指状青霉(Penicillium digitatum)再生体系的建立以及CYP51基因功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对制备材料、酶液浓度、酶解时间、酶解温度、渗透压稳定剂的种类和浓度等因素的实验研究,得到了一套制备指状青霉(Penicillium digitatum)原生质体的有效方法,并在双层培养基上初步实现了原生质体的再生,再生率可达24.9%。此外,还对原生质体的释放和再生方式进行了跟踪观察。原生质体释放有顶端、侧端和原位释放3种方式。原生质体的再生有2种方式,一种是原生质体一端突出形成酵母出芽状细胞;另一种是在原生质体一端直接长出菌丝。
     本研究构建了指状青霉对抑霉唑敏感和抗性的两个CYP51基因的pCB1004表达载体,并对基因的插入方向和拷贝数进行了分析,证明了两个载体连接的基因均为正向连接和单拷贝插入。采用PEG法和电击法两种方法进行指状青霉原生质体的转化,然后将得到的转化产物转移到查氏再生培养基中培养,遗憾的是没有得到理想的转化子。
     采用高效液相色谱技术(HPLC)分析了对抑霉唑敏感和抗性的两种指状青霉菌株(分别为pd23和pd07)中游离麦角甾醇的含量并比较了两者之间的差异。结果表明,在抗性菌株pd07不加抑霉唑的情况下,pd07和pd23中游离麦角甾醇的含量采用Duncan's新复极差测验在5%水平没有明显差异;但当pd07中加入0.1μg/ml抑霉唑时,三次重复测定结果显示抗性菌株pd07中麦角甾醇的含量明显地要比敏感菌株pd23中的含量高,而且两者在5%水平上差异显著。推测抗性菌株中麦角甾醇含量的积累是需要抑霉唑等药物诱导的。与敏感菌株相比,抗性菌株CYP51基因启动子上游多了4个126bp的串联重复序列,推测该重复序列可能是导致CYP51基因过量表达的内在原因。
The effect of some factors, including the appropriate materials for isolating protoplasts, the concentrations of enzyme, period of digestion and temperatures, and osmotic pressure stabilizers on the isolation and regeneration of protoplasts in Penicillium digitatum were studied. The results demonstrated that the purified protoplasts could regenerate through double layers of Czapek medium containing 0.7mol/L NaCl. The regeneration rate could reach 24.9%. Additionally, the mode of protoplast releasing and regeneration were investigated. It indicated that the primary protoplasts of P. digitatum were released mainly from the hyphalapex, and occasionally from the subapical or original sites. The regeneration of protoplasts could be classfied into two forms: the yeast-like cell developed from the protoplast and the mycelium grew from the protoplast directly.
    The CYP51 genes cloned from both isolates of imazalil-resistant and imazalil-sensitive of P. digitatum were cloned into the pCB 1004 expression vectors, respectively. The direction and number of inserted copy were confirmed by restriction enzyme digestion. These vectors were tried to transform into the P. digitatum imazalil-sensitive isolate by the methods of PEG-mediated or electroporation transformation. After that, the transformed protoplasts were regenerated on Czapek medium containing hygromycin at 300#g/ml. Unfortunately, the ideal transformants could not be obtained.
    In order to analyze the differences of the content of ergosterol in the imazalil-sensitive and imazalil-resistant isolates of P. digitatum, the technology of HPLC was used. The results showed that the contents of ergosterol between imazalil-sensitive and imazalil-resistant isolates were not significantly defferent (P=0.05, DMRT) when they grew in the medium without imazalil. Interestingly, when imazalil (0.1#g/ml) was added to the medium, the content of the ergosterol in imazalil-resistant isolate (pd07) was significantly higher than that in imazalil-sensitive isolate (pd23) (P=0.05, DMRT). These results suggested that higher accumulation of ergosterol might be induced by imazalil in the isolate of pd07, which contained
    
    
    4-126bp tandemly repeated in CYP51 gene more than that in the pd23. It also suggested that these tandemly repeated sequence might be an element that could regulate the expression of CYP51 gene.
