Ti、Zr、Er氚化物的时效效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氚化物由于具有高吸附容量、低平衡压的特点在含氚部件和聚变能源氘氚燃料循环等方面都具有极其重要的作用。但目前对金属氚化物中3He演化规律仍然缺乏系统的、全过程的认识,还不能对金属氚化物的固氦能力从固氦机理上进行有效评估和预测。本论文针对具有不同固氦能力的Ti、Zr、Er三种氚化物体系,综合采用静态3He释放测量、X-射线衍射(XRD)、3He热解析实验等手段对其时效过程进行系统研究,揭示金属氚化物中3He演化的规律,建立Ti、Zr、Er三种典型氚化物的时效演化模型,探讨影响材料固氦性能的关键参数,确定评价金属氚化物固氦能力的特征量,从而评估和预测金属氚化物固氦能力。
     金属氚化物静态3He释放测量是在无油超高真空测试系统上通过四极质谱计法持续测量其3He释放量。静态3He释放测量曲线是目前评价金属氚化物固氦能力最直接最可靠的手段。通过Ti、Zr、Er三种氚化物的静态3He释放测量,认识了其室温3He释放宏观行为,获得了三种金属氚化物的固氦阈值(fcc氚化锆为0.50-0.53、fcc氚化铒为-0.30、fcc氚化钛为0.25-0.28),发现了初始原子比和双相组成对其固氦阈值的影响。
     金属氚化物的变温热解析法是在真空条件下对样品进行线性加热,升温过程中采用四极质谱(QMS)对解吸出的气体组分进行在线测量,从而获得反映样品中3He原子的存在状态和演化信息的3He热解吸谱(THDS)。通过对全寿命期内氚化钛中3He的热解吸行为进行研究,获得了3He在金属氚化物中典型的存在状态。在此基础上,选取特征阶段的氚化铒和氚化锆样品开展了THDS对比研究,发现其3He存在状态与氚化钛有所不同。
     金属氚化物的等温热解析法是在真空条件下利用QMS观测恒温下3He释放量与时间的关系,从而计算3He在材料中的扩散系数和扩散活化能等动力学参数。采用等温热解析技术研究了氚化钛、氚化锆和氚化铒中3He的扩散行为,获得其室温扩散系数,分别为:fct氚化锆((0.04-2.39)×10-20m-2/s)、fcc氚化钛((0.36-1.51)×10-20m-2/s)、fcc氚化铒((0.88-31.39)×10-19m-2/s)。
     采用XRD对Ti、Zr、Er三种氚化物时效过程的晶体结构变化开展了连续测量,系统研究了晶格常数、半峰宽和线型不对称性随3He/M比的变换规律,结合X射线衍射理论揭示了3He演化导致的晶体缺陷的变化规律,发现三种金属氚化物晶体容纳有限尺寸缺陷的能力从大到小为:fct氚化锆、fcc氚化铒、fcc氚化钛;三种金属氚化物中无限尺寸缺陷(位错、位错网)变化规律与晶面指数(hkl)相关性不同;容纳孪生层错的能力从大到小为:fct氚化锆、fcc氚化铒、fcc氚化钛。同时,探索了相组成对氚化钛和氚化铒时效过程晶格常数变化规律的影响。
     运用XRD、SEM等手段对现有电阻和电子枪镀膜工艺制备的钛膜显微组织结构开展了研究,并结合相关静态3He释放、时效XRD分析和3He热解析实验的结果,认识了钛膜显微组织结构对其固氦能力的影响,发现具有强烈取向、晶粒尺寸较小、较多缺陷的纤维晶粒将会降低其固氦性能。在此基础上,探索电阻和电子枪镀膜工艺制备的氚化锆的显微组织结构对其固氦能力的影响。
     通过综合分析静态3He释放、XRD、3He热解析实验的结果,晶体缺陷状态时效过程的变化,参考已有的氦演化机制,建立了Ti、Er、Zr三种金属氚化物全寿命3He时效模型:3He在fcc氚化钛和fct氚化锆中的典型演化过程均可分为6个阶段(3He迁移聚集成团簇、Griffith型3He纳米微裂纹的生长、片状3He泡的生长、球形3He泡的生长、相邻球形3He泡破裂融合和贯通3He泡网络形成),采用球形3He泡应力诱导-阻碍冲出位错环机制结合相邻泡的带状应力破裂机制数值模拟成功评估了其3He加速释放阂值;3He在fcc氚化铒中的演化过程则可分为5个阶段(3He迁移聚集成团簇、Griffith型3He纳米微裂纹的生长、片状3He泡的生长、相邻片状3He泡破裂融合和贯通3He泡网络形成),采用片状3He泡位错偶极子膨胀机制结合相邻片状3He泡带状应力破裂机制数值模拟成功评估了其3He加速释放阂值。
     对比分析三种金属氚化物3He演化行为的异同,获得了评估Ti、Zr、Er氚化物固氦能力的特征指标——晶胞体积变化发生转折时3He/M。并结合钛基氚化物体系的实验研究结果,对所提出的评价材料固氦性能特征量进行了验证。
     在所建立的3He时效模型基础上,揭示了影响金属氚化物固氦性能的主要特征参量:3He泡密度和力学性能(杨氏模量、剪切模量、破裂强度),建立了3He泡密度和力学性能与其固氦性能间的关系,确定了Ti、Er、Zr三种金属氚化物固氦性能的理论上限,提出了提高其固氦性能的基本思路:一是控制其形核阶段改变其3He泡密度,即降低fcc氚化钛和fct氚化锆中3He泡密度,增加fcc氚化铒中3He泡密度;二是提高金属氚化物的力学性能。
     通过上述工作的开展,使我们对金属氚化物中的3He行为有了系统认识,揭示了其中3He泡的演化规律,建立了Ti、Er、Zr三种金属氚化物全寿命的3He时效模型,认识了影响金属氚化物固氦性能的主要特征参量,获得了评估金属氚化物固氦能力的特征指标,提出了提高金属氚化物固氦性能的基本思路,可用于指导相关金属氚化物的研究与应用。
