海洋生物碱pityriacitrin及类似物、大黄素糖衍生物的合成与抗肿瘤活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分两部分:第一部分是海洋生物碱pityriacitrin及类似物的合成与抗肿瘤活性评价,第二部分是大黄素糖衍生物的合成与抗肿瘤活性评价。
     1.β-咔啉衍生物是一类广泛分布于自然界的生物碱。近年来的研究表明,β-咔啉生物碱具有抗肿瘤活性,而且某些β-咔啉生物碱对肿瘤细胞具有较高的选择性,这些研究结果激起了人们对β-咔啉类抗癌衍生物的兴趣。
     由于海洋天然提取物一般量很少,并且提取过程比较复杂,限制了进一步的结构优化及药理学研究和活性筛选。因此,作为资源解决途径的化学合成方法自然受到化学工作者们的高度重视。Pityriacitrin作为一种从海洋中分离得到的β-咔啉生物碱,到目前为止,还没有关于它的化学合成方面的报道。因此,我们决定合成pityriacitrin,获得足够量的目标化合物,以满足进一步研究的需要;并设计合成它的一系列类似物,通过比较活性的差异,期望能从中发现有很好的抗肿瘤活性的化合物。
     采用改进的Pictet-Spengler反应,通过一锅法成功地合成了海洋天然产物β-咔啉生物碱pityriacitrin(9),并合成了它的一系列类似物10-16。同时,还分离得到了三个3位羧基未脱除的β-咔啉化合物17-19。其中,pityriacitrin B(17)也是一个天然产物,并首次被化学合成。所有产物均通过质谱、高分辨质谱、核磁共振氢谱、核磁共振碳谱、红外光谱进行了结构表征。该反应是在经典的Pictet-Spengler反应的基础上进行改进的,操作简单,条件温和,可以作为一种方便有效的合成1位芳香羰基取代的β-咔啉生物碱的方法。实验发现,色氨酸5位上羟基的有无对反应的难易及收率没有明显影响。
     海洋天然产物pityriacitrin(9)对乳腺癌细胞MCF7、MDA231和前列腺癌细胞PC3的抑制活性较差,抗肿瘤活性不高。而在其基础上进行结构改造得到的化合物中,则有一些表现出了良好的抗肿瘤活性。在5'位引入甲氧基或者在6位引入羟基后,得到的化合物10(IC50 = 6.94、18.82、49.89μM)和13(IC50 = 12.94、6.35、16.37μM)的抗肿瘤活性很高;咔啉环上3位羧基的保留对抗肿瘤活性很重要;而5'位甲氧基与3位羧基同时存在的化合物18的抗肿瘤活性最高(IC50 = 3.4、12.09、32.3μM)。
     2.大黄素为三环共平面结构,具有DNA嵌入剂的基本结构特征,但大黄素本身与DNA的结合力不强,抗肿瘤活性较弱,溶解性也很差。近几年来我们合成并研究了糖修饰的抗肿瘤活性化合物,发现糖基的引入大大增加了先导化合物的水溶性,有的还增加了先导化合物的抗肿瘤活性,特别是可以增加大共轭平面基团的抑制肿瘤细胞生长活性。
     因此,为了改善其溶解性,增加水溶性,同时为了找到具有更好的抗肿瘤活性药物,我们对大黄素的3位羟基进行了化学修饰。通过相转移催化法,在3位分别引入了乙酰化的半乳糖基和木糖基,得到了1,8-二羟基-3-甲基-6-(2,3,4,6-四-O-乙酰基-1-脱氧-β-半乳糖)-蒽醌(3)和1,8-二羟基-3-甲基-6-(2,3,4-三-O-乙酰基-1-脱氧-β-木糖)-蒽醌(4);并对化合物4脱乙酰基保护,得到了1,8-二羟基-3-甲基-6-(1-脱氧-β-木糖)-蒽醌(5)。所有目标产物均为新化合物,并通过质谱、高分辨质谱、核磁共振氢谱、核磁共振碳谱进行了结构表征。所合成的大黄素糖衍生物对乳腺癌细胞MDA231表现出了较好的抑制率,具有中等强度的抗肿瘤活性。
The thesis is composed of two parts: the first one is synthesis and anti-tumor activity of the marine alkaloid pityriacitrin and its derivatives, and the second one is synthesis and anti-tumor activity of emodin glycoside analogues.
     1.β-Carbolines exist widely in nature as a thoroughly investigated family of indole alkaloids. They have attracted more and more interests because of their anti-tumor activity.
     Pityriacitrin possesses theβ-carboline moiety to which an indole ring is attached at C-1 by carbonyl group, isolated from a marine bacterium of the genus Paracoccus (strain F-1547), and also from the yeast Malassezia furfur. Chemical synthesis of pityriacitrin has not been reported in the literature. Marine alkaloids are normally isolated in very small quantity, which hinders us to research their biological activities and further structure modification. So, it’s necessary to find out chemical methods to synthesize them. Laboratory synthesis of marine alkaloids in larger quantity will allow us to perform a more complete study of their biological activities.