引文
1. Akallal R, Debieu D, Lanen C and Daboussi M-J, et al. 1998. Inheritance and mechanisms of resistance to tebuconazole, a sterol C14-demethylation inhibitor, in nectria haematococca. Pestic Biochem Physiol 60: 147~166.
    2. Eckert J W, Sievert J R and Ratnayake M. 1994. Reduction of imazalil effectiveness against citrus green mold in Colifornia pachagehouse by resistant biotypes of Penicillium digitatum. Plant Dis 78: 971~974
    3.朱伟生,黄宏英,黄同陵,雷慧德,蒋文晖.南方果树病虫害防治手册.农业出版社.1992,23
    4.李红叶,朱国念.朱金文,谢青云.丝状真菌对甾醇生物合成抑制剂抗性的分子机制.菌物系统,2002,21(2):293~300
    5.杨谦.植物病原菌抗药性分子生物学.科学出版社.北京,2003
    6.杨谦.关于核盘菌对多菌灵抗药性的研究.北方园艺,1993,(4):45~46
    7. Georgopoulos S G. 1985. The genetic basis of classification of fungicides according to resistance risk. Bulletin OEPP/EPPO Bulletin, 15: 513~517
    8. Andrade A C, Del Sorbo G, van Nistelrooy J G M, De Waard M A. 2000a. The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiol 146: 1987~1997
    9. Andrade A C, van Nistelrooy J G M, Peery R B, et al. 2000b. The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and antibiotic production. Mol Gen Genet 263: 966~977
    10. Andre, B. 1995. An overview of membrane transport proteins in Saccharomyces cerevisiae, Yeast 11: 1575~1611
    11. Brown J K M, Jessop A C, Thomas S, and Rezanoor H N, 1992. Genetics control of the response of Erysiphe graminis f. sp. hordei to ethirimol and triadimenol. Plant Pathol. 41: 126~135.
    
    
    12. De Waard M A, van Nistelrooy J G M, Langeveld C R, et al. 1996, Mutildrug resistance in filamentous fungi. In: Lyr H, Russell PE, Sisler HD (eds), Modern Fungicides and Antifungal Compounds. Intercep, Andover, Hampshire, UK, pp 293~299
    13. Del Sorbo, G. Andrade A C, van Nistelrooy J G M, et al. 1997. Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters. Mol Gen Genet 254: 417~426.
    14. Delye C, Laigret F, and Corio-Costet, M F 1997a. Cloning and sequence analysis of the eburicol 14alpha-demethylase gene of the obligate biotrophic grape powdery mildew fungus. Gene 195: 29~33
    15. Delye C, Laigret F and Corio-Costet M-F. 1997b. A mutation in the 14-α-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol 63: 2966~2970
    16. Delye C, Bousset L, and Corio-Costet, M F. 1998. PCR cloning and detection of point mutations in the eburicol 14alpha-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a "recalcitrant" fungus. Curr Genet 34: 399~403
    17. Denny T P, Mattews P S, VanEtten H D 1987. A possible mechanism of nondegradative tolerance of pisatin in Nectria haematococca MP Ⅳ. Physiol Mol Plant pathol. 30: 93~107
    18. Eckert J W, Sievert J R and Ratnayake M. 1994. Reduction of imazalil effectiveness against citrus green mold in Colifornia pachagehouse by resistant biotypes of Penicillium digitatum. Plant Dis 78: 971~974
    19. Edlind T D, Henry K W, Metera K A, Katiyar S K. 2001. Aspergillus fumigatus CYP51 sequence: potential basis for fluconazole resistance. Med Mycol 39: 299~302
    20. Engels A J, Holub E F, Swart K, De Waard M A. 1998. Genetic analysis of resistance to fenpropimorph in Aspergillus niger. Cuur Genet. 33: 145~150
    21. Engels AJG and De Waard MA. 1996. Fitness of isolates of Erysiphe graminis f. sp. tritici with reduced sensitivity to fenpropimorph. Crop Prot 15: 771~777
    22. Fuchs A and Drandarevski C A. 1976. The likelihood of development of resistance to systemic fungicides which inhibit ergosterol biosynthesis. Neth J Plant Pathol 82: 85~87
    
    
    23. Fuchs A, and de Vries F W. 1984. Diastereomer-selective resistance in Cladosporium cucumerinum to triazole-type fungicides. Pestic Sci 15: 90~96
    24. Gisi U, Chin K M, Knapova G, Kung Farbr R, et al. 2000. Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurin fungicides. Crop Prot. 19: 863~872
    25. Guan J, van Leemput L, Posthumus Maand and De Waard M A. 1992. Metabolism of imazalil by wild-type and DMI resistant isolates of Penicillium italicum. Neth. J Plant Pathol 98: 161~168
    26. Hamamoto H, Hasegawa K, Nakaune R, et al. 2000. Tandem repeat of a transcriptional enhancer upstream of the sterol 14alpha-demethylase gene (CYP51) in Penicillium digitatum. Appl Environ Microbiol 66: 3421~3426
