玉米大斑病菌(Setosphaeria turcica)有性杂交后代的生理分化和遗传多态性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米大斑病是玉米上重要的叶部病害,病菌是异宗配合真菌,有性杂交有可能增强病菌的致病力,或形成新的致病小种,扩大病菌的寄主范围,但至今未发现有关证据。本文以亲本菌株132和135及其有性杂交产生的70个子囊孢子后代菌株为试材,进行了生理小种鉴定、AFLP分子多态性分析和酯酶同工酶多态性分析等研究,以期从遗传学角度分析玉米大斑病菌生理分化和遗传多样性的产生原因。
     利用含不同抗性基因的玉米作为鉴别寄主,对两个亲本菌株132、135和它们的70个单子囊孢子后代菌株进行了生理小种的测定,结果表明,亲本菌株132为23N号小种,135为23号小种,在70个后代菌株中23N号小种占41.4%,23号小种占20.0%,除了这两个小种外,还出现了其他类型的生理小种,如0、1、2、3、13、123、12N、13N和123N号小种,它们在后代菌株中所占比例分别为2.9%、1.4%、2.9%、2.9%、4.3%、8.6%、1.4%、4.3%和10.0%。从而表明,子囊孢子后代的生理小种分化程度较大,其中出现的123N号生理小种对带不同Ht抗性基因的玉米均致病。
     本试验利用AFLP技术对亲本和70个后代菌株的遗传多样性进行了研究,建立了适用于玉米大斑病菌的AFLP扩增反应体系和程序。利用该体系对供试菌株进行分子遗传多态性分析,发现后代菌株基于AFLP的分子遗传相似系数在0.87~0.99之间。其中59个后代菌株与亲本菌株的相似系数在0.878以上,占84.3%;和亲木菌株132相似的菌株为49个,占70.0%;和亲本菌株135相似的菌株为10个,占14.3%。结果表明,这与致病性遗传(41.4%后代菌株与132相同,20%后代菌株和135相同)相似。在基因重组的过程中,菌株132的遗传力强于135。
     利用非变性聚丙烯酰胺凝胶电泳技术,对亲本和部分后代菌株进行酯酶同工酶多态性分析。结果表明,菌株间在酯酶同工酶水平上存在显著差异。亲本菌株和子囊孢子后代菌株在酯酶同工酶谱上共出现了9条谱带,其中有4条公共谱带,Rf值分别为0.256、0.684、0.786、0.923;5条明显的差异带,Rf值分别为0.111、0.291、0.342、0.496、0.855;这些条带共同组成了六种谱带类型。
     对玉米大斑病菌亲本菌株和后代菌株的生理小种分化、AFLP分子遗传多态性分析及酯酶同工酶多态性进行了比较,发现生理小种分化和AFLP分子遗传多态性有一定的相关性,但不能完全对应,不存在简单的遗传谱系—小种一一对应关系。生理小种分化和酯酶同工酶多态性之间也不存在一一对应关系,同一酯酶同工酶带型中有不同的生理小种出现,在同一生理小种菌株中也有不同的酯酶同工酶带型的出现。
Northern corn leaf blight is one of the important diseases in maize. The pathogen, Setosphaeria turcica, is heterothallic. It is predicted that the plant fungal pathogen can enhance its pathogenicity, change its pathogenic host range and generate new physiological races through sexual hybridization. Therefore, two parent isolates, 132 and 135, belonging to two opposite mating types and different races were chosen to study the pathogenic differentiation and genetic diversity in their progenies.
    Both parent isolates and their seventy progenies which belonging to which physiological races of S. turcica was identified using identification hosts. The results showed that the parent isolate 132 belonged to race 23N and the other parent isolate 135 belonged to race 23. About 41.1 percent and 20 percent progeny isolates were identified to be race 23N and race 23, respectively, but race 0, 1, 2, 3, 13, 123, 12N, 13N and 123N were also existed in these isolates tested. Race 123N, a pathogenic race to corn with all the known four resistant genes, should be paid more attention. The physiological differentiation in progeny isolates is diversity and broad.