     Compared to the general two-step Pictet-Spengler reaction, the modified one-pot oxidation reaction is more efficient and convenient in preparing 1-aromatic carbonyl substitutedβ-carbolines without the need of aromatization step. Using the modified Pictet-Spengler reaction,β-carboline alkaloid pityriacitrin (9) and a series of its derivatives 10-16 have been synthesized. At the same time, another three 3-carboxy substitutedβ-carboline alkaloids 17-19 are obtained. Pityriacitrin B (17) is also synthesized for the first time as a natural compound. All compounds have been characterized by IR, NMR and mass spectrometry. They are all new compounds synthesized by chemical method for the first time.
     The in vitro anti-tumor activity of all the synthetic compounds is evaluated against the MCF7、MDA231、PC3 cell lines by the standard MTT assay. Pityriacitrin exhibits poor anti-tumor activity, however, some of its derivatives exhibit good anti-tumor activity against the three cell lines. 5'-methoxy substituted compound 10 (IC50 = 6.94、18.82、49.89μM) and 6-hydroxy substituted compound 13 (IC50 = 12.94、6.35、16.37μM) exhibit high anti-tumor activity. The preserved carboxy on 3 position ofβ-carboline is important to the anti-tumor activity. The 5'-methoxy and 3-carboxy substituted compound 18 exhibits the best anti-tumor activity (IC50 = 3.4、12.09、32.3μM).
     2. Emodin possessing planar polycyclic aromatic system has lower DNA binding affinity and lower or less insignificant cytotoxicity against cancer cells. Addition of side chains such as polymethyleneamine, sugar or heterocyclic to emodin chromophore, is usually effective to gain higher DNA binding affinity and anti-tumor activity. In order to improve its DNA binding affinity and anti-tumor activity, some new emodin glycoside derivatives are synthesized by attaching various saccharide side chains to emodin.
     Using the phase transfer catalysis method, 1,8-dihydroxy-3-methyl-6-[(2,3,4,6- tetra-O-acetyl-β-D-galactopyranosyl)oxy]-9,10-anthracenedione (3) and 1,8-dihydro- xy-3-methyl-6-[(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)oxy]-9,10-anthracenedione (4) are synthesized. 1,8-Dihydroxy-3-methyl-6-(β-D-xylopyranosyloxy)-9,10-anthrace- nedione (5) is obtained by deprotection of compound 4. They are all synthesized by chemical method for the first time and characterized by NMR and Mass spectrometry.
     The in vitro anti-tumor activity is evaluated against the MDA231 cell line by the standard MTT assay. They are proven to possess moderate anti-tumor activity.
引文
[1]徐任生,叶阳,等.天然产物化学.北京:科学出版社,2004.2
    [2]全国中等卫生学校统编教材《中草药化学》编写组.中草药化学.南京:江苏科学技术出版杜,1980.2
    [3]陈友梅.中药化学.济南:山东科学技术出版社,1988.51~57
    [4]马养民,傅建熙.生物碱的研究概况.陕西林业科技,1997,1:75~79
    [5]姚新生.天然药物化学.北京:人民卫生出版社,2001.343~356
    [6]哈成勇,沈敏敏,刘治孟.天然产物化学与应用.北京:化学工业出版社,2003.7
    [7]贾鹏飞.新型β-咔啉类生物碱dichotomine和天然产物1,7-二芳基庚烷类化合物的全合成研究:[硕士学位论文].兰州:兰州大学化学系,2007
    [8]周贤春,何春霞,苏力坦·阿巴白克力.生物碱的研究进展.生物技术通讯,2006,17(3):476~479
    [9]蒙其淼,梁洁,吴桂凡,陆晖.生物碱类化合物药理作用研究进展.2003,14(11):700~702
    [10]焦霞,沈其昀.苦参生物碱的临床及药理研究进展.中药新药与临床药理,2002,13(3):192~194
    [11]李丹,王平全,张楠森.苦参碱类生物碱的研究进展及临床应用.中草药,1996,27(5): 308~311
    [12]于晓琳,季晖,王长礼,李萍.贝母的药理作用研究概况.中草药,2000,31(4):313~315
    [13]贾献慧,周铜水,郑颖,刘汉清.石蒜科植物生物碱成分的药理学研究.中医药学刊,2001,19(6):573~574
    [14] Zhong, S. B.; Liu, W. Q.; Li, R. L.; et al. Studies on semi-synthesis of cephalotaxine esters and correlation of their structures with antitumor activity. Acta Pharmaceutica Sinica, 1994, 29 (1): 33~38
    [15] Lou, H. X.; Li, X.; Chu, X. J. Alkaloids from the roots of cynanchum hancockianum and their derivatives preparation. Acta Academiae Medicinae Shandong, 1995, 33 (2): 158~162
    [16] Zhen, Y. Y.; Huang, X. S.; Yu, D. Q.; Yu, S. S. Antitumor alkaloids isolated from Tylophora ovata . Acta Botanica Sinica, 2002, 44 (3): 349~353
    [17]余红英,孙远明,杨跃生.蛇足石杉生物碱的研究.时珍国医国药,2002,13(3):176~179
    [18]富田真雄,他.防已科植物ァルヵロイド研究(第235报),Cyclea barbata(Wall.) Miers.ァルヵロイド药学杂志,1967,87:1012