    27. Higgins, C F. 1992. ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8: 67~113.
    28. Hippe S. 1987. Combined application of low temperature preparation and electron microscopic autoradoigraphy for the location of systemic fungicides. Histochem 87: 309~315
    29. Hitchcock C A. 1993. Resistance of Candida albicans to azole antifungal agent. Biochem Soc Trans 21: 1039~1047
    30. Hollomom D W. 1993. Resistance to azole fungicides in the field. Biochem Soc Trans 21: 1047~1051
    31. Hollomon D W. 1994. Do morpholine fungicides select for resistance? In "fungicide resistance-Monograph N60" (Heaney S, Slawson D, Hollomon DW, Smith M, et 1. eds) pp 281~289. BCPC, Surrey, UK.
    32. Kalamaralis A E, Demopoulos V P, Ziogas B N, and Georgopoulos S G. 1989. A high mutable major gene for tradimenol resistance in Nectria haematococcca var. cucurbitae. Neth. J. Plant Pathol. 95 (suppl. 1), 109~115
    33. Karaoglanidis G S, Loannidis P M, and Thanassoulopoulos C C. 2000. Reduced sensitivity of Cercospora beticola isolates to sterol-demethylation-inhbiting fungicides. Plant Pathol 49: 567~572
    
    
    34. Koller W and Scheinpflug H, 1987. Fungal resistance to sterol biosynthesis inhibitors, a new challengenge. Plant Dis 71: 1066~1074
    35. Kontoyiannis D P, Sagar N, and Hirschi K D. 1999. Overexpression of Ergllp by the regulatable GAL1 promoter confers fluconazole resistance in Sccharomyces cerevisiae. Antimicrob Agents Chemother 43: 2798-2800
    36. Hargeave J A and Keon J P R. 1996. Isolation of an Ustilago maydis ERG11 gene and its expression in a mutant deficient in sterol 14-α-demethylase activity. FEMS Microbiol Lett 139: 203~207
    37. Lamb D C, Kelly D E, White T C, and Kelly S L. 2000. The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother 44: 63~67
    38. Lasseron-De Falandre A, Daboussi M J & Leroux P. 1991. Inheritance of resistance to fenpropimorph and terbinafine, two sterol biosynthesis inhibitors in Nectria haematococca. Phytopathol. 81: 1432~1438
    39. Lasseron-De Falandre A, Debieu D, Bach J, Malosse C & Leroux P. 1999. Mechanisms of resistance to fenpropipropimorph and terbinafine, two sterol biosynthesis inhibitors in Nectria haematococca, a phytopathogenic fungus. Pesti Biochem and Physiol 64: 167~184
    40. Li Z, Szczypca M K, Lu Y, Thiele D J and Rea P A. 1996. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J. Biol. Chem. 271: 6509~6517
    41. Nakaune R, Adachi K, Nawata O, et al. 1998. A novel ATP-banding cassette transporter involved in multidrug resistance in the phytopathogenic fung Penicillium digitatum. Appl and Environ Microbio. 64: 3983~3988.
    42. Peever T L and Milgroom M G. 1992. Inheritance of triadimenol resistance in Pyrenophora teres. Phytopathol. 82: 821~828.