    The fingerprinting analysis based on AFLP molecular marker was carried out and an effective AFLP technological system which was suitable for genetic analysis of S. turcica had been established. The results showed that similarity coefficient between isolates tested was from 0.87 to 0.99. Most of progeny isolates were similar to their parent isolates. Moreover, there were more progenies similar to parent isolate 132 compared to isolate 135. It indicated that the genetics of S. turcica was complex. Parent isolate 132 maybe had stronger genetic transmittal ability than parent isolate 135 in the course of sexual hybridization.
    The esterase isozyme polymorphism among the parent isolates 132 and 135 and their progenies were analyzed by polyacrylamide gel electrophoresis (PAGE). The results showed that there was great diversity in the esterase isozyme map among parent and progenies isolates. Four common bands were found among the total nine bands on the esterase isozyme map. Their Rf values were 0.256, 0.684, 0.786 and
    
    
    0.923, respectively. The other five bands are specific and their Rf values were 0.111, 0.291, 0.342, 0.496 and 0.855, respectively. These bands of esterase isozyme formed into 6 different patterns of isozyme bands.
    Through comparing the physiological differentiation, with AFLP molecular diversity and esterase isozyme polymorphism, it was found that the physiological differentiation and AFLP molecular genetic polymorphism were not definitely completely correlated. The physiological differentiation and esterase isozyme polymorphism were not correlated to some extents either.
引文
[1] 董金皋,李树正.植物病原菌毒素研究进展(笫一卷)[C].北京:中国科学技术出版社,1997,102~126.
    [2] 晋齐鸣,任金平,张秀文,等.1991年吉林省中部地区玉米病害发生危害情况[J].吉林农业科学,1992,2:40~42.
    [3] Raymundo A D, Hooher A L. Measuring the relationship between northern corn leaf blight and yield losses [J]. Plant Disease, 1981, 65: 325~327.
    [4] Perkins J M, Pederson W L. Disease development and yield losses associated with northern leaf blight on corn [J]. Plant Disease, 1987, 71: 940~943.
    [5] 李林.玉米大斑病菌生理小种鉴定初报[J].山东农业科学,1995,2:25~28.
    [6] Nelson R R. Evaluating genetic protentials in Helminthosporium turcicum [J]. Phytopathology, 1965, 55(8): 418~420.
    [7] Rodriguez A E, Ullstrup A J. Pathogenicity of monoascosporic progenies of Trichometasphaeria turcica[J]. Phytopathology, 1962, 52(5): 599~601.
    [8] Luttrell E S. Leptosphaeria perfect stages for Helminthosporium turcicum and H. rostratum[J]. Phytopathology, 1957, 47(5): 313.
    [9] Fallah M P, Pataky J K. Reactions of isolates from matings of races 1 and 23N of Exserohilum turcicum[J]. Plant Disease,1994, 78(8): 767~771.
    [10] Mitra M. Helminthosporium spp. on cereals and sugarcance in India. Part Ⅰ (Diseases of Zea mays and sorghum vulgare caused by species of Helminthosporium.) [J], Bot. Ser. 1923, 6(10): 219~242.
    [11] Gevers H O. A new major gene for resistance to Helminthosporium turcicum leaf blight of maize [J]. Plant Disease Report, 1975, 59: 296~299.
    [12] Hooker A L. Monogenic resistance in Zea mays L. to Helminthosporium turcicum[J]. Crop Science, 1963, 3: 381~383.
    [13] 徐尚忠,刘曙东,熊秀珠,等.印尼农家品种“柏拉玛地”选系对玉米大斑病抗性遗传的研究[J].中国农业科学,1987,20(3):48~55.
    [14] Perkins J M, Hooker A L. Reactions of eighty-four sources of chlorotic lesion resistance in corn to three biotypes of Helminthosporium turcicum[J]. Plant Disease, 1981, 65: 502~504.
    [15] Hooker A L, Nelson R R, Hilu H M. Avirulence of Helminthosporium turcicum on monogenic resistant corn[J]. Phytopathology, 1965, 55(4): 462~463.
    [16] Abadi R, Levy Y, Bar-Tsur A. Physiologic races of Exserohilum turcicum in Israel[J]. Phytoparasitica, 1989, 17(1): 23~30.
    
    
    [17] Leonard K J, Levy Y, Smith D R. Proposed nomenclauture for pathogenic races of Exserohilum turcicumon corn[J]. Plant Disease, 1989, 73(9):776~777.
    [18] Pataky J K. Race 23N of Exserohilum turcicum in Florida[J]. Plant Disease, 1991, 75(8): 863.
    [19] Gianas L, Castro H A, Silva H P. Physiological races of Exserohilum turcicum identificed from maize production regions of Brazil,1993/94[J]. Summa Phytopathologica, 1996, 22(3/4): 214~217.
    [20] 藩顺法,姜晶春,马润芝,等.玉米大斑病防治研究[J].中国农业科学,1980,3:81~82.
    [21] 吴纪昌,陈刚,邹桂珍,等.玉米大斑病菌生理小种研究初报[J].植物病理学报,1983,13(2):15~20.
    [22] 姜晶春,藩顺法,尹志.玉米大斑病菌生理小种鉴定续报[J].吉林农业科学,1991,1:46~48.
    [23] 兰光燮.黔西北地区玉米大斑病菌生理小种研究[J].西南农业学报,1993,6:89~93.
    [24] 刘国胜,董金皋,邓福友等.中国玉米大斑病菌生理分化及新命名法的初步研究.植物病理学报,1996,26(4):305~310.
    [25] Abadi R, Perl-Treves R, Levy Y. Molecular variability among Exserohilum turcicum isolates using RAPD[J]. Candian Journal of Plant Pathology, 1996, 18(1): 29~34.
    [26] Borchardt D S, Welt H G, Geiger H H. Genetic stricture of Setosphaeria turcica population in tropical and temperates[J]. Phytopathology, 1998, 88(4): 322~329.
    [27] Borchardt D S, Welt H G, Geiger H H. Molecular marker analysis of European Setosphaeria turcica population[J]. European Journal of Plant Pathology, 1998, 104:611~617.
    [28] 桂秀梅.玉米大斑病菌遗传多态性与有性态诱导[D].保定:河北农业大学硕士学位论文,2002
    [29] 马继芳.玉米大斑病菌有性杂交后代的遗传多念性与原生质体制备[D].保定:河北农业大学硕士学位论文,2003
    [30] 胡能书,万国贤.同工酶技术及其应用[M].长沙:湖南科学技术出版社,1985
    [31] 刘学敏.大豆灰斑病菌遗传标记的建立[D].沈阳:沈阳农业大学博士学位论文,1996
    [32] 董金皋,唐蕊,赵光耀,等.玉米大斑病菌的酯酶同工酶与HT-毒素组分关系研究[J].河北省科学院学报,1999,16(3):262~266.
    [33] 董金皋,贾建航,李正平.玉米大斑病菌生理小种同工酶的薄层扫描图谱[J].玉米科学,1995,3:67~70.
    
    
    [34] Zabeau M, Vos P. Selective restriction fragment amplification-a general method for DNA fingerprinting[P]. European Patent Application 94202629. 7 (Publication No. 05348A1). Paris: European Patent Office, 1993.
    [35] Vos P R, Hogers M, Bleeker M, et al. AFLP: A new concept for DNA fingerprinting[J]. Nucleic Acids Res, 1995, 23: 4407~4414.
    [36] Botchan M, Mckenna G, Sharp P A. Cleavage of mouse DNA by a restriction enzyme as a clue to the arrangement of genes[J]. Cold Spring Harbor Symp Quant Biol, 1974, 38: 383~395.
    [37] William J G K, Kubelik A R, Livak K J, et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18: 6531~6535.
    [38] Welsh J, Mccelland M. Fingerprinting plant genome using PCR with arbitrary primer[J]. Nucleic Acids Res, 1990, 19:303~306.
    [39] PERKIN-ELMER. AFLP Plant Mapping Kit Protocal[P]( P/N 402083 ), 1995.
    [40] Qi X, Lindhout P. Development of AFLP markers in barley[J]. Mol Gen Genet, 1997, 254: 330~336.
    [41] Peleman J. Integration of genetic maps (AFLP) in lettuce and sunflower: observations and applications[Z]. Plant & Animal Genome Ⅵ Conference at San Diego, 1998.
    [42] Feng X, Saha S, Solima K. DNA fingerprinting in cotton using AFLPs[J]. Focus, 1997, 19: 11~12.
    [43] Travis S E, Ritland K, Whitham T G, et al. A genetic linkage map of Pinyon Pin ( Pinus edulis ) based on amplified fragment length polymorphisms[J]. Theor and App Genet, 1998, 97: 871~880.
    [44] Singh R, Cheah S C, Abdul R, et al. Generation of molecular markers in oil palm ( Elaeis guineensis) using AFLPTM analysis[J]. Focus, 1998, 20: 26~27.
    [45] Perry M, Davey M, Power J B, et al. DNA isolation and AFLPTM genetic fingerprinting of Theobroma cacao (L.) [J]. Plant Mol Biol Rep, 1998, 16: 49~59.
    [46] GIBCOBRL. AFLPTM Analysis System Ⅰ AFLP Starter Primer Kit Instruction Manual[Z], 1995.
    [47] Li X, van Eck H J, Rouppe van der Voort J, et al. Autotetraploids and genetic mapping using common AFLP markers: the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4. Theor Appl Gene, 1998, 96: 1121~1128.
    [48] Zimnoch-Guzowska E, Marczewski W, Lebecka R, et al. QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by
    
    AFLP, RFLP and resistance-gene-like markers. Crop Sci, 2000, 40: 1156~1167.
    [49] Meksem K, Leister D, Peleman J, et al. A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based in RFLP and AFLP markers. Mo Gen Genet, 1995, 249: 74~81.
    [50] Rouppe van der Voort J, Wolters P, Folkertsma R, et al. Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theor Appl Genet, 1997, 95: 874~880.
    [51] Karp A. Biotechnology and biodiversity[Z]. BBSRC Business, 1998, 10: 22~23.
    [52] Hartl L, Seefelder S. Diversity of selected hop cultivars detected by fluorescent AFLPs[J]. Theor Appli Genet, 1998, 96:112~116.
    [53] Money T. AFLP-based mRNA fingerprinting[J]. Nucleic Acid Res, 1996, 24(13): 2616~2617.
    [54] Nakajima Y. Characterization of genetic diversity of nuclear and mitochondrial genomes in Daucus varities by RAPD and AFLP[J]. Plant Cell Reports, 1998, 17: 848~853.
    [55] Sharma S K. AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis[J]. Theor Appl Genet, 1996, 93: 751~758.
    [56] 陈洪,朱立煌,李冬梅,等.致病性念珠菌DNA的AFLP指纹图谱[J].科学通报,1996,41(10):934~938.
    [57] Thomas C, Vos C, Zabeau M, et al. Identification of amplified restriction fragment length polymorphism (AFLP) markers lightly linked to the tomato Cf-9 gcne for resistence to Cladosporium fluvum[J]. The Plant Jour, 1995, 8: 785~794.
    [58] Meksem K, Leister D, Peleman J, et al. A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers[J]. Mol Gen Genet, 1995, 249: 74~81.
    [59] Maria T C, Narijke S. AFLP molecular markers for resistance to melamp sora larici-populina in poplar[J]. Environmental and social issues in Poplar and Willow cultivation and utilization, 1996, 1: 142~150.
    [60] Chops G, Boer B, GeratsA, et al. Chromosome landing at the arabidopsis TORNADOI locus using an AFLP-based strategy[J]. Mol Gen Genet, 1996, 253: 32~41.
    [61] Lahaye T, Shrrasn K, Schulze L P. Chromosome landing at the barley rar1 locus[J]. Mol Gen Genet, 1998, 20: 92~101.
    [62] Simons G, Vander L T, Diergaarde P, et al. AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome[J]. Genetics,
    
    1997, 44: 61~70.
    [63] Jin H, Domier L L, Kolb F L, et al. Identification of quantitative loci for tolerance to barley yellow dwarf virus in oat[J]. Phytopathology, 1998, 88: 410~415.
    [64] Bai G, Kolb F L, Shaner G, et al. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat[J]. Phytopathology, 1999, 89: 343~348.
    [65] Janssen P, Coopman R, Huys G, et al. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy[J]. Microbiology, 1996, 142: 1881~1893.
    [66] Bragard C, Singer E, Alizadeh A, et al. Xanthomonas translucens from small grains: diversity and phytopathological relevance[J]. Phytopathology, 1997, 87: 1111~1117.
    [67] Clerc A, Manceau C, Nesme X. Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies Ⅲ of Pseudomonas syringae[J]. Appl Environ Microbiol, 1998, 64:1180~1187.
    [68] Baayen R P, O'Donnell K, Bonants P J M, et al. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease[J]. Phytopathology, 2000, 90: 891~900.
    [69] Cilliers A J, Herselman L, Pretorius Z A. Genetic variability within and among mycelial compatibility groups of Sclerotium rolfsii in South Africa[J]. Phytopathology, 2000, 90:1026~1031.
    [70] Pongam P, Osborn T C, Williams P H. Genetic analysis and identification of amplified fragment length polymorphism markers linked to the alml avirulence gene of Leptosphaeria maculans[J]. Phytopathology, 1998, 88: 1068~1072.
    [71] Zhong S, Steffenson B J. Virulence and molecular diversity in Cochliobolus sativus[J]. Phytopathology, 2001, 91: 469~476.
    [72] Stewart N C Jr, Via L E. A Rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications[J]. BioTechniques, 1993, 14(5): 748~749.
    [73] 安鑫龙,董金皋,韩建民.玉米大斑病菌的RAPD分析Ⅰ应用CTAB法提取玉米大斑病菌DNA[J].河北农业大学学报,2001,24(1):38~41.
    [74] Angiolillo A, Mencuccini M, Baldoni L. Olive genetic diversity assessed using amplified fragment length polymorphisms[J]. Theoretical and Applied Genetics, 1999, 98(3~4): 411~421.
    
    
    [75] Pich U, Schubert I. Method for isolation of DNA from Plants with a high content of polyphenolics[J].Nucleic Acids Research, 1993, 21 (14):3328~3332.
    [76] 贾建航,李传友,金德敏,等.AFLP技术在玉米自交系类群分析研究中的应用[J].高技术通讯,1999,(4):43~47.
    [77] 胡小荣,卢新雄,张云兰,等.AFLP技术运用于小麦种子超干燥保存遗传完整性的初探[J].植物遗传资源学报,2003,4(2):162~165.
    [78] 宋国立,张春庆,贾继增,等.棉花AFLP银染技术及品种指纹图谱应用初报[J].棉花学报,1999,11(6):281~283.
    [79] 翁跃进,Santosh Gurtu,S N Nigam.花生AFLP指纹图谱[J].中国油料作物学报,1999,21(1):10~12.
    [80] 郑晓鹰,王永建,宋顺华,等.大白菜耐热性分子标记的研究[J].中国农业科学,2002,35(3):309~313.
    [81] 张宝玺,王立浩,黄三文,等.辣椒分子遗传图谱的构建和胞质雄性不育恢复性的QTL分析[J].中国农业科学,2003,36(7):818~822.
    [82] 易干军,霍合强,蔡长河.荔枝AFLP分析体系的建立[J].果树学报,2002,19(6):361~364.
    [83] 房经贵,章镇,马正强,等.AFLP标记在两个芒果品种间杂交F1代的多态性及分离方式[J].中国农业科学,2000,33(3):19~24.
    [84] 曹少先,杨利国,姜勋平,等.波尔山羊和江苏本地山羊的AFLP和RAPD分析[J].中国农业科学,2002,35(10):1291~1296.
    [85] 陈大霞,司马杨虎,赵爱春,等.影响家蚕AFLP-银染法的因素及其对策[J].2002,22(4):37~42.
    [86] 何月秋 Hei LEUNG,Robert S.ZEIGLER,等.稻瘟病菌变异菌株的AFLP分析[J].菌物系统,2002,21(3):363~369.
    [87] 高军.小麦叶锈菌(Puccinia recondita f.sp.tritici)毒性及AFLP分析[M].河北农业大学硕士学位论文,2003.
    [88] 宁红.玉米弯孢菌叶斑病菌检测技术及遗传多样性研究[M].四川大学博士学位论文,2002.
    [89] 邹亚飞.棉花黄萎病菌(Verticillium dahliae)致病型分析与分子鉴定研究[M].西南农业大学硕士学位论文,2001.
    [90] 王斌,李传友,郑洪刚,等.水稻的AFLP研究初报-反应条件的优化及对温敏和不育等位突变系的分析[J].植物学报,1999,41(5):502~507.
    [91] 凌杏元,周培疆,关和新,等.运用AFLP技术筛选分离野败型水稻mtDNA中与雄性不育性状相关的片段[J].遗传,1999,21(2):33~36.
    [92] 沈同.生物化学[M],北京:高等教育出版社,1991,10.
    [93] 袁凤杰,杨庆凯.大豆灰斑病菌生理小种同功酶分析[J].植物病理学报,1998,28(1):39~42.
    [94] Zeigler R S, Cuoc L X, Scott R P, et al. The relationship between line age and
    
    virulence in Pyricularia grisea in Philippines [J]. Phytopathoiogy, 1995, 85(4): 443~451.
    [95] 朱衡,蒋琬如,陈美玲,等.稻瘟病菌株的DNA指纹及其与小种致病性相互关系的研究[J].作物学报,1994,20(3):257~263.
    [96] 沈瑛,袁筱萍,王艳丽.分子探针在稻瘟病流行病学中的应用研究[J].西南农业大学学报,1998,20(5):401~408.
    [97] 王宗华,鲁国东,赵志颖,等.福建稻瘟菌群体遗传结构及其变异规律[J].中国农业科学,1998,31(5):7~12.
    [98] 杨水英,肖崇刚,杨静,等.重庆稻瘟病菌遗传谱系与生理小种的关系研究[J].西南农业大学学报,2002,24(6):535~538.
    [99] 吕金殿.我国棉花枯萎病菌酯酶同工酶测定初报[J].植物病理学报,1982,12(2):41~45.
    [100] 李清铣.江苏麦类镰刀菌酯酶同工酶测定[J].植物病理学报,1985,15(4):217~223.
    [101] 甘莉.西瓜枯萎病菌酯酶同工酶的初步研究[J].陕西农业科学,1988,(6):87~90.
    [102] 张莉,李晖,李国英,等.新疆棉花枯萎病菌酯酶同工酶的研究[J].石河子大学学报,2000,4(2):87~91.
    [103] 刘曙照,李清跣.稻瘟病生理小种酯酶同工酶特性的研究[J].植物病理学报,1992,22(2):179~183.
    [104] 唐朝荣,陈捷,纪明山,等.辽宁省玉米纹枯病病原学研究[J].植物病理学报,2000,30(4):319~326.
    [105] 袁凤杰,徐金星,杨庆凯.大豆灰斑病菌生理小种的同工酶鉴定[J].大豆科学,1998,17(3):219~224.
    [106] 李国庆,王道本,黄鸿章,等.来源于佳木斯茄子上的核盘菌菌株多样性的研究[J].植物病理学报,1996,26(3):237~242.
    [107] 朱培良,沈瑛,袁筱萍,等.稻瘟菌不同小种间可溶性蛋白及酯酶同工酶的多态性[J].植物保护.1995,21(6):15~16.
    [108] 伍光庆,叶华智,李崇云,等.稻瘟菌菌体可溶性蛋白和同工酶的凝胶电泳分析[J].四川农业大学学报.1996,14(4):505~508,528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700