    [19]富田真雄,他.防已科植物ァルヵロイド研究(第246报),台湾产アサザキツヅデつジParacyclea Ochiaiana Kudo et Yamamoto.のァルヵロイド药学杂志,1967,87:1285
    [20] Tang, Z. J.; Lao, A. N.; Chen, Y.; et al. Studies on the active principles fo neuromuscular blocking actions of Cyclea barbata (Wall.) Miers (author’s transl). Acta Pharmaceutica Sinica, 1980, 15 (8):506~508
    [21] Yoshiynki, I. New alkaloids from Aconitum suchalianse Fr. Schmidt Bull Chem. Soc. Japan, 1969, 42: 3038
    [22] Wang, Y. G.; Zhu, Y. L.; Zhu, R. H. Alkaloids of the Chinese drugs, Aconitum spp. XIII. Alkaloids from Pei Cao Wu, Aconitum kusnezoffii (author’s transl). Acta Pharmaceutica Sinica, 1980, 15 (9):526~531
    [23] Jiang, S. H.; Zhu, Y. L.; Zhao, Z. Y.; Zhu, R. H. Studies on a Chinese drug, Aconitum spp. XXI. Alkaloids from Aconitum finetianum Hand-Mazz. Acta pharmaceutica Sinica, 1983, 18 (6): 440~445
    [24]郑锡文,闵知大,赵守训.蝙蝠葛中的新生物碱蝙蝠葛苏林碱.科学通报,1979,24(6):285~288
    [25] Gong, T.; Wu, Z. Y. Some pharmacologic actions of the dahurisoline methyl bromide, a preliminary report (author's transl). Acta pharmaceutica Sinica, 1979, 14 (7): 439~442
    [26]朱任宏,何林兴,陈燕.中国延胡索之研究I.浙江东阳延胡索中的植物碱.化学学报,1962,28(4):195~199
    [27] Chang, J. Q.; Wang, J. G.; Li, C. C.; et al. Pharmacological studies on magnofloring, a hypotensive principle from tu qing mu xiang. Acta pharmaceutica Sinica, 1964, 11: 42~49
    [28]近藤平三朗,他.カキカヅテァのァルヵロド研究.药学杂志(日),1928,321
    [29]李建祥,刘立干.黄连药理作用临床评述.时珍国医国药,1999,10(10):797~797
    [30]戈升荣,崔岚,王平全.汉防己甲素药理作用的研究进展.中草药,2000,31(8):附4~附6
    [31]韦琨,窦德强,裴玉萍,陈英杰.胡椒的化学成分、药理作用及与卡瓦胡椒的对比.中国中药杂志,2002,27(5):328~333
    [32] Szantay, C.; Blasko, G.; Honty, K.; Dornyei, G. Corynantheine, yohimbine, and related alkaloids. Alkaloids (Academic Press), 1986, 27: 131~268, 407~410
    [33] Park, T. H.; Kwon, O. S.; Park, S. Y.; et al. Acid-base equilibria of methylβ-carboline-3- carboxylate in aqueous solution. J. Luminesce, 2003, 101: 227~234
    [34] Varela, A. P.; Burrows, H. D.; Douglas, P.; et al. Triplet statestudies ofβ-carbolines. J. Photochem Photobio A: Chemistry, 2001, 146: 29~36
    [35] Ponce, M. A.; Erra-Balsells, R. Synthesis and isolation of bromo-β-carbolines obtained by bromination ofβ-carboline alkaloids. Journal of Heterocyclic Chemistry, 2001, 38 (5): 1087~1095
    [36]高晶.含氟的β-咔啉类生物碱的合成与研究:[硕士学位论文].大庆:大庆石油学院化学系,2004
    [37]花文廷.杂环化学.北京:北京大学出版社,1990.269~272
    [38] Cox, E. D.; Diaz-Arauzo, H.; Huang, Q.; et al. Synthesis and evaluation of analogs of the partial agonist 6-(Propyloxy)-4-(methoxymethyl)-β-carboline-3-carboxylic acid ethyl ester (6-PBC) and the full agonist 6-(Benzyloxy)-4-(methoxymethyl)-β-carboline-3-carboxylic acid ethyl ester (Zk 93423) at wild type and recombinant GABAA receptors. Journal of Medicinal Chemistry, 1998, 41 (14): 2537~2552
    [39] Cain, M.; Weber, R. W.; Guzman, F.; et al.β-Carbolines: synthesis and neurochemical and pharmacological actions on brain benzodiazepine receptors. Journal of Medicinal Chemistry, 1982, 25 (9): 1081~1091
    [40] Guzman, F.; Cain, M.; Larscheid, P.; et al. Biomimetic approach to potential benzodiazepine receptor agonists and antagonists. Journal of Medicinal Chemistry, 1984, 27 (5): 564~570
    [41] Dorey, G.; Poissonnet, G.; Potier, M. C.; et al. Synthesis and benzodiazepine receptor affinities of rigid analogs of 3-carboxy-β-carbolines: demonstration that the benzodiazepine receptor recognizes preferentially the s-cis conformation of the 3-carboxy group. Journal of Medicinal Chemistry, 1989, 32 (8): 1799~1804
    [42] Nakagawa, M. Enantioselective total synthesis of marine alkaloids, manzamine A and related compounds. Journal of Heterocyclic Chemistry, 2000, 37 (3): 567~581
    [43] Ishida, J.; Wang, H.-K.; Bastow, K. F.; et al. Antitumor agents 201.1 Cytotoxicity of harmine andβ-carboline analogs. Bioorganic & Medicinal Chemistry Letters, 1999, 9 (23): 3319~3324
    [44] Lin, W.; Xiao, S. L.; Yang, M. The syntheses ofβ-carboline-3-carboxamides derivatives andtheir interaction with DNA. Journal of Chinese Pharmaceutical Sciences, 2001, 10 (3): 119~123