Tritium is a hydrogen isotope of considerable interest and has important technological applications, especially in the nuclear industry. However, the radioactive nature of tritium imposes many conditions on its handling and storage. It has been recognized for a long time that the best way to store hydrogen is in the form of a hydride, which has the advantage of safety, easy recovery, and also much larger quantities of hydrogen can be stored per unit volume than in its liquid form, Therefore, it is quite natural to propose the storage of tritium in the form of a tritide, and metals such as titanium, zirconium, erbium are commonly used for this purpose.
     Helium release from titanium tritide, zirconium tritide and erbium tritide at room temperature have been studied. The evolution of lattice defects in long-aged three kinds of metal tritides are also investigated by X-ray diffraction (XRD). Thermal helium desorption spectrums (THDS) of these three kind of metal tritides have been used to investigate the3He release from titanium tritide film. Results of XRD, TD and helium release were synthesized. A continuum-scale evolutionary model of helium for aging titanium tritide, zirconium tritide and erbium tritide are described which accounts for major features of the tritide experiment data. Key parameters which could affect the helium evolution in metal tritide have been validated and the eigenvalue which could evaluate the3He retention in metal tritide has been found.
     The samples were stored at room temperature in an ultravacuum metal system with a vacuum of10-5Pa and the release behavior of3He from titanium tritide films were analyzed by a quadrupole mass spectrometer (QMS). The amount of helium released from titanium tritide, zirconium tritide and erbium tritide during the aging time were measured. Typical3He release characteristics indicate most3He generated remains in lattice. The rapid3He release values of these three kinds of metal tritides are different, the value from higher to lower are fct zirconium tritide (0.50-0.533He/Zr), fcc erbium tritide (-0.303He/Er), titanium tritide (0.25~0.283He/Ti). The initial atom ratio and phase composing are found have effect on rapid3He release value.
     Experiments were carried out for thermal desorption measurement of3He from metal tritide with linear temperature increase and constant temperature in vacuum condition, and3He measurement were performed on line by a Quadrupole Mass Spectrometer (QMS). Thermal helium desorption spectra (THDS) were obtained by He partial pressure vs temperature. THDS has been used to investigate the3He release from titanium tritide with 3He/Ti atom ratio from0.006to0.325and indicated that there are four3He states in titanium tritide. THDS of zirconium tritide and erbium tritide in special aging time have been compared with titanium tritide. An effective helium diffusivities of0.04-2.39×10-20m-2/s in fct zirconium tritide.0.36-1.51×10-20m-2/s in fce titanium tritide and0.88-31.39×10-19m-2/s in fcc erbium tritide at300K have been found by helium release on constant temperature.
     The evolution of lattice defects in long-aged titanium tritide, zirconium tritide and erbium tritide are investigated by X-ray diffraction (XRD) and changes in the positions, intensities and line shapes of diffraction peaks have been determined. The results show that finite defects retention and twin stacking faults of these three kinds of metal tritides are different, the infinite defects change behavior are all depend on (hkl). The initial atom ratio and phase composing are found have effect on the evolution of lattice defects.
     Based on XRD, SEM. Helium release test and THDS, the microscopic structure of titanium film deposited by resistively-heated evaporation and electron gun evaporation respectively have been studied. And the effect of microscopic structure on helium retention has been revealed. It found that helium retention in the films which have strong texture, small grain size, and a lot of defects is lower. The effect of microscopic structure of zirconium tritide were also studied.
     A continuum-scale evolutionary model of helium release for titanium tritide, zirconium tritide and erbium tritide are described which accounts for major features of these three kinds of tritide XRD, helium release and THDS experiment data. There are six helium evolution stages in titanium tritide and zirconium tritide:helium atom migration and the formation of isolated tetrahedral interstitial3He atoms or3He clusters, nano-cracks (Griffith) evolution, dislocation dipole expansion by plate bubble, dislocation loop punching by sphere bubble, inter-bubble fracture and linked-bubble network generation. The combined stress-assisted-block loop punching growth for sphere bubble arrays and an average ligament stress criterion predicts an onset of inter-bubble fracture in good agreement with the3He/M ratio observed for rapid He release. There are five helium evolution stages in erbium tritide: helium atom migration and the formation of isolated tetrahedral interstitial3He atoms or3He clusters, nano-cracks (Griffith) evolution, dislocation dipole expansion by plate bubble, inter-bubble fracture and linked-bubble network generation. The combined platelet area projections in a fracture plane and an average ligament stress criterion predicts an onset of inter-bubble fracture in good agreement with the3He/Er ratio observed for rapid He release.
     Comparative analysis of three kinds of metal tritide3He evolution behavior of similarities and differences, the characteristic index evaluating3He retention of metal tritide is the turning point3He/M when the unit cell volume of metal tritide have changed during aging.
     It is concluded from the continuum-scale evolutionary models of these three kinds of metal tritides that the main characteristic parameters which control of He retention are helium bubble density and mechanical properties (Young's modulus, shear modulus, theoretical fracture strength). And control of3He retention can be accomplished through control of bubble nucleation and improving the mechanical properties of metal tritide.
引文
[1]王隆保,吕曼祺,李依依.金属氚化物的时效和时效效应[J].金属学报,2003,39(5):449-469.
    [2]王佩旋,宋家树.材料中的氦及氚渗透[M].北京:国防工业出版社,2002.
    [3]Trinkaus H, Singh BN, Helium accumulation in metals during irradiation-where do we stand? [J]. J Nucl Mater,2003,323:229-242
    [4]Murray G T. Precipitation of Helium Along Dislocations in Aluminum [J]. J Appl Phys, 1961.32:1045-1063.
    [5]Barnes RS. The Generation of Vacancies in Metals [J]. Philos Mag,1960,5:635-646.
    [6]Vassen R, Trinkaus H,Jung P. Diffusion of Helium in Magnesium and Titanium Before and After Clustering [J]. J Nucl Mater,1991,183:1-8.
    [7]LOssr R. Tritium and helium-3 in metals[M]. Berlin:Springer-Verlag,1989.
    [8]Picraux S T. Defect trapping of gas atoms in metals[J]. Nucl Instrum Methods,1981, 182/185:413-437.
    [9]Weaver H T, Camp W J. Detrapping of interstitial helium in metal tritides—NMR studies [J]. Phys Rev B,1975,12:3054-3058.
    [10]Bowman R C, Jr, Attalla A. NMR studies of the helium distribution in uranium tritide[J]. Phys Rev B,1977,16(5):1828-1843.
    [11]Bowman R C, Jr. Distribution of helium in metal tritides[J]. Nature,1978,271:531-533.
    [12]Trinkaus H. Energetics and formation kinetics of helium bubbles in metals [J]. Radiat Eff, 1983,78:189-211.
    [13]Wilson W D, Bisson C L, Baskes M I. Self-trapping of helium in metals[J]. Phys. Rev. B., 1981,24:5616-5624.
    [14]Wilson W D, Baskes M I, Bisson C L. Atomistics of helium bubble formation in a face-centerd-cubic metal [J]. Phys. Rev. B.,1976,13:2470-2478.
    [15]Fu C C, Willaime F. Interaction between helium and self-defects in α-iron from first priciples [J]. J Nucl Mater,2007,367-370:244-250.
    [16]Kolk G J, Veen A, Caspers L M, et al. Binding of helium to metallic impurities in tugsten: Experiments and computer simulations[J]. J Nucl Mater,1985,127:56-66.
    [17]Lewis M B. Evidence for helium trapping to oxygen sites in titanium[J]. Nucl Instrum Methods B.1987.22:499-503.
    [18]Jennison D. First principles (density funcational theory) calculations on PdT0.65 and ErT2[R]. USA:Sandia National Laboratories.2004.
    [19]Heinisch H L, Gao F. KURTZ R.1, et al. Interaction of helium atoms with edge dislocations in α-Fe[J]. J Nucl Mater,2006,351:141-148.
    [20]Cowgill D F. Helium Nano-bubble evolution in aging metal tritides [R]. USA:Sandia National Laboratories,2004, SAND2004-1739.
    [21]Wolfer W G, Drugan W.1. Elastic interaction energy between a prismatic dislocation loop and a spherical cavity [J]. Phil Mag A,1988,57(6):923-937.
    [22]Wolfer W G. The pressure for dislocation loop punching by a single bubble [J]. Phil Mag A,1988,58(2):285-297.
    [23]Wolfer W G. Dislocation loop punching in bubbble arrays[J]. Phil Mag A,1989,59(1): 87-103.
    [24]Cowgill D F. Helium nano-bubble evolution in aging metal tritides [J]. Fusion Sci Technol,2005,48:539-544
    [25]Cowgill D F. Physics of He Platelets in Materials [R]. USA:Sandia National Laboratories, 2006.
    [26]Cowgill D F. Physics of He platelets in metal tritides [C]. Effects of Hydrogen on Materials:Proceeding of the 2008 International Hydrogen Conference, Brian Somerday, Petros Sofronis, Russell Jones, editors:686-693
    [27]Cowgill D F. A review of helium precipitate evolution in metal tritides [R]. USA:Sandia National Laboratories,2008.
    [28]Evans J H. An interbubble fracture mechanism of blister formation on helium-irradiated metals [J]. J Nucl Mater,1977,68:129-140.
    [29]龙兴贵,翟国良,蒋昌勇,等.氚钛膜中3He释放的研究[J].核技术,1996,19(9):542-547.
    [30]龙兴贵,翟国良,蒋昌勇,等.用四极质谱计测定从金属氚化物中释放的3He[J].原子能科学技术,1996,30(1):55-61.
    [31]丁伟,王辉,龙兴贵.两种测量氚靶3He释放方法比较[J].原子能科学技术,2002,36(4/5):66-468.
    [32]丁伟,王辉,龙兴贵,等.锆钒氚化膜的3He释放研究[J].原子能科学技术,2005,39(2):173-175.
    [33]Venhaus T, Poths J. Obervations on 3He release from ErT2 films[J]. Fusion Sci Technol, 2005,48:601-604.
    [34]Kass W J. Helium release from metal tritidesfR][出版地不祥]:Sandia National Laboratories.1976.
    [35]Beavis L C. Melal trilides helium release[R][出版地不祥]:Sandia National Laboratories.1979.
    [36]Rodin A M, Surenyants V V. Solid solution of helium in titanium with a helium content of up to 30 at%[J]. ZhFKh,1971.45(5):1094-1098.
    [37]Bowman R C, Jr., Carlson R C. et al. Characterization of metal tritides for the transport, storage, and disposal of tritium[J]. Trans Amer Nucl Soc,1976,24:496-498.
    [38]Snow C S, Mattsson T. Elastic constants of rare earth and transition metal di-hydrides[R]. USA:Sandia National Laboratories,2008.
    [39]Beavis L C, Kass W J. Room-temperature desorption of 3He release from metal tritides:a tritium concentration effect on the rapid release of helium from the tritide[J]. J Vac Sci Technol,1977.14(1):509-513.
    [40]Mitchell D J. Provo J L. Irregularities in Helium release rates from metal ditritides[J]. J Appl Phys,1985,57(6):1855-1860.
    [41]Thomas G J, Miniz J M. Helium bubbles in palladium tritide[J]. J Nucl Mater,1983,116: 336-338.
    [42]Abell G C, Cowgill D F. Low-temperature JHe NMR studies in aged palladium tritide[J]. Phys Rev B,1991,44:4178-4184.
    [43]Abell G C, Attalla A. NMR evidence for solid-fluid transition near 250 K of 3He bubbles in palladium tritide[J]. Phys Rev Lett,1987,59:995-997.
    [44]Bowman R C, Jr. Bambakidis G, et al, Helium, tritium, and protium NMR studies of aged PdTx[J]. Phys Rev B,1988,37:9447-9454.
    [45]Abell G C, Attalla A. NMR studies of aging effects in palladium tritide[J]. Fusion Technol,1988,14:643-648.
    [46]Stephen M F, Jeff J H. Computer simulation of bubble growth in metals due to He [R]. [S. 1.]:Sandia National Laboratories,2001.
    [47]Thiebaut S. TEM study of the aging of palladium-based alloys during tritium storage [J]. J Nucl Mater,2000,277:217-225.
    [48]Raju P G, Michele G. Physics consequences of helium production from the radioactive decay of tritium on the properties of palladium tritide[J]. Phys Rev B,2002,66:014105.
    [49]Thiebaut S. Structural changes in Pd(Rh, Pt) solid solutions due to 3He formation during tritium storage[J]. Phys Rev B,1998,57:10379-10387.
    [50]Thiebaut S, Bigot A, Achard J C, et al. Structural and thermodynamic properties of the deuterium-palladium solid solutions systems:D2-[Pd(Pt). Pd(Rh), Pd(Pt, Rh)] [J]. J Alloys Compd.1995.231:440-447.
    [51]Fabre A. Decamps B, Finot E. et al. On the correlation between mechanical and TEM studies of the aging of palladium during tritium storage [J]. J Nucl Mater,2005.342: 101-107.
    [52]Jonathan Zimmerman. The troubles with bubbles-modeling the material degradation caused by helium bubble growth [R]. [出版地不祥]:Sandia National Laboratories,2005.
    [53]Lin Pei, Chou M Y. First-principles studies of He diffusion and clustering in Pd[R]. [出版 地不详]:Sandia National Laboratories,2007.
    [54]Shanahan K L. Tritium aging effects in LaNi4.25Al0.75[J]. J Alloys Compd,2003,356-357: 382-385.
    [55]Thiebaut S, Douilly M, Contreras S, et al.3He retention in LaNi5 and Pd tritides: Dependence on stoichiometry, He distribution and aging effects[J]. J Alloys Compd, 2007,446-447:660-669.
    [56]Mitchell D J, Patrick R C. Temperature dependence of helium release from erbium tritide films[J]. J Vac Sci Technol,1981,19(2):236-242.
    [57]Snow C S, Brewer L N, Gelles D S, et al. Helium release and microstructural changes in Er(D,T)2-x3Hex films[J]. J Nucl Mater,2008,374:147-157.
    [58]Bond G M. Browning J F, Snow C S. TEM study of helium bubble evolution in erbium ditritide[R]. USA:Sandia National Laboratories,2007.
    [59]Rodriguez M A, Browning J F, Frazer C S, et al. Unit cell expansion in ErT2 films[J]. Powder Diffraction,2007,22(2):118-121.
    [60]Knapp J A, Browning J F, Bond G M. Evolution of the mechanical properties of aging erbium tritide films[R]. [S.1.]:Sandia National Laboratories,2008.
    [61]Knapp J A, Browning J F, Bond G M. Evolution of mechanical properties in ErT2 thin films[J]. J Appl Phys,2009,105:053501
    [62]Knapp J A, Browning J F, Bond G M. Aging of ErT2 thin films:ERD analysis and mechanical property changes[J]. Nucl. Instrum. Meth. B,2010,268:2141-2143
    [63]Hjelm R P. Helium distribution in erbium tritide films[R]. USA:Sandia National Laboratories,2005.
    [64]Cowgill D F. Effects of the beta-induced reactivity of Er tritide:Simulation experiments[R]. USA:Sandia National Laboratories,2007.
    [65]Wixom R R, Browning J F, Jennison D R, et al. Site occupation and migration of hydrogen, helium, and oxygen in β-phase ErH2[R]. [出版地不祥]:Sandia National Laboratories.2008.
    [66]Wixom R R. Browning J F, Snow C S. et al. First principles site occupation and migration of hydrogen, helium. and oxygen in β-phase erbium hydride[J]. J Appl Phys.2008.103: 123708
    [67]Vedeneev A I, Lobanov V N, Starovoitova S V. Radiogenic helium thermodesorption from titanium tritide[J]. J Nucl. Mater,1996,233-237:1189-1192.
    [68]Shanahan. K L, Holder J S. Helium release behavior of aged titanium tritides [J]. J Alloys Compd.2005,404-406:365-367.
    [69]Shanahan, K L, Holder J S. Deuterium, tritium, and helium desorption from aged titanium tritides[J]. J Alloys Compd,2007,446-447:670-675.
    [70]Schober T, Farrell K. Helium bubbles in a-Ti and Ti tritide arising from tritium decay:A TEM study [J]. J Nucl Mater,1989,168:171-177.
    [71]Schober T, Trinkaus H.3He bubbles formation in titanium tritides at elevated temperature: A TEM study [J]. Phil Mag A,1992,65:1235.
    [72]Gavrilov P I, Sorokin V P, Stenganch A V, et al. The variation of asolid phase state of pure and alloyed titanium tritides versus generated helium amount[C]//Hydrogen Materials Science and Chemistry of Metal Hydrides. Netherland:Kluwer Academic Publishers. 2002.
    [73]Flament J L. Lozes G. Localisation de L'helium frome dans les trities[J]. Troisieme Congres International Hydrogene et Materiaux,1982,7-11:173-178.
    [74]Vedeneev A I, Golubkov A N, Artemov L V, et al. Variation in the properties of titanium tritide-deuteride due to the β decay of tritium [J]. Russian Metallurgy (Metally),1999,4: 127-136.
    [75]Bach P. Improvement of the room-temperature behavior of metal tritides with respect to 3He release:titanium [J]. Appl Phys,1980,37(5):492-493
    [76]李雄伟,郑华,王隆保,等.3He的产生对钛氚化物性能的影响[J].原子能科学技术,2005,39(6):526-529.
    [77]Wu Y X, Yang R, Zheng H, et al. First-principles study of alloying effect of transition metals on He in titanium ditritide[J]. J Nucl Mater,2006,354:36-48.
    [78]Chen Min, Hou Qing, WANG Jun, et al. Anisotropic diffusion of He in titanmium:A molecular dynamics study[J]. Solid State Communications,2008,148:178-181.
    [79]Wang Jun, Hou Qing, Sun Tieying, et al. Simulation of helium behaviour in titanium crystals using molecular dynamics[J]. Chin Phys Lett,2006,23(7):1666-1669.
    [80]SUN Tie-ying, LONG Xing-Gui, WANG Jun, et al. Molecular dynamics Simulation of helium behaviour in titanium crystals[J]. Chin Phys Lett,2008,25(5):1784-1787.
    |81]Schober T. Lasser R. The aging of zirconium tritides:A TEM study[J]. J Nucl Mater, 1984,120:137.
    [82]Schober T, Trinkaus H, Lasser R. A TEM study of the aging of Zr tritides[J]. J Nucl Mater, 1986,141-143:453-457.
    [83]Presnjakov J K. Sorokin V P, Sten'gach V P, et al. Method of changing kinetics of isolation of radiogenic helium-3 from solid phase of metal tritide:Russia,2225352 C2[P]. 2004-03-10.
    [84]Syasin V A, Sokolov A B, Ponoret I K, et al. Influence of hydrogen content on some properties and presence of defects in zirconium hydride[R]. USA:Sandia National Laboratories,2008.
    [85]Nobile A, Wermer J R, Walters R T. Aging effects in palladium and LaNi4.25Al0.75 tritides[J]. Fusion Technology,1992,21:769-774.
    [86]Flament J L, Lozes G.3rd Int. Congress on Hydrogen in Metals, Btuyers-Le-Chatel, France,1982:173
    [87]Sandrok G D, Goodell P D, Huston E L, et al. Int. Sympos. on Metal-Hydrogen Systems, Munchen.1988:1295.
    [88]Schober T, Lasser R. An electron microscopy study of tritium decay in vanadium[J]. J Nucl Mater,1984.122:571.
    [89]Bowman R C, Jr, Attalla A, et al. Isotope effects and helium retention behavior in vanadium tritide[J]. Fusion Technol,1985,8:2366-2372.
    [90]Thomas G J, Swansigen W A, Baskes M I. Low-temperature helium release in nickel [J]. J Appl Phys,1979,50(11):6942-6947.
    [91]Krivoglaz M A. Theory of X-ray and thermal neutron scattering by real crystals[M]. New York:Plenum,1969:135.
    [92]Blaschko O, Ernst G, Fratzl P, et al. Distortion induced by helium formation in tantalum-tritium systems [J]. J Nucl Mater,1986,141-143:540-542
    [93]Lasser R, Bickmann K, Trinkaus H, et al. Evolution of the lattice spacing and damage in tantalum tritide[J]. Phys Rev B,1986,34:4364-4367.
    [94]Blaschko O, Ernst G, Fratzl P, et al. Lattice deformation in TaTx systems due to 3He production[J]. Phys Rev B,1986,34:4985-4988.
    [95]Lasser R, Bickmann K, Trinkaus H. X-ray diffraction study of the lattice deformation due to 3He bubble formation in a tantalum tritide[J]. Phys Rev B,1989,40:3306-3310.
    [96]Blaschko O, Pleshiutshning J, Glas R, et al. Helium damage in metal-tritides[J]. Phys Rev B.1991,44:9164-9169.
    [97]Prem M. Krexner G. Pleshiutshning J. Helium damage in long-aged metal-tritium systems[J]. J Alloys Compd.2003.356-357:683-687.
    [98]H.L. Yakel Jr.. Acta Crystallogr.11 (1958) 46.
    [99]Setoyama D. Matsunaga J, Muta H. et al. Mechanical properties of titanium hydride[J]. J Alloys Compd,2004.381:215-220
    [100]Yamanaka S, Yamada K, Kurosaki K, et al. Characteristics of zirconium hydride and deuteride [J]. J Alloys Compd,2002,330-332:99-104
    [101]Rodriguez M A. Ferrizz R M, Snow C S, et al. X-ray powder diffraction data for ErH2-xDx[J]. Powder Diffraction,2008,23:259-264
    [102]Rodriguez M A, Browning J F, Ferrizz R M, et al. Unit Cell Expansion in ErT2 Films [R]. USA:Sandia National Laboratories,2007.
    [103]丘利,胡玉和.X射线衍射技术及设备[M].北京:冶金工业出版社,1998.
    [104]代云雅,杨莉,彭述明,等.金属氢化物力学性能的第一性原理研究,物理学报,已接受.
    [105]Crane R I, Chattoraj S C. A room-temperature polymorphic transition of titanium hydride[J]. J Less-Common Metals,1971,25:225-227
    [106]Yakel H L, Jr., Acta Cryst,1958,11:46
    [107]Binary Alloy Phase Diagrams:Ti-H, ASM International,1996.
    [108]Ehrenberg J, Scherzer B M U, Behrisch R. Thermal desorption spectroscopy of He from Ni at and below saturation[J]. Radiation Effects,1983,78:405-416.
    [109]程贵钧,王维笃,杨本福,等.金属氚化物中3He的热解吸方法[J].原子能科学技术,2005,39(4):372-376.
    [110]程贵钧.含氦钛膜中氦的热解吸行为研究.中国工程物理研究院研究生部,2011.
    [111]王海峰,彭述明,周晓松等.氚化钛膜中He的热解吸行为初步研究.原子能科学技术,2008,42(1):49-52
    [112]Rodriguez M A, Snow C, Wixom R. In-situ monitoring of Deuterium site occupancy in erbium deuteride via time-of-flight neutron diffraction analysis[R]. USA:Sandia National Laboratories,2008.
    [113]Snow C, Browning C, Rodriguez M A. Hydrogen site-occupancy studies in the erbium(H,D)2 system[R]. USA:Sandia National Laboratories,2005.
    [114]Chen Ru-Cheng, Yang Li, Dai Yun-Ya, et al. Ab initio study of H and He migrations in β-phase Sc, Y and Er hydrides, Chinese physics B, accepted.
    [115]Simmons R O, Balluffi R W. Phys Rev,1960.117:52
    [116]Beavis L C. Miglionico C J. Structural behavior of metal tritide fllms[J].1 Less-Common metals,1972,27:201-211
    [117]Schober T, Lasser R. Golczewski J. Phys Rev B.1985.31:7109
    [118]Farnum E H. Calculation of helium induced strain in ErT2 and ScT2|R SC-RR-70-753,1970.
    [119]Bond G M, Browning J F, Snow C S. Development of bubble microstructure in ErT2 films during aging[J]. J Appl Phys,2010,107:083514
    [120]Snow C S, Schultz P, Mattsson T, et al. A hearty Hodge of ErT2 research:a bit of this and a bit of that[R]. USA:Sandia National Laboratories,2010.
    [121]Grovenor C R M, Hentzells H T G, Smith D A. The development of grain structure during growth of metallic films[J]. Acta. Metal,1984,32(5):773-781
    [122]Savaloni H, Player M A, Gu E, Marr G V. Influence of substrate temperature, deposition rate, surface texture and material on the structure of uhv deposited erbium films[J]. Vacuum,1992,43(10):965-980
    [123]Savaloni H, Player M A. Influence of deposition conditions and of substrate on the structure of uhv deposited erbium films[J]. Vacuum,1995,46(2):167-179
    [124]Parish C M. Snow C S, Kammler D R. Processing effects on microstructure in Er and ErD2 thin-films[J], J Nucl Mater,2010,403(1-3):191-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700