    43. Robbertse B, vander Rijst M, van Aarde I M R, et al. 2001. DMI sensitivity and corr-resistance patterns of Rhynchosporium secalis isolates from South Africa. Crop Pro 20: 97~102
    44. Sanglard D, Ischer F, Koymans L, Bille J. 1998. Amino acid substitutions in the cytochrome
    
    P-450 lanosterol 14 α-demethylase (CYP51A1) from azole-resistant Canida albicans clinical isolates contribute to resistanace to azole antifungal agents. Antimicrob Agents Chemotherapy 42: 241~253.
    45. Schnabel G, and Jones A L. 2001. The 14 α-demethylase (CYP51A1) gene is overexpressed in Venturia inaequlis strains resistant to Myclobutanil. Phytopathol 91: 102~110
    46. Schoonbeek H, Del Sorbo G, De Waard M A. 2001. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. MPMI 14: 562~571
    47. Sholberg P L And Haag P D. 1993. Sensitivity of Venturia inaequalis isolates from British Columbia to flusilazole and myclobutanil, Can. J. Plant Pathol 15: 102~107.
    48. Smith F D, Koller W. 1990. The expression of resistance of Ustilago avenae to the sterol demethylation inhibitor triadimenol is an induced response. Phytopathol 80: 584-590
    49. Stanis V F and Jonos A L. 1985. Reduced sensitivity to sterol inhibiting fungicides in field isolates of Venturia inaequalis. Phytopathol 75: 1098-1101
    50. van den Brink HJ, van Nistelrooy J G M, De Waard MA, et al. 1996. Increased resistance to 14 alpha-demethylase inhibitors (DMIs) in Aspergillus niger by coexpression of the Penicillium italicum eburicol 14 alpha-demethylase (cyp51) and the A. niger cytochrome P450 reductase (cprA) genes, J Biotechnol 49: 13~18
    51. Van Nistelrooy J G M, van den Brink J M, van Kan J A L, et al. 1996. Isolation and molecular characterisation of the gene encoding eburicol 14 alpha-demethylase (CYP51) from Penicillium italicum. Mol Gen Genet 250: 725~733
    52. Van Tuyl J M 1977. Genetics of fungal resistance to systemic fungicides. Mededelingen Landbouwhogeschool Wageningen 77: 1~136.
    53. Watson P F, Rose M E, Ellis S W, et al. 1989. Defective sterol C5-6 desaturation and azole resistance: A new hypothesis for the mode of action to azole antifungals. Biochem. Biophys. Res. Commun. 164: 1170~1175
    54. Wellman H and Schauz K. 1992. Characterization and genetics analysis of triadimefon-resistant laboratory mutants, Pestic. Biochem. Physiol. 43: 171~179
    
    
    55. White T C. 1997. Increased mRNA levels of Erg16, CDR, and MDR1 correlation with the increases in azole-resistant lanosterol 14-alpha demethylase in Candida albicans. Antimicron. Agents Chemother. 41: 1488~1494
    56. Wood H M, Dickinson M J, Lucas J A, Dyer P S. 2001. Cloning of the CYP51 gene from the eyespot pathogen Tapesia yallundae indicates that resistance to the DMI fungicide prochloraz is not related to sequence changes in the gene encoding the target site enzyme. FEMS Microbiol Lett 196: 183~187.