    [45] Nielsen, M.; Gredal, O.; Braestrup, C. Some properties of 3H-diazepam displacing activity from human urine. Life Sciences, 1979, 25 (8): 679~686
    [46] Braestrup, C.; Nielsen, M.; Olsen, C. E. Urinary and brainβ-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77 (4): 2288~2292
    [47] Trullas, R.; Ginter, H.; Jackson, B.; et al. 3-Ethoxy-β-carboline: a high affinity benzodiazepine receptor ligand with partial inverse agonist properties. Life Sciences, 1988, 43 (15): 1189~1197
    [48] Allen, M. S.; LaLoggia, A. J.; Dorn, L. J.; et al. Predictive binding ofβ-carboline inverse agonists and antagonists via the CoMFA/GOLPE approach. Journal of Medicinal Chemistry, 1992, 35 (22): 4001~4010
    [49] Kim, H.; Sablin, S. O.; Ramsay, R. R. Inhibition of monoamine oxidase A byβ-carboline derivatives. Archives of Biochemistry and Biophysics, 1997, 337 (1): 137~142
    [50] Song, Y. C.; Wang, J.; Teng, S. F.; et al.β-Carbolines as specific inhibitors of cyclin- dependent kinases. Bioorganic & Medicinal Chemistry Letters, 2002, 12 (7): 1129~1132
    [51] Castro, A. C.; Dang, L. C.; Soucy, F.; et al. Novel IKK inhibitors:β-carbolines. Bioorganic & Medicinal Chemistry Letters, 2003, 13 (14): 2419~2422
    [52] Teller, S.; Eluwa, S.; Koller, M.; et al. Pyrrolo [3,4-c]-β-carboline-diones as a novel class of inhibitors of the platelet-derived growth factor receptor kinase. European Journal of Medicinal Chemistry, 2000, 35 (4): 413~427
    [53] Funayama, Y.; Nishio, K.; Wakabayashi, K.; et al. Effects ofβ- andγ-carboline derivatives on DNA topoisomerase activities. Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 349 (2): 183~191
    [54] Deveau, A. M.; Labroli, M. A.; Dieckhaus, C. M.; et al. The synthesis of amino acid- functionalizedβ-carbolines as topoisomerase II inhibitors. Bioorganic & Medicinal Chemistry Letters, 2001, 11 (10): 1251~1255
    [55] Lin, W.; Xiao, S. L.; Yang, M. The syntheses ofβ-carboline-3-carboxamides derivatives and their interaction with DNA. Journal of Chinese Pharmaceutical Sciences, 2001, 10 (3):119~123
    [56] Lin, W.; Xiao, S. L.; Yang, M. Synthesis ofβ-carboline-3-carboxamides and their interaction with DNA. Beijing Daxue Xuebao, Yixueban, 2001, 33 (3): 277~279
    [57] Xiao, S. L.; Lin, W.; Wang, C.; Yang, M. Synthesis and biological evaluation of DNA targeting flexible side-chain substitutedβ-carboline derivatives. Bioorganic & Medicinal Chemistry Letters, 2001, 11 (4): 437~441
    [58] Cao, R. H.; Chen, Q.; Hou, X. R.; et al. Synthesis, acute toxicities, and antitumor effects of novel 9-substitutedβ-carboline derivatives. Bioorganic & Medicinal Chemistry, 2004, 12 (17): 4613~4623
    [59] Hou, X. R.; Chen, Q.; Cao, R. H.; et al. A comparative molecular field analysis of cytotoxicβ-carboline analogs. Acta Pharmacologica Sinica, 2004, 25 (7): 959~965
    [60] Greiner, B.; Rommelspacher, H. Two metabolic pathways of tetrahydronorharmane (tetrahydro-β-carboline) in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1984, 325 (4): 349~55
    [61] Fekkes, D.; Schouten, M. J.; Pepplinkhuizen L.; et al. A Norharman, a normal body constituent. Lancet, 1992, 339 (8791): 506
    [62] Melchior, C.; Collins, M. A. The route and significance of endogenous synthesis of alkaloids in animals. Critical reviews in toxicology, 1982, 9 (4): 313~356
    [63] Whaley, W. M.; Govindachari, T. R. The Pictet-Spengler synthesis of tetrahydroisoquinolines and related compounds. Organic Reactions (New York), 1951, VI: 151~190
    [64] Rommelspacher, H.; May, T.; Susilo, R.β-Carbolines and tetrahydroisoquinolines: detection and function in mammals. Planta Medica, 1991, 57 (7): S85~S92
    [65] Herraiz, T.; Ough, C. S. Separation and characterization of 1,2,3,4-tetrahydro-β- carboline- 3-carboxylic acids by HPLC and GC-MS. Identification in wine samples. American Journal of Enology and Viticulture, 1994, 45 (1): 92~101
    [66] Ronner, B.; Lerche, H.; Bergmuller, W.; et al. Formation of tetrahydro-beta-carbolines and beta-carbolines during the reaction of L-tryptophan with D-glucose. Journal of agricultural and food chemistry, 2000, 48 (6): 2111~2116
    [67] Diem, S.; Albert, J.; Herderich, M. Reactions of tryptophan with carbohydrates: identification of pentose-derived tryptophan glycoconjugates in food. European Food Research andTechnology, 2001, 213 (6): 439~447
    [68] Callaway, J. C.; Gynther, J.; Poso, A.; et al. The Pictet-Spengler reaction and biogenic tryptamines: formation of tetrahydro-β-carbolines at physiological pH. Journal of Heterocyclic Chemistry, 1994, 31 (2): 431~435
    [69] Pictet, A.; Spengler, T. Formation of isoquinoline derivatives by the action of methylal on phenylethylamine, phenylalanine and tyrosine. Ber. Dtsch. Chem. Ges., 1911, 44: 2030~2036
    [70] Cox, E.D.; Cook, J. M. The Pictet-Spengler condensation: a new direction for an old reaction. Chem. Rev., 1995, 95 (6): 1797~1842
    [71] Sandrin, J.; Soerens, D.; Hutchins, L.; et al. Pictet-Spengler condensations in refluxing benzene. Heterocycles, 1976, 4 (6): 1101~1105
    [72] Sandrin, J.; Soerens, D.; Mokry, P.; Cook, J. M. Synthesis of 1,2,3,4-tetrahydro-β-carbolines. Heterocycles, 1977, 6 (8): 1133~1139
    [73] Soerens, D.; Sandrin, J.; Ungemach, F.; et al. Study of the Pictet-Spengler reaction in aprotic media: synthesis of theβ-galactosidase inhibitor, pyridindolol. Journal of Organic Chemistry, 1979, 44 (4): 535~545
    [74] Sandrin, J.; Hollinshead, S. P.; Cook, J. M. Pictet-Spengler reactions in aprotic media. Stereospecificity in the Pictet-Spengler reaction. Journal of Organic Chemistry, 1989, 54 (23): 5636~5640
    [75] Plate, R.; Van, H.; Ruud, H. M.; et al. Synthesis of 2-hydroxy-3-(ethoxycarbonyl)-1,2,3,4- tetrahydro-β-carbolines from N-hydroxytryptophans. An approach to the eudistomin series. Journal of Organic Chemistry, 1987, 52 (4): 555~560
    [76] James, E. A.; James, J. D.; Deborah, A. E.; et al. Tetrahydro-β-carbolines. United States Patent, 5500431, 1996-05-19
    [77] Maki, Y.; Kimoto, H.; Fujii, S.; et al. Synthesis of 1-trifluoromethyl-β-carboline derivatives. Journal of Fluorine Chemistry, 1989, 43 (2): 189~206
    [78] Cain, M.; Mantei, R.; Cook, J. M. Dichlorodicyanoquinone oxidations in the indole area. Synthesis of crenatine. Journal of Organic Chemistry, 1982, 47 (25): 4933~4936
    [79] Iwaki, T.; Yasuhara, A.; Sakamoto, T. Novel synthetic strategy of carbolines via palladium- catalyzed amination and arylation reaction. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 1999, (11): 1505~1510
    [80] Rocca, P.; Marsais, F.; Godard, A.; Queguiner, G. A new convergent synthesis of substitutedβ-carbolines. Tetrahedron, 1993, 49 (16): 3325~3342
    [81] Rocca, P.; Marsais, F.; Godard, A.; Queguiner, G. Connection between metalation and cross- coupling strategies. A new convergent route to azacarbazoles. Tetrahedron, 1993, 49 (1): 49~64
    [82] Rocca, P.; Marsais, F.; Godard, A.; Queguiner, G. A short synthesis of the antimicrobial marine sponge pigment fascaplysine. Tetrahedron Letters, 1993, 34 (49): 7917~7918
    [83] Schlecker, W.; Huth, A.; Ottow, E.; Mulzer, J. Synthesis of 4-arylpyridines and substituted β-carbolines via 1,4-Grignard-addition to pyridinecarboxamides. Tetrahedron, 1995, 51 (35): 9531~9542
    [84] Boger, D. L.; Duff, S. R.; Panek, J. S.; Yasuda, M. Total synthesis of lavendamycin methyl ester. Journal of Organic Chemistry, 1985, 50 (26): 5790~5795
    [85] Kanekiyo, N.; Kuwada, T.; Choshi, T.; et al. Total syntheses ofβ-carboline alkaloids, (R)-(-)-pyridindolol K1, (R)-(-)-pyridindolol K2, and (R)-(-)-pyridindolol. Journal of Organic Chemistry, 2001, 66 (26): 8793~8798
    [86] Zhang, H.; Larock, R. C. Synthesis ofβ-andγ-carbolines by the palladium/copper-catalyzed coupling and cyclization of terminal acetylenes. Journal of Organic Chemistry, 2002, 67 (20): 7048~7056
    [87] Zhang, H.; Larock, R. C. Synthesis ofβ- andγ-carbolines by the palladium-catalyzed iminoannulation of internal alkynes. Organic Letters, 2001, 3 (20): 3083~3086
    [88] Engler, T. A.; Wanner, J. Lewis acid-directed cyclocondensation of piperidone enol ethers with 2-methoxy-4-(N-phenylsulfonyl)-1,4-benzoquinoneimine: A new regioselective synthesis of oxygenated carbolines. Journal of Organic Chemistry, 2000, 65 (8): 2444~2457
    [89] Agnusdei, M.; Bandini, M.; Melloni, A.; Umani-Ronchi, A. New versatile route to the synthesis of tetrahydro-β-carbolines and tetrahydro-pyrano[3,4-b]indoles via an intramo- lecular Michael addition catalyzed by InBr3. Journal of Organic Chemistry, 2003, 68 (18): 7126~7129
    [90] Molina, P.; Fresneda, P. M.; Garcia-Zafra, S. Iminophosphorane-mediated synthesis of 1-acyl-β-carbolines: a new access to the alkaloids eudistomin T, S and xestomanzamine A of marine origin. Tetrahedron Letters, 1996, 37 (52): 9353~9356
    [91] Wang, M.; Jin, Y.; Li, J.; Ho, C.-T. Two novelβ-carboline compounds from the Maillard reaction between xylose and tryptophan. Journal of Agricultural and Food Chemistry, 1999, 47 (1): 48~50
    [92] Chen, J. X.; Xia, C. Z. Synthesis ofβ-carboline alkaloids with the tetrahydrofolic model compound. Chinese Journal of Medicinal Chemistry, 2001, 11(4): 230~232
    [93] Braestrup, C.; Nielsen, M.; Olsen, C. E. Urinary and brainβ-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77 (4): 2288~92
    [94] Xiao, Z. L.; Wen, R.; Jiang, W. Q.; et al. Synthesis of 1-substituted (hetero) aryl-β-carbolines and their BZ receptor activities. Acta Academiae Medicinae shanghai, 1994, 21 (2): 120~124
    [95] Rao, K. N.; Bhattacharya, R. K.; Venkatachalam, S. R.β-Carboline-benzoquinolizidine alkaloid deoxytubulosine inhibits thymidylate synthase activity in leukemic leukocytes from patients with chronic myeloblastic leukemia and acute lymphoblastic leukemia. Anti-cancer Drugs, 1998, 9 (8): 727~732
    [96] Dong, X.-C.; Miao, Y.-P.; Lin, Z.-G; et al. Advances in studies on eudistomin marine alkaloids. Acta Pharmaceutica Sinica, 2003, 38 (11): 876~880
    [97] Yi, Y. H.; Li, L.; Tang, H. F. Advance in the research of marine drugs. Shanghai Pharmaceutical Association Annual Meeting Reports, 2002, 20~23
    [98] Ling, W. H. Marine organism-new resource of the research of Chinese nature drugs. Tian, N. X.; Tu, P. F. Perspective and Research of Pharmacy. Beijing: Science Press, 1999, 18~26
    [99]杨其蕴,黄金城.海产β-咔啉生物碱类的研究进展.中国海洋药物,1991,1:27~29
    [100] Sakai, R.; Higa, T.; Jefford, C. W.; Bernardinelli, G. Manzamine A, a novel antitumor alkaloid from a sponge. Journal of the American Chemical Society, 1986, 108 (20): 6404~ 6405
    [101] Charan, R. D.; McKee, T. C.; Gustafson, K. R.; et al. Thorectandramine, a novelβ-carboline alkaloid from the marine sponge Thorectandra sp. Tetrahedron Letters, 2002, 43 (29): 5201~5204
    [102] Rinehart, K. L.; Kobayashi, J.; Harbour, G. C.; et al. Eudistomins C, E, K, and L, potent antiviral compounds containing a novel oxathiazepine ring from the Caribbean tunicate Eudistoma olivaceum. Journal of the American Chemical Society, 1984, 106 (5): 1524~1526
    [103] Kobayashi, J.; Harbour, G. C.; Gilmore, J.; et al. Eudistomins A, D, G, H, I, J, M, N, O, P, and Q, bromo, hydroxy, pyrrolyl and iminoazepinoβ-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. Journal of the American Chemical Society, 1984, 106 (5): 1526~1528
    [104] Rinehart, K. L. J.; Kobayashi, J.; Harbour, G. C.; et al. Eudistomins A-Q,β-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. Journal of the American Chemical Society, 1987, 109 (11): 3378~3387
    [105] Kinzer, K. F.; Cardellina, J. H. II. Three newβ-carbolines from the Bermudian tunicate Eudistoma olivaceum. Tetrahedron Letters, 1987, 28 (9): 925~926
    [106] Kobayashi, J.; Nakamura, H.; Ohizumi, Y.; Hirata, Y. Eudistomidin-A, a novel calmodulin antagonist from the Okinawan tunicate Eudistoma glaucus. Tetrahedron Letters, 1986, 27 (10): 1191~1194 [107 Kobayashi, J.; Cheng, J. F.; Ohta, T.; et al. Eudistomidins B, C, and D: novel antileukemic alkaloids from the Okinawan marine tunicate Eudistoma glaucus. Journal of Organic Chemistry, 1990, 55 (11): 3666~3670
    [108] Murata, O.; Shigemori, H.; Ishibashi, M.; et al. Eudistomidins E and F, newβ-carboline alkaloids from the Okinawan marine tunicate Eudistoma glaucus. Tetrahedron Letters, 1991, 32 (29): 3539~3542
    [109] Lake, R. J.; Brennan, M. M.; Blunt, J. W.; et al. Eudistomin K sulfoxide. An antiviral sulfoxide from the New Zealand ascidian Ritterella sigillinoides.Tetrahedron Letters, 1988, 29 (18): 2255~2256
    [110] Lake, R. J.; Blunt, J. W.; Munro, M. H. G. Eudistomins from the New Zealand ascidian Ritterella sigillinoides. Australian Journal of Chemistry, 1989, 42 (7): 1201~1206
    [111] Debitus, C.; Laurent, D.; Pais, M. Alkaloids from an ascidian of New Caledonia, Eudistoma fragum. Journal of Natural Products, 1988, 51 (4): 799~801
    [112] Davis, R. A.; Carroll, A. R.; Quinn, R. J. Eudistomin V, a Newβ-Carboline from the Australian Ascidian Pseudodistoma aureum. Journal of Natural Products, 1998, 61 (7): 959~960
    [113] Adesanya, S. A.; Chbani, M.; Pais, M.; Debitus, C. Brominatedβ-carbolines from themarine tunicate Eudistoma album. Journal of Natural Products, 1992, 55 (4): 525~527
    [114] Badre, A.; Boulanger, A.; Abou-Mansour, E.; et al. Eudistomin U and isoeudistomin U, new alkaloids from the Caribbean asicidan Lissoclinum fragile. Journal of Natural Products, 1994, 57 (4): 528~533
    [115] Rashid, M. A.; Gustafson, K. R.; Boyd, M. R. New cytotoxic N-methylatedβ-carboline alkaloids from the marine ascidian Eudistoma gilboverde. Journal of Natural Products, 2001, 64 (11): 1454~1456
    [116] Dong, X. C.; Wen, R. Research of the marine alkaloid eudistomin U and its derivative. Chinese Journal of Medicinal Chemistry, 2003, 13 (2): 67~69
    [117] Nagao, T.; Adachi, K.; Nishida, F.; et al. The new ultraviolet ray absorbing material and its manufacturing method. Japanese Kokai Tokkyo Koho CODEN: JKXXAF JP 11269175 A2 19991005 Heisei
    [118] Mayser, P.; Sch?fer, U.; Kr?mer, H. J.; et al. Pityriacitrin -- an ultraviolet-absorbing indole alkaloid from the yeast Malassezia furfur. Arch. Dermatol. Res., 2002, 294 (3): 131~134
    [119] Cao, R. H.; Peng, W. L.; Chen, H. S.; et al. Synthesis and in vitro cytotoxic evaluation of 1,3-bisubstituted and 1,3,9-trisubstitutedβ-carboline derivatives. Eur. J. Med. Chem., 2005, 40 (3): 249~257
    [120] Yang, M. L.; Kuo, P. C.; Damu, A. G.; et al. A versatile route to the synthesis of 1- substitutedβ-carbolines by a single step Pictet–Spengler cyclization. Tetrahedron, 2006, 62 (47): 10900~10906
    [121] Shaw, K. N. F.; McMillan, A.; Gudmundson, A. G.; Armstrong, M. D. Preparation and properties ofβ-3-indolyl compounds related to tryptophan metabolism. J. Org. Chem., 1958, 23: 1171~1178
    [122] Gribble, G. W.; Pelcman, B. Total syntheses of the marine sponge pigments Fascaplysin and Homofascaplysin B and C. J. Org. Chem., 1992, 57 (13): 3636~3642
    [123] Aubry, C.; Patel, A.; Mahale, S.; et al. The design and synthesis of novel 3-[2-indol-1-yl- ethyl]-1H-indole derivatives as selective inhibitors of CDK4. Tetrahedron Lett., 2005, 46 (9): 1423~1425
    [124] Kuivila, H. G. Reduction of phthalyl and succinyl dichlorides with Tri-n-butyltin hydride. Cyclization ofγ-oxoacyl chlorides. J. Org. Chem., 1960, 25: 284~285
    [125] Vereshchagin, A. L.; Bryanskii, O. V.; Semenov, A. A. New syntheses of 3-indolylglyoxal. Chem. Heterocycl. Compd., 1983, 19: 40~42
    [126] Garg, N. K.; Sarpong, R.; Stoltz, B. M. The first total synthesis of Dragmacidin D. J. Am. Chem. Soc., 2002, 124 (44): 13179~13184
    [127] Dong, X. C.; Wen, R.; Zheng, J. B. Synthesis of 1-indole substituedβ-carboline alkaloid and its derivatives and evaluation of their preliminary antitumor activites. Acta pharmaceutica Sinica, 2004, 39 (4): 259~262
    [128] Irlinger, B.; Bartsch, A.; Kraemer, H.-J.; Mayser, P.; Steglich, W. New tryptophan metabolites from cultures of the lipophilic yeast Malassezia furfur. Helvetica Chimica Acta, 2005, 88 (6): 1472~1485
    [129] Bobbitt, J. M.; Willis, J. P. Electrochemistry of natural products. 7. Oxidative decarboxylation of some tetrahydro-β-carbolinecarboxylic acids. J. Org. Chem., 1980, 45 (10): 1978~1984
    [130] Shi, Y. Q.; Fukai, T.; Sakagami, H.; et al. Cytotoxic and DNA damage-inducing activities of low molecular weight phenols from rhubarb. Anticancer Res., 2001, 21 (4A): 2847~2853
    [131]戴德银.米托蒽醌的药理及临床应用.国外医药抗生素分册,1994,15 (4):303~305
    [132]罗文敏,毓江萍.大黄中五种蒽醌衍生物的HPLC测定.药物分析杂志,1989,9 (5):259~262
    [133]阳崇德,张秀贤.大黄素的药理研究进展.中国药业,2003,12 (3):78~79
    [134]侯晓东,施瑞城,叶丽萍.大黄素的研究现状和展望.中国热带医学,2005,5 (8):1738~1740
    [135] Mai, L. P.; Gueritte, F.; Dumontet, V.; et al. Cytotoxicity of rhamnosylanthraquinones and rhamnosylanthrones from rhamnus nepalensis. J. Nat. Prod., 2001, 64 (9): 1162~1168
    [136]陆豫,黄志纾,谭嘉恒,等.大黄素衍生物的合成及细胞毒性研究.有机化学,2005,25 (8):944~948
    [137]古练权,陆豫,符立梧,等.羟基蒽醌类衍生物及其在制备抗癌药物中的应用.中国:200310112459.2, 2004-11-17
    [138]王兴坡,徐文方.大黄素衍生物的化学合成与抗肿瘤活性.中国药物化学杂志,2005,15 (6):321~326
    [139]王兴坡,徐文方.1,3,8-三羟基-6-甲酰基-9,10-蒽醌的合成.精细化工,2006,23 (1):38~40
    [140] Wang, X. P.; Xu, W. F. Facile synthesis of emodin derivatives as potential MMPIs. Bulletin of the Korean Chemical Society, 2005, 26 (12): 1923~1924
    [141]张喜平,李宗芳.大黄素的药理作用研究概况.中国药理学通报,2003,19 (8):851~854
    [142]李杰,张陆勇,江振洲.大黄素的药理学研究近况.药学进展,2005,29 (12):540~544
    [143] Kuo, Y. C.; Sun, C. M.; Ou, J. C.; Tsai, W. J. A tumor cell growth inhibitor from polygonum hypoleucum ohwi. Life Sci., 1997, 61 (23): 2335~2344
    [144] Jing, X.; Ueki, N.; Cheng, J.; et al. Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Jpn. J. Cancer R., 2002, 93 (8): 874~882
    [145]牟洪军,张绍峰,朱铁梁,陈虹.大黄素抗肿瘤作用的研究进展.武警医学,2004,15 (7):545~546
    [146] Lee, H. Z. Effects and mechanisms of emodin on cell death in human lung squamous cell carcinoma. Br. J. Pharmacol., 2001, 134 (1): 11~20
    [147] Demirezer, L. O.; Uz, A. K.; Bergere, I.; et al. The structures of antioxidant and cytotoxic agents from natural source: anthraquinones and tannins from roots of Rumex patientia. Phytochemistry, 2001, 58 (8): 1213~1217
    [148] Huang, H. C.; Lee, C. R.; Chao, P. D.; et al. Vasorelaxant effect of emodin, an anthraquinone from a Chinese herb. Eur. J. Pharmacol., 1991, 205 (3): 289~294
    [149] Lee, H. Z. Protein Rinase C involvement in aloe emodin and emodin--induced apoptosis in lung carcinoma cel1. British Journal of Pharmacology, 2001, 134 (5): 1093~1103
    [150] Chang, C. H.; Lin, C. C.; Yang, J. Anti-inflammatory effects of emodin from ventilago leiocarpa. Am. J. Chin. Med., 1996, 24 (2): 139~142
    [151] Kuo, Y. C.; Tsai, W. J.; Meng, H. C.; et a1. Immune reponses in human mesangial cells regulates by emodin from polygonum hypoleucum Ohwi. Life Sci., 2001, 68 (11): 1271~1286
    [152] Huang, S. S.; Ye, S. F.; Hong, C. Y. Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: structure-activity relationship. J. Nat. Prod., 1995, 58 (9): l365~1371
    [153] Lin, C. C.; Chang, C. H.; Yang, J. J.; et a1. Hepatoprotective effects of emodin fromVentilago Leiopra. J. Ethnopharmacol, 1996, 52 (2): 107~111
    [154]焦河玲,黄兆胜,贾建功.大黄素对四氯化碳损伤原代培养大鼠肝细胞的保护作用.河南中医,2000,20(5):2O~22
    [155]刘冠贤,叶任高,谭志明,等.大黄素对狼疮性肾炎成纤维细胞生物学行为的影响.中国中西医结合杂志,2000,20(3):196~198
    [156]宁英远,王俭勤,屈遂林.大黄素对人肾成纤维细胞增殖的影响.中国中西医结合杂志,2000,20(2):105~106
    [157]焦东海,蒋小维,阮宣吾,等.全国首届大黄学术研讨会文献概述.中医杂志,1988,29(11):66~68
    [158]李淑娟,沈丽霞,李伟,等.大黄素药理作用研究进展.张家口医学院学报,2003,20(2):80~83
    [159] Masao, K.; Kiyobumi, T.; Ting-Chao, C.; et al. Intercalating agents with covalent bond forming capability. A novel type of potential anticancer agents. 2. Derivatives of chrysophanol and emodin. J. Med. Chem., 1989, 32 (7): 1594~1599
    [160] Koyama, M.; Kelly, T. R.; Watanabe ,K. A. Novel type of potential anticancer agents derived from chrysophanol and emodin. