响时发现存在着一个临界值5nm/s,小于该临界值时沉积原子倾向于被已有原子或原子团吸附,大于临界值时沉积原子则反过来对已有原子团起到轰击、破碎的作用。对于Si基Sc膜,低温下沉积速率的影响不明显,而在高温650℃时,增大沉积速率会使膜表面出现较为明显的裂纹,而且也会在很大程度上增加膜材料中衍射峰的数量,使它的多晶结构更加强烈。
     (3)Sc膜的微观结构对其吸氘性能的影响
     当除气真空度较低(8.3×10-3Pa,1.3×10-3Pa)时,相比与高温制备的Sc膜,低温制备的缺陷浓度较高、晶粒尺寸较小、致密度较低的Sc膜的吸氘量相对较低。当Sc膜的镀膜条件相同时,也即是用来吸氘的Sc膜是由同一批次蒸镀的,提高除气真空度有利于增大其吸氘量。
     当除气真空度较高(5.4×10-4Pa)时,Sc膜的微观结构对吸氘量的影响较小,但氘化后的Sc膜在微观形貌、晶粒大小和晶粒取向等方面存在着以下异同:柱状Sc晶粒经氘化后变成了多个尺寸较小的氘化物晶粒,但从整体上看仍为柱状结构。氘化后Sc膜的晶粒大小与氘化前Sc膜的晶粒大小有一定的关系:氘化前晶粒尺寸越大,氘化后反而越小;氘化前后Sc膜的物相结构之间也存在一定的关系:氘化前Sc膜的(002)择优生长越强,氘化后ScD2膜的(111)择优生长也越强,这说明了在氘化初期(111)晶面上的ScD2晶核是由(002)晶面上的Sc晶核吸附D原子而得来的。氘化过程中应力的聚集使得厚膜(28kA)氘化后膜表面有裂纹出现,而较薄的Sc膜(8kA,15kA)氘化后表面未出现裂纹。
     与体材料中D的间隙占位机制占主导地位不同,薄膜材料吸氘时D原子被缺陷、晶界捕获,即捕获机制,在氘化过程中占据了主导地位,并由此造成了氘化后膜层的明显增厚。另外,Sc膜在降温吸氘过程中P-T或P-t曲线均由以下三个阶段组成:降温造成气体体积收缩的阶段(第Ⅰ阶段)、Sc膜大量吸氘的阶段(第Ⅱ阶段)、吸氘过程结束后的体积收缩阶段(第Ⅲ阶段),其中第Ⅱ阶段又分为破坏表面氧化层的阶段(Ⅱ-1阶段)和D在Sc膜内的快速扩散阶段(Ⅱ-2阶段),Ⅱ-1阶段是整个吸氘过程的控速步骤。
     (4)衬底温度对硬度和弹性模量的影响
     衬底温度对硬度和弹性模量的影响主要是由不同温度下Sc膜的晶粒大小、致密度、择优取向和膜材料的表面状态等决定的,其中,晶粒大小是众多因素中最为关键的一个。
Although the ScD2film has a relatively low neutron emission rate, it can reach steady-state yield more quickly than other deuterides, and it also has good thermal stability and does not produce crater formation on the target surface when bombarded by a deuterium beam. So, scandium deuteride is under consideration to be a very important candidate as the D(T) ion source or target material in the neutron generator.
     In order to fully explore the high hydrogen storage property of scandium, the following scientific problems need to be solved systemically:thermodynamic and kinetic property of deuterium absorption in scandium system, the growth mechanism of Sc film, the influence of microstructure and deuterated processing on the deuterium absorption. However, most of the researches have been stayed on the thermodynamic property of hydrogen absorption in Sc, fundamental researches of the properties of deuterium absorption, the growth mechanism of Sc film, as well as the relationship between the film microstructure and the deuterium absorption are still missing. In this study, the bulk Sc and Sc film were taken as the main research objects to systematically discuss the thermodynamic and kinetic property of bulk Sc, the growth character of Sc film, and the influence of microstructure on the deuterium absorption in Sc film.
     (1) Thermodynamics and kinetics of deuterium absorption in scandium system
     Thermodynamic and kinetic characteristics of the Sc-D system are investigated as a complement to the earlier studies of the Sc-H system. A Sieverts apparatus is employed to conduct the measurements. The Sc-D system is characterized by two phase regions:the metal-rich and the deuteride phases. The equilibrium plateau relationships in the two-phase regions are determined from the Van't Hoff plots and found to be: lnP(Pa)=(-16374.4±188.88)/T+(23.56±0.18)
     The enthalpy and entropy of reaction are calculated to be (-136.14±1.57) kJ·mol-1D2and (-100.06±1.50) J·mol-1·K-1D2, respectively. From the relationship of In[(P0-Pf)/(P-Pf)] and time t, the reaction of the Sc-D system is confirmed to be a first-order reaction in the temperature range of650-800℃. The temperature has a negative effect on the reaction rate (ka), which decreases from0.0717s-1to0.0130s-1with the temperature increasing from650℃to800℃. In addition, a minus activation energy of (-93.87±6.22) kJ-mol-1is acquired. However, once increasing temperature up to850℃, the relationship of ln[(P0-Pf)/(P-Pf)] and time t firstly satisfies an exponential equation of y=-0.5471exp(-x/9.1879)+0.00272. After50 s. it begins fitting a linear equation again, indicating the various reaction mechanisms.
     (2) Research on the growth mechanism of Sc film experimentally and theoretically
     The growth of Sc films has been proved to be Volmer-Weber mode. The microstructural changes of scandium films with the substrate temperatures are consistent with the reported structure-zone models. Such columnars perpendicular to the substrate are caused by both the incidence direction of deposition atoms and the minimization of the surface free energy in [002] direction. Sc films. deposited on Mo substrate with the highest temperature650℃. as well as deposited on Si substrate at the temperature not higher than550℃, show a (002) preferred orientation. For the films on Si substrates, interface reaction has been detected at the temperature as low as200℃. and the product is monosilicide ScSi. While with the temperature increasing to650℃, Sc film reacts with the substrate Si completely, with the product ScSi and ScSi2. In addition, Sc reacts with Si to form ScSi first, then ScSi2-
     Compared with the effect of substrate temperature, changes in deposition rates make no influence on the phase structure of films and bring pronouced changes in the surface roughness and the peak intensities. For Sc films on Mo substrates, the films show smoother surfaces at the higher deposition rate, while too large deposition rate is detrimental to the growth of (002) texture. The grain sizes first increase with the increasing deposition rate and then decrease with it. The largest grain size (-246nm) is obtained at the deposition rate of5nm/s. For Sc films on Si(111) substrates, the effects of deposition rate on the morphologies and structures of Sc films are weak at lower temperature. While, at the higher temperature of650℃, we find with increasing the deposition rate, the micro cracks appear and the number of the silicide peaks increases.
     (3) Influence of microstructure of Sc film on the absorption property
     The vacuum degree in the reaction chamber makes important influence on the absorption capacity of Sc films. The atomic ratios△(D/Sc) in Sc films with fine grains, pores and defects are usually lower than those in compact Sc films with less defects and larger grains. Furthermore, improvement of the vacuum degree is advantage to increase the absorption capacity.
     At a high vacuum degree of5.4×10-4Pa, the difference in absorption capacity caused by various microstructures is slight. Though the atomic ratios△(D/Sc) are comparable, their microstructure, grain size, growth orientation, and so on show each other's character. The ScD2films retain the column structure of the original Sc films. The stronger (002) texture of Sc-metal film results in the stronger (111) texture of deuteride film, indicating that the deuteride nuclei might inherit their texture from the initial metal grains'structure. Unexpectedly, an inverse correlation appears that larger Sc-metal grains lead to smaller deuteride grains due to the improved deuterium diffusion kinetics in the more defective and fine-grained metal structure. After deuterium absorption, there are many microcracks in Sc films with thickness of28kA. while films with thickness of8kA are still unbroken.
     In Sc films. D atoms locate not only in interstitial sites, but also in the pores, grain boundaries and defects. Between the above interstitial mechanism and the capture mechanism, the capture mechanism is dominant in the Sc films, causing thickness increasing obviously. There are three stages for the relation between Pressure and Temperature (P-T) during the deuterium absorption by Sc films:physical adsorption(I), deuterium absorption in Sc films(II), volume shrinkage(III). And the second stage is divided into two stages:to destory the oxide layer(II-1), and fast diffusion of D in Sc films(II-2) acting as the rate-determining step.
     (4) Influence of substrate temperature on hardness and elastic modulus
     The grain size, film densification, grain orientation and degree of oxidation together affect the film hardness and elastic modulus. Among them, the grain size is the key factor.
引文
[1]J.E. Lennard-Jones. Processes of adsorption and diffusion on solid surfaces[J]. Transactions of the Faraday Society,1932,28:333-359.
    [2]L. Schlapbach, A. Zuttel. Hydrogen-storage materials for mobile application[J]. Nature,2001, 414(6861):353-358.
    [3]A. Zuttel. Materials for hydrogen storage[J]. Mater. Today,2003,6(9):24-33.
    [4]L. Schlapbach. Chapter 1, L. Schlapbach(Ed.) in Intermetallic Compounds I, Springer Series Topics in Applied Physics, Vol.63, Springer-Verlag,1988, p.10.
    [5]徐光宪.稀十,下册,贮氢材料[M].北京:冶金工业出版社,1995.
    [6]胡子龙.贮氢材料[M].北京:化学工业出版社,2002.
    [7]A. Zaluska, L. Zaluski, J.O. Strom-Olsen. Nanocrystalline magnesium for hydrogen storage[J]. J. Alloys Compd.,1999,288(1-2):217-225.
    [8]Z. Dehouche, R. Djaozandry, J. Goyette, T.K. Bose. Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg2Ni alloy[J]. J. Alloys Compd.,1999,288(1-2): 269-276.
    [9]易宪武.无机化学丛书.第七卷:钪、稀土元素.北京:科学出版社,1992.
    [10]彭坤,谢佑卿,彭浩,徐应红.钪、钇的电子结构和物理性质[J].中国稀土学报,2000,18(3):206-210.
    [11]R.C. Weast. CRC handbook of Chemistry and Physics[M]. Florida:CRC Press Inc.,1988.
    [12]Z.M. Azarkh, V.N. Funin. X-Ray Structural Phase Analysis of the Scandium-Hydrogen System[J]. Sov. Phys.Crystallogr.,1965,10:21-23.
    [13]R.L. Beck. Research and Development of Metal Hydrides[J]. USAEC Report, Denver Research Institute, LAR-10,1960, Sept.
    [14]M.L. Lieberman, P.G. Wahlbeck. The Thermodynamics of the Scandium-Hydrogen System[J]. J. Phys. Chem.,1965,69(10):3514-3519.
    [15]J.F. Stampfer. The Scandium-Hydrogen System[J]. Los Alamos Sci. Lab. Report, LA-3473,1966.
    [16]A.G. Beattie. Acoustic Velocity Measurements in the Metal Hydrides ScH1.99, YH1.93and ErH1.81[J]. J. Appl. Phys.,1972,43(7):3219-3221.
    [17]E.L. Venturini, B. Morosin. Low Temperature Anomaly in Sco.995Gdo.005H1.9[J]. Phys. Lett. A.,1977, 61(5):326-328.
    [18]J.N. Daou, P. Vajda, A. Lucasson, J.P. Burger. Defect Kinetics in Quenched and Electron-Irradiated α-ScH(D)x Solid Solutions[J]. Phys. Status Solidi A,1986,95(2):543-555.
    [19]J.C. McGuire, C.P. Kempter. Preparation and Properties of Scandium Dihydride[J]. J. Chem. Phys., 1960,33:1584-1585.
    [20]I.O. Bashkin. E.G. Ponyatovskii, M.E. Kost. Phase Transformations in Hydrides of Rare-Earth Metals Under Pressure:II.The Sc-H and Yb-H Systems Under High Hydrogen Pressure[J]. Phys. Status SolidiB,1978,87(1):369-372.
    [21]I.O. Bashkin, E.G. Ponyatovskii, M.E. Kost. The pressure-temperature Diagram of the Scandium-ydrogen System at High Hydrogen Pressures of hydrogen[J]. Izv. Akad. Nauk SSSR, Neorg. Mater.,1978,14(9):1615-1616.
    [22]V.E. Antonov, I.O. Bashkin, V.K. Fedotov, S.S. Khasanov. Crystal structure and lattice dynamics of high-pressure scandium trihydride[J]. Phys. Rev. B,2006,73(5):054107-054111.
    [23]O. Blaschko, J. Pleschiutschnig, P. Vajda, J.P. Burger, J.N. Daou. Chainlike hydrogen ordering in α-ScDx systems[J]. Phys. Rev. B,1989,40(8):5344-5349.
    [24]O. Blaschko, G. Krexner, J.N. Daou, P. Vajda. Experimental Evidence of Linear Ordering of Deuterium inα-LuDx[J]. Phys. Rev. Lett.,1985,55(26):2876-2878.
    [25]M.W. McKergow, D.K. Ross, J.E. Bonnet,I.S. Anderson, O. Schaerpf. One-Dimensional Ordering of Deuterium in Solution in Yttrium[J]. Joural of Physics C:Solid State Physics,1987,20(13): 1909-1923.
    [26]H.T. Weaver. Nuclear-Resonance Investigation of a Scandium-Hydrogen solid Solution[J]. Phys. Rev. B,1972,6(7):2544-2546.
    [27]E.L. Venturini, P.M. Richards. Electron Spin Resonance Determination of Proton Locations in a Hydride[J]. Solid State Commun.,1979.32(12):1185-1188.
    [28]H.T. Weaver. Nuclear-Magnetic-Resonance Investigation of Proton Motion in Scandium Hydride[J]. Phys. Rev. B,1972,5(5):1663-1667.
    [29]C.K. Saw, B.J. Beaudry, C. Stassis. Location of Deuterium in a-Scandium[J]. Phys. Rev. B,1983, 27(2):7013-7017.
    [30]O. Blaschko, G. Krexner, J. Pleschiutschnig, G. Ernst, J.N. Daou, P Vajda. Hydrogen ordering in a-LuDx investigated by diffuse neutron scattering[J]. Phys. Rev. B,1989,39(9):5605-5610.
    [31]N.F. Miron, V.I. Shcherbak, V.N. Bykov, V.A. Levdik. Neutron-Diffraction Study of Scandium Hydride[J]. Sov. Phys. Cryst.,1972,16(4):709-710.
    [32]P. Vajda, J.N. Daou, P. Moser, P. Remy. Anelastic relaxation of hydrogen in Scandium[J]. J. Phys: Condens. Matter,1990,2(16):3885-3890.
    [33]P. Vajda, J.N. Daou, P. Moser. Hydrogen relaxation in lutetium[J]. J. Physique,1983,44(4):543-551.
    [34]E.C. Luntin. The structural and thermodynamic properties of the Sc-H system. Denver Research 108 Institute Report NO.123158.
    [35]L.N. Yannopoulos, R.K. Edwards, P.G. Wahlbeck. The Thermodynamics of the Yttrium-Hydrogen System[J]. J. Phys. Chem.,1965,69(8):2510-2515.
    [36]J.C. Warf, K. Hardcastle. A higher hydride of ytterbium[J]. J. Am. Chem. Soc.1961,83(9): 2206-2207.
    [37]J.W. Han, C.T. Chang, D.R. Torgeson, E.F.W. Seymour, R.G. Barnes. Proton and 45Sc nuclear-magnetic-resonance study of hydrogen diffusive hopping in hcp scandium[J]. Phys. Rev. B, 1987,36(1):615-619.
    [38]J.L.G. Fierro, J.A. Pajeres. Kinetics of activated chemisorption:hydrogen on scandium oxide[J]. J. Catal.,1980,66(1):222-228.
    [39]G. Mazzolai. Kinetics of hydrogen absorption by scandium at high temperature[J]. Int. J. Hydrogen Energy,2011,36(7):4507-4512.
    [40]R. Waser. Nanoelectronics and Information Technology:Advanced Electronic Materials and Novel Devices. Wiley, New York,2003.
    [41]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006.
    [42]M. Ohring. in Materials Science of Thin films, Deposition and Structure,2nd ed., Academic Press, San Diego, (2002), pp.9,358,374,502,542,546.
    [43]D.L. Smith, in Thin Film Deposition:Principles and Practice, Mc-Graw-Hill, New York,1995.
    [44]J.A.Venables, G.D.T. Spiller, M.Hanbucken. Nucleation and growth of thin films[J]. Reports on Progress in Physics,1984,47(4):399-459.
    [45]B.A. Movchan, A.V. Demchishin. Investigation of the structure and properties of thick vacuum-deposited films of nickel, titanium, tungsten, alumina and zirconium dioxide[J]. Fiz. Met. Metalloved.,1969,28(4):653-660.
    [46]J.A.Thornton. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings[J]. J. Vac. Sci. Technol.,1974,11(4):666-670.
    [47]R. Messier, A.P. Giri, R.A. Roy. Revised structure zone model for thin film physical structure[J]. J. Vac. Sci. Technol.,1984,2(2):500-503.
    [48]C.R.M. Grovenor, H.T.G. Hentzell, D.A. Smith. The development of grain structure during growth of metallic films[J]. Acta Metall.,1984,32(5):773-781.
    [49]H.T.G. Hentzell, C.R.M. Grovenor, D.A. Smith. Grain Structure variation with temperature for evaporated metal films[J]. J. Vac. Sci. Technol. A,1984,2(2):218-219.
    [50]T. Hashimoto, K. Okamoto, K. Hara, M. Kamiya, H. Fujiwara. Columnar structure and texture of iron films evaporated at oblique incidence[J]. Thin Solid Films,1982,91(2):145-154.
    [51]K. Okamoto, K. Hara, M. Kamiya. T. Hashimoto. H. Fujiwara. Crystallographic investigation of the ion films deposited obliquely by sputtering[J]. Thin Solid Films,1989,176(2):255-262.
    [52]N. Kaiser. Review of the Fundamentals of Thin-Film Growth[J]. Appl. Opt.,2002,41(16):3053-3060.
    [53]R. Grima, J. DeGraffenreid, J.A. Venables. Mean-field theory of nucleation and growth on strained surfaces[J]. Phys. Rev. B.2007,76(23):233405-233408.
    [54]P.A. Mulheran. The dynamics of island nucleation and growth-beyond mean-field theory[J]. Europhys. Lett.,2004,65(3):379-385.
    [55]J.H. Merwe. Theoretical considerations in growing uniform epilayers[J]. Interface Science,1993,1(1): 77-86.
    [56]J.P. Hirth, M.L. Moazed. Thin Films Physics, Ed. Hass G. and Thun R.E., Vol.4, Academic Press, New York, (1967), p.97.
    [57]C.A. Neugebauer. in Handbook of Thin Film Technology, Ed. Maissel L.I. and Glang R., Chap.8, McGraw-Hill, New York, (1970).
    [58]R.S. Wager, R.J.H. Voorhoeve. Adsorption and Growth of Cadmium on Polycrystalline Tungsten[J]. J. Appl. Phys.,1971,42(10):3948-3959.
    [59]M. Ohring. in Materials Science of Thin films, Deposition and Structure,2nd ed., Academic Press, San Diego. (2002), pp.379.
    [60]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2003
    [61]H.J. Ernst, F. Fabre, R. Folkerts, J. Lapujoulade. Observation of a growth instability during low temperature molecular beam epitaxy[J]. Phys. Rev. Lett.,1994,72(1):112-115.
    [62]李茂枝.表面纳米结构形成和稳定性的动力学标度性质[D].博十论文.北京:中国科学院物理研究所,2001.
    [63]吴静.表面活性剂作用下外延生长初期二维岛的形核核生长机理[D].博十论文.北京:北京中科院物理所,2000.
    [64]刘祖黎.溅射沉积Cu膜生长的Monte Carlo模拟[J].真空科学与技术学报,2005,25(2):83-114.
    [65]Y. Kaneko, Y. Hiwatari, K. Ohara, T. Murakamil. Computer simulation of thin film growth with defect formation[J]. Surf. Coat. Technol.,2003,169-170:215-218.
    [66]C.J. Qian, G.L. Gao, H. Li, M.B. Luo, G.X. Ye. Monte Carlo simulation of ramified aggregates on substrates with fixed impurities[J]. Phys. Lett. A,2002,299(2-3):292-298.
    [67]吴锋民,朱启鹏,炅自勤.超薄膜外延生长的计算机模拟[J].物理学报,1998,47(9):1427-1435.
    [68]M.D. Rouhabi, H. Knssem, J.D. Torre, G. Landa, A. Rocher, D. Esteve. Role of the substrate imperfections on the island nucleation and defect formation:case of GaSb/GaAs(001)[J]. Mater. Sci. Eng., B,2002,88(2-3):181-185.
    [69]顾菊观,叶阳,吴锋民.各相异性基底上超薄膜生长的计算机模拟[J].浙江工业大学学报,2000,28(1):31-36.
    [70]R.Q. Hwang, J. Schroder, C. Gunther, R.J. Behm. Fractual growth of two-dimensional island:Au on Ru(0001)[J]. Phys. Rev. Lett.,1991,67(23):3279-3282.
    [71]H. Brune, H. Roder, C. Boragno, K. Kern. Microscopic view of nucleation on surface[J]. Phys. Rev. Let.,1994,73(14):1955-1958.
    [72]D.M. Zhang, L. Guan, Z.H. Li, G.J. Pan, H.Z. Sun, X.Y. Tan, L. Li. Influence of kinetic energy and substrate temperature on thin film growth in pulsed laser deposition[J]. Surf. Coat. Technol.,2006, 200(12-13):4027-4031.
    [73]H. Roder, E. Hahn, H. Brune, J.P. Bucher, K. Kern. Building one-dimensional and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces[J]. Nature,1993,366(11):141-143.
    [74]H.L. Wei, Z.L. Liu, K.L. Yao. Monte Carlo Simulation of Thin-film Growth on a Surface with a Triangular Lattice[J]. Vacuum,1990,52(4):435-440.
    [75]刘祖黎,魏合林,王汉文.薄膜生长的随机模型[J].物理学报,1999,48(7):302-307.
    [76]F. Hontinfinde, A. Videcoq, F. Montalenti, R. Ferrando. Leapfrog-induced selective faceting in the growth of missing-row (110) surfaces[J]. Chem. Phys. Lett.,2004,398(1-3):50-55.
    [77]郑小平,张佩峰,刘军.薄膜外延生长的计算机模拟[J].物理学报,2004,53(8):2687-2693.
    [78]R.M. Djafari, H. Knssem, T. Dalla, G. Landa, A. Rocher, D. Estevel. Role of the substraue imperfections on the island nucleation and defect formation:case of GaSb/GaAs(001)[J]. Mater. Sci. Eng., B,2002,88(2):181-185.
    [79]S. Tan, P.M. Lam. Monte Carlo simulation of three-dimensional islands[J]. Phys. Rev. B,1999,60(11): 8314-8320.
    [80]A.M. Andrews, A.E. Romanov, J.S. Speck, M. Bobeth, W. Pompe. Development of cross-hatch morphology during growth of lattice mismatched layers[J]. Appl. Phys. Lett.,2000,77(23): 3740-3742.
    [81]王晓平,谢峰,石勤伟.晶格失配对异质外延超薄膜生长中成核特性的影响[J].物理学报,2004,53(8):2699-2704.
    [82]H. Savaloni, M.A. Player. Influence of deposition conditions and of substrate on the structure of uhv deposited erbium films[J]. Vacuum,1995,46(2):167-179.
    [83]E. Gu, H. Savaloni, M.A. Player, G.V. Marr. Characterization of evaporated erbium films at various stages of growth[J]. J. Phys. Chem. Solids,1992,53(1):127-136.
    [84]H. Savaloni, M.A. Player, E. Gu, G.V. Marr. Influence of substrate temperature, deposition rate, surface texture and material on the structure of uhv deposited erbium films[J]. Vacuum,1992,43(10): 965-980.
    [85]H. Savaloni, G.R. Moradi, M.A. Player. Texture development and residual stress in UHV evaporated silver films on glass substrates as a function of substrate temperature[J]. Vacuum,2005,77(3): 245-257.
    [86]E. Gu, M.A. Player, G.V. Marr. H. Savaloni. Fabrication and X-ray diffraction studies of Er/C multilayer films[J]. J. Magn. Magn. Mater.,1993,126(1-3):48-51.
    [87]H. Savaloni, M.A. Player. Morphological changes in UHV deposited Er/a-C films:nucleation, growth and grain structure[J]. Thin Solid Films,1995,256(1-2):48-58.
    [88]H. Savaloni, S.A. Shahrestani, M.A. Player. Influence of deposition rate and time on nucleation of Er on a-C[J]. Nanotechnology,1997,8(4):172-178.
    [89]H. Savaloni, S.B. Najmi. Characteristics of Cu and Zn films deposited on glass and stainless steel substrates at different substrate temperatures and angle of incidence[J]. Vacuum,2002,66(1):49-58.
    [90]H. Savaloni, M.H. Reissi, M. Shariati, M.A. Player. Nano-structural characteristics of Ti/glass and Ti/Mo films as a function of deposition rate and angle of incidence[J]. Thin Solid Films,2006,515(2): 439-443.
    [91]H. Savaloni, F.F. Shayegan. Film thickness dependence on the optical properties of sputtered and UHV deposited Ti thin films[J]. Vacuum,2010,85(3):458-465.
    [92]M.F. Arani, H. Savaloni, M. Ghoranneviss. Dependence of surface nano-structural modifications of Ti implanted by N- ions on temperature[J]. Appl. Surf. Sci.,2010,256(14):4502-4511.
    [93]H. Savaloni, M.G. Shahraki, M.A. Player. A comparison of different methods for x-ray diffraction line broadening analysis of Ti and Ag UHV deposited thin films:nanostructural dependence on substrate temperature and film thickness[J]. Appl. Phys.,2006,39(10):2231-2247.
    [94]H. Savaloni, H. Kangarloo. Influence of film thickness, substrate temperature and nano-structural changes on the optical properties of UHV deposited Ti thin films[J]. Appl. Phys.,2007,40(1): 203-214.
    [95]H. Savaloni, A.R. Khakpour. Substrate temperature dependence on the optical properties of Cu and Ag thin films[J]. Appl. Phys.,2005,31(2):101-112.
    [96]F. Maghazeii, H. Savaloni, M.G. Shahraki. The influence of growth parameters on the optical properties and morphology of UHV deposited Ni thin films[J]. Opt. Commun.,2008,281(18): 4687-4695.
    [97]H. Savaloni, F. Modiri, H. Hajihosseini, A. Shokouhy. Characteristics of surface nano-structural modifications in nitrogen ion implanted W as a function of temperature[J]. Appl. Surf. Sci.,2006, 252(15):5419-5423.
    [98]M.G. Shahraki, H. Savaloni. Thin-film-growth characteristics by computer simulation:Nanostructural changes as a function of deposition conditions[J]. Phys. Status Solidi B,2007,244(9):3115-3136.
    [99]H. Savaloni, M.G. Shahraki. A computer model for the growth of thin films in a structure zone model[J]. Nanotechnology,2004,15(3):311-319.
    [100]Z. Shi, G.R.G. Craib, M.A. Player, C.C. Tang. Texture development of evaporated nickel films on molybdenum substrate[J]. Thin Solid Films,1997,304(1-2):170-177.
    [101]Z. Shi, M.A. Player. Preferred orientations of evaporated Ni films on Mo and SiO2 substrates[J]. Vacuum,1998,48(4):257-263.
    [102]K.L. Ekinci, J.M. Valles. Formation of polycrystalline structure in metallic films in the early stages of Zone I growth[J]. Acta Mater.,1998,46(13):4549-4557.
    [103]T. Harada, H. Ohkoshi. Growth and structure of Ti films deposited on chemically polished MgO(100) substrates[J]. J. Cryst. Growth,1997,171(3-4):433-441.
    [104]Z.J. Liu, Y.G. Shen. Temperature effect on surface roughening of thin films[J]. Surf. Sci.,2005, 595(1-3):20-29.
    [105]Z.F. Luo, Z.M. Wu, X.D. Xu, M.J. Du, T. Wang, Y.D. Jiang. Impact of substrate temperature on the microstructure, electrical and optical properties of sputtered nanoparticle V2O5 thin films[J]. Vacuum, 2010,85(2):145-150.
    [106]M. Sreemany, A. Bose, S. Sen. A study on structural, optical, electrical and microstructural properties of thin TiOx films upon thermal oxidation:Effect of substrate temperature and oxidation temperature[J]. Physica B,2010,405(1):85-93.
    [107]N.A. Braga, C.A.A. Cairo, E.C. Almeida, M.R. Baldan, N.G. Ferreira. Temperature influence on the interlayer and surface morphology of diamond coating on 3D porous titanium substrates[J]. Diamond Relat. Mater.,2009,18(9):1065-1069.
    [108]G.S. Ristic, Z.D. Bogdanov, S. Zec, N. Romcebic, Z. Dohcebic-Mitrovic, S.S. Miljanic. Effect of the substrate material on diamond CVD coating properties[J]. Mater. Chem. Phys.,2003,80(2):529-536.
    [109]A. Mathur, J. Erlrbacher. Effects of substrate shape, curvature and roughness on thin heteroepitaxial films of Pt on Au(111)[J]. Surf. Sci.,2008,602(17):2863-2875.
    [110]Y. He, J.Z. Zhang, W.Q. Yao, D.X. Li, X. Teng. Effect of temperature on residual stress and mechanical properties of Ti films prepared by both ion implantation and ion beam assisted deposition[J]. Appl. Surf. Sci.,2009,255(8):4484-4490.
    [111]M. Zhou, M. Nose, Y. Makino, K. Nogi. Annealing effects on the structure and mechanical properties of r.f.-sputtered Cr-B hard thin films[J]. Thin Solid Films,2000,359(2):165-170.
    [112]S.C. Liang, Z.C. Chang, D.C. Tsai, Y.C. Lin, H.S. Sung, M.J. Deng, F.S. Shieu. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coating[J]. Appl. Surf. Sci., 2011,257(17):7709-7713.
    [113]D.P. Adams, L.J. Parfitt, J.C. Bilello, S.M. Yalisove, Z.U. Rek. Microstructure and residual stress of very thin Mo films[J]. Thin Solid Films,1995,266(1):52-57.
    [114]傅献彩,沈文霞.姚天扬.物理化学[M].北京:高等教育出版社.1990.
    [115]O.M. Barabash, Y.N. Koval. In handbook:Crystal Structures of Metals and Alloys. (Naukova Dumka, Kiev,1986), pp.369-370
    [116]黄刚.钛吸、放氢的同位素效应研究[D].硕士学位论文.北京:中国工程物理研究院,2005.
    [117]邮文增.钛铪合金吸放氘行为和相变[D].博士学何论文.北京:中国工程物理研究院,2010.
    [118]黄刚,龙兴贵,杨本福,梁建华.锆-氘反应热力学特性研究[J].无机化学学报,2008,24(12):2056-2059.
    [119]Y. Hirooka, M. Miyake, T. Sano. A study of hydrogen absorption and desorption by titanium[J]. J. Nucl. Mater.,1981,96(3):227-232.
    [120]G. Huang, X.G. Long, S.M. Peng, J.H. Liang, B.F. Yang. Studies on the Characteristic of Zirconium-tritium Reaction[J]. J. Fusion Energy,2011,30(1):7-12.
    [121]王恩哥.薄膜生长中的表面动力学(Ⅰ).物理学进展,2003.23(1):1-61.
    [122]P. Smilauer, M. R. Wilby, D. D. Vvedensky. Reentrant layer-by-layer growth:A numerical study[J]. Phys. Rev. B,1993,47(7):4119-4122.
    [123]B. Ernst. Phanomenologische Theorie der Kristallabscheidung an Oberflachen[J]. Z. Kristallogr., 1958,110(1-6):372-394.
    [124]X. Tan, Y.C. Zhou, X.J. Zheng. Pulsed-laser deposition of polycrystalline Ni films:A three-dimensional kinetic Monte Carlo simulation[J]. Surf. Sci.,2005,588(1-3):175-183.
    [125]J.L. Zhao, X.M. Li, J.M. Bian, W.D. Yu, X.D. Gao. Structural, optical and electrical properties of ZnO films grown by pulsed laser deposition(PLD)[J]. J. Cryst. Growth,2005,276(3-4):507-512.
    [126]R. Amutha, A. Subbarayan, R. Sathyamoorthy. Influence of substrate temperature on microcrystalline structure and optical properties of ZnTe thin films[J]. Cryst. Res. Technol.,2006, 41(12):1174-1179.
    [127]V. Chawla, R. Jayaganthan, R. Chandra. Structural characterizations of magnetron sputtered nanocrystalline TiN thin films[J]. Mater. Charact.2008,59(8):1015-1020.
    [128]G. Knuyt, C. Quaeyhaegens, J. D'Haen, L.M. Stals. A quantitative model for the evolution from random orientation to a unique texture in PVD thin film growth[J]. Thin Solid Films,1995,258(1-2): 159-169
    [129]M. Zhou, M. Nose, Y. Makino, K. Nogi. Annealing effects on the structure and mechanical properties of r.f.-sputtered Cr-B hard thin films[J]. Thin Solid Films,2000,359(2):165-170.
    [130]X.K. Duan, Y.Z. Jiang. Annealing effects on the structural and electrical transport properties of n-type Bi2Te2.7Se0.3 thin films deposited by flash evaporation[J]. Appl. Surf. Sci.,2010,256(24): 7365-7370.
    [131]D. Geiselman. The metallurgy of scandium[J]. J. Less-Common Metals,1962,4(4):362-375.
    [132]O. Thomas, C. S. Petersson, F. M. d'Heurle. The reaction of scandium thin films with silicon: diffusion, nucleation, resistivities[J]. Appl. Surf. Sci.,1991,53(1):138-146.
    [133]Y. Chen, D.A.A. Ohlberg, R.S. Williams. Nanowires of four epitaxial hexagonal silicides grown on Si(001)[J]. J. Appl. Phys.,2002,91 (5):3213-3218.
    [134]J.F. Ziegler, J.W. Mayer, C.J. Kircher, K.N. Tu. Kinetics of the formation of hafnium silicides on silicon[J]. J. Appl. Phys.,1973,44(9):3851-3857.
    [135]H. Kato, Y. Nakamura. Solid state reactions in titanium thin films on silicon[J]. Thin Solid Films, 1976,34(1):135-138.
    [136]D.J. Coe, E.H. Rhoderick, P.H. Gerzon, A.W. Tinsley. in Metal-Semiconductor Contacts, Institute of Physics Conf. Ser. No.22, London and Bristol (1974), p.74.
    [137]M.P. Lepselter, J.M. Andrews. In Ohmic Contact to Semiconductors, B. Schwartz, Ed., The Electrochemical Society, New York (1969), p.159.
    [138]V. Sisodia, W. Boise, D.K.. Avasthi, D. Kabiraj, I.P. Jain. Silicide formation study at the interface of Zr/Si system using high-energy swift heavy ion[J]. Radiat. Measurements,2005,40(2-6):762-764.
    [139]R.M. Walser, R.W. Bene. First phase nucleation in silicon-transition-metal planar interfaces[J]. Appl. Phys. Lett.,1976,28(10):624-625.
    [140]J.M. Zhang, D.D. Wang, K.W. Xu. Calculation of the surface energy of hcp metals by using the modified embedded atom method[J]. Appl. Surf. Sci.,2006,253(4):2018-2024.
    [141]B.Q. Fu, W. Liu, Z.L. Li. Calculation of the surface energy of hcp-metals with the empirical electron theory[J]. Appl. Surf. Sci.,2009,255(23):9348-9357.
    [142]彭述明.氘化及氦粒子注入对Sc膜形貌、结构的影响[J].物理学报,已接受,待刊出.
    [143]D. Henderson, M.H. Brodsky, P. Chaudhari. Simulation of structural anisotropy and void formation in amorphous thin films[J]. Appl. Phys. Lett.,1974,25(11):641-643.
    [144]A.G. Dirks, H.J. Leamy. Columnar microstructure in vapor-deposited thin films[J]. Thin Solid·Fifms, 1977,47(3):219-233.
    [145]S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, R. Schulz. Effect of carbon-containing compounds on the hydriding behavior of nanocrystalline Mg2Ni[J]. J. Alloys Compd.,2000,307(1-2): 226-233.
    [146]I.P. Jain, Y.K. Vijay, L.K. Malhotra, K.S. Uppadhyay. Hydrogen storage in thin film metal hydride-a review[J]. J. Hydrogen Energy.1988,13(1):15-23.
    [147]A. Leon, E.J. Knystautas. J. Huot. R. Schulz. Hydrogenation characteristics of air-exposed magnesium films[J]. J. Alloys Compd.,2002,345(1-2):158-166.
    [148]V. Berube, G. Radtke. M. Dresselhaus. G. Chen. Size effects on the hydrogen storage properties of nanostructured metal hydrides:A review[J]. Int. J. Energy Research,2007.31(6-7):637-663.
    [149]J. Reijonen. Compact neutron generators for medical, home land security, and planetary exploration, vol.2005. Knoxville, TN, United States:Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States,2005. P.49.
    [150]D.L. Chichester, J.D. Simpson. Compact accelerator neutron generators[J]. Industrial Physicist,2003, 9(6):22-25.
    [151]C. Monnin, P. Bach. P.A. Tulle, M. van Rompay, A. Ballanger. Optimisation of the manufacturing process of tritide and deuteride targets used for neutron production[J]. Nucl. Instrum. Methods Phys. Res., Sect. A,2002,480(1):214-222.
    [152]R.J. Walko, G.E. Rochau. High output neutron tube using an occluded gas ion source[J]. IEEE Transactions on nuclear science,1980, NS-28(2):1531-1534.
    [153]D.P. Adams, L.E. Brown, R. Goeke, J.A. Romero, B. Silva. Evolution of Stress in ScD2/Cr Thin Films Fabricated by Evaporation and High Temperature Reaction. Sandia Report, Sand2001-1629.
    [154]D.P. Adams, J.A. Romero, M.A. Rodriguez, J.A. Floro, P.G. Kotula. Microstructures, phase formation, and stress of reactively-deposited metal hydride thin films. Sandia Report, Sand2002-1466.
    [155]CM. Parish, C.S. Snow, D.R. Kammler, L.N. Brewer. Processing effects on microstructure in Er and ErD2 thin films[J]. J. Nucl. Mater.,2010,403(1-3) 191-197.
    [156]Ch. Rehm, H. Fritzsche, H. Maletta, F. Klose. Hydrogen concentration and its relation to interplanar spacing and layer thickness of 1000 A Nb(110) films during in situ hydrogen charging experiments[J]. Phys. Rev. B,1999,59(4):3142-3152.
    [157]Ch. Rehm, H. Fritzsche, H. Maletta, F. Klose. Modification of structural properties of Nb/Fe(110) multilayers via hydrogen absorption[J]. Phys. B:Physics of Condensed Matter,2000,276:549-550.
    [158]E. Gu, H. Savaloni, M.A. Player, G.V. Marr. Characterization of evaporated erbium films at various stages of growth[J]. J. Phys. Chem. Solids,1992,53(1):127-136.
    [159]R. Hempelmann. Diffusion of hydrogen in metals[J]. J. Less-Common Metals,1984,101:69-96.
    [160]M.S. Kennedy, N.R. Moody, M. Clift, D.P. Adams. Adhesion and fracture of scandium deuteride films[C]. Proceedings of the 2008 International Hydrogen Conference,2009.
    [161]林丽华,陈立功,顾明元.静载压痕残余应力测量的简化模型[J].上海交通大学学报,1998, 32(2):91-94.
    [162]D. Baral, J.E. Hilliard, J.B. Ketterson, K. Miyano. Determination of the primary elastic constants from thin foils having a strong texture[J]. J. Appl. Phys.,1982,53(5):3552-3559.
    [163]A.G. Guy, J.J. Hren. Elements of Physical Metallurgy, Addison-Wesley, Reading,1974, p.425.
    [164]S.U. Jen, T.C. Wu. Young's modulus and hardness of Pd thin films[J]. Thin Solid Films,2005, 492(1-2):166-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700