    57. Zwiers L H, De Waard M A. 2000. Characterization of the ABC transporter genes MgAtr1 and MgAtr2 from the wheat pathogen Mycosphaerella graminicola. Fungal Genet Biol 30: 115~125
    58. Balance D J, Buxton F P, Turner G. 1983. Transformation of Aspergillus nidulans by the orotindine-5-(p) decarboxylase gene of N. crassa. Biochem Biophys Res Commun 112: 284~289
    59. Case M E, Schweizer M, Kushner S R et al. 1979. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc. Natl Acad Sci USA 76: 5259~5263
    60. Kelley J M, Hyness M J. 1985. Transformation of Aspergillus nidulans by the amdS gene of Aspergillus nidulans. EMBO J 4: 475~479
    61. Marek E T, Schardl C L, Smith D A. 1989. Molecular transformation of Fusarium oxysporum, Curr Genet 15: 421~428
    62. Goettel M S, Leger R J S, Bhairi S et al. 1990. Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomy(?) resistance. Curt Genet 17: 129~132
    63.方卫国,张永军,杨星勇等.根癌农杆菌介导真菌遗传转化的研究进展.中国生物工程杂志,2002,22(5):40~44
    64.孙剑秋,周东坡.微生物原生质体技术.生物学通报,2002,37(7):9~11
    65.周东坡,平文祥.微生物原生质体融合.黑龙江出版社.哈尔滨,1990
    66.周东坡.原生质体融合选育赖氨酸高产菌株的研究.微生物学报,1991,31(4):287~292
    67.林雅兰,黄秀梨.现代微生物学与实验技术.科学出版社.北京,2000
    68.周东坡.通过灭活原生质体融合选育啤酒酵母新菌株.微生物学报,1999,39 (5):
    
    454~460
    69.唐国敏.丝状真菌基因表达系统研究进展.真菌学报,1992,11 (2):81~88
    70.Wang J, Holden DW, Leong SA. 1988. Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc Natl Acad Sci USA. 85: 865~869
    71.闫培生,李桂舫,罗信昌等.外源抗药性基因导入香菇体内的研究.食用菌学报,1999,19:36~41
    72. Punt D J, Oliver R P, Dingemanse M A et al. 1989. Transformation of Aspergillus based on the hygromycinB resistance marker from Escherichia coli Gene, 56: 117~124
    73. Kenji Ozeki, Fumiko Kyoya, Kazuhiro Hizume et al. 1994. Transformation of intact Aspergillus niger by electroporation. Biosci. Biotech. Biochem. 58(12): 2224~2227
    74. Brown G E, Dezman D J. 1990. Uptake of imazalil by citrus fruit after postharvest application and the effect of residue distribution on sporulation of Penicillium digtatum. Plant Dis, 74: 927~930
    75. Bus V G. 1992. ED50 levels of Penicillium digtatum and P. italicum with reduced sensitivity to thiabeadazola, benomyl and imazalil. Pestharves Biol Technol, 1: 305~315
    76. Akallal R, Debieu D, Lanen C, et al. 1998. Inheritance and mechanisms of resisitant to tebuconazole, a sterol C_(14)-demthylation inhibitor, in necria haematococca. Pestic Biochem Physiol, 60: 147~166
    77. 李绍平,李平,季晖等.RP-HPLC 测定天然与人工冬虫夏草中游离麦角甾醇的含量.药物分析与检验,2001,18 (4):297~299
    78.刘洪涛,吴洪,曹永兵等.衍生化—毛细管气相色谱法定量分析白念珠菌中甾醇含量.药物分析杂志,2002,22 (4):264~267
    79.邓培榕,邓勃.现代仪器分析实验与技术.清华大学出版社.北京,1999
    80.季海涛,张万年,固有骏.抗真菌药物作用靶酶羊毛甾醇 14a 去甲基化酶研究.生物化学与生物物理进展,1999,26 (2):108~113
    81. Schwinn F J. 1984. Ergosterol biosynthesis inhibitors. An overview of their history and contribition to medicine and agriculture. Pestic. Sci. 15: 40~47
    82.李红叶,谢青云,宋爱环.抑霉唑敏感与抗性指状青霉菌株 CYP51 基因序列比较.菌物系统,2003,22(1):153~156
    
    
    83.孙剑秋,于寒颖,张鹏等.树状多节孢原生质体的制备与再生.应用环境生物学报,2001,7 (4):395~381
    84.曹文芩,郭顺星,徐锦堂等.灵芝原生质体的制备、再生和融合.菌物系统,1998,17(1):51~56
    85. Peberdy J F, Buckley C E, Diana C D, et al. 1976. Factors affecting protoplast releasing in some filamentous fungi. Trans Br Mycol Soc, 67(1): 23~26
    86. Fincham JRS. 1989. Tranformation in fungi. Microbial Rer, 53 (1): 148~170
    87.王焰玲,张正义.白腐丝状真菌 Phaherochaece chrysosporium 原生质体形成条件研究.四川大学学报 (自然科学版),1992,29:589~592
    88.单志萍,娄文侯,孟婷.丝状真菌三孢布拉霉原生质体制备及再生条件的研究.江苏食品与发酵,1999 (4):1~4
    89. Illing G. T., Normansell I. D., Peberdy J. F. 1989. Protoplast isolation and regeneration in Streptomyces clavaligenus . J Gene Microbiol, 135: 2289~2297
    90.赖钟雄,陈振光.龙眼胚性培养细胞原生质体分离和纯化.农业生物技术学报,2002,10 (4):347~351
    91.张志光,李冬屏,方芳.丝状真菌原生质体融合技术[V].湖南师范大学自然科学版,1994,17 (3):41~48
    92.陈利锋,Thomas M HOHN.禾谷镰孢菌高产毒菌株的构建.菌物系统,2001,20 (3):330~336
    93.陈振明,郭泽建,林福呈等.以潮霉素抗性为选择标记的毛壳霉原生质体转化.浙江大学学报 (农业与生命科学版),2001,27(1):19~22
    94.杨炜,黄大年,王金霞等.以潮霉素抗性为选择标记的稻瘟病菌原生质体转化.遗传学报,1994,21 (4):305~312
    95.郭慧,R.N.库利.粟长蠕孢菌的原生质体转化,真菌学报,1990.9 (4):286~292
    96. Laura Carramolino.1989. Transformation of Penicillium chrysogenum to sulfonamide resistance. Gene, 77: 31~38
    97. Yasuo Itoh, Richard Johnson, Barry Scott. 1994. Integrative transformation of the mycotoxin-producing fungus, Penicillium paxilli. Curr Genet, 25: 508~513
    98. Naomi Kiuchi, Atsushi Naruse, Hiroki Yamamoto. 1991. Transformation of Penicillium
    
    urticae with plasmids containing the hygromycin B resistance gene. Agric. Biol. Chem., 55(12): 3053~3057
    99. O. Sanchez R. E., Navarro J. Aguirre. 1998. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated. Mol Gen Genet, 258: 89~94
    100. Fion R. Murray, Garrick C. M. Latch, D. Barry Scott. 1992. Surrogate transformation of perennial ryegrass, Lolium perenne, using genetically modified Acremonium endophyte. Mol Gen Genet, 233: 1~9
    101. H. J. Cools, H. Ishii, J. A. Butters et al. 2002. Cloning and sequence analysis of the eburicol 14a-demethylase encoding gene (CYP51)from the Japanese pear scab fungus Venturia nashicola., 150: 444~450
    102. Flora Sanchez, Maria Lozano, Victor Rubio et al. 1987. Transformation in Penicillium chrysogenum. Gene, 51: 97~102
    103. Angus L. Dawe, Debra Aker Willins, N. Ronald Morris. 2000. Increased transformation efficiency of Aspergillus nidulans protoplasts in the presence of dithiothreitol. Analytical Biochemistry, 283: 111~112
    104. Nelson D R, Kamataki T, Waxman D J, Guengerich F P, et al. 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol. 12, 1~51
    105. Toshitsugu Sato, Kaori Yaegashi, Shizuko Ishii et al. 1998. Transformation of the edible basidiomycete Lentinus edodes by restriction enzyme-mediated integration of plasmid DNA. Biosei. Biotechnol. Biochem., 62: 2346~2350
    106. Yuri Aoyama, Yuzo Yoshida, Ryo Sato. 1984. Yeast cytochrome P-450 catalyzing lanosterol 14a-demethylation. The Journal of Biological Chemistry. 259(3): 1661~1666
    107. Yuzo Yoshida, Mitsuhide Noshiro, Yuri Aoyama et al. 1997. Structural and evolutionary studies on sterol 14-demethylase P450 (CYP51), the most conserved P450 monooxygenase: Ⅱ. Evolutionary analysis of protein and gene structures. Biochem., 122: 1122~1128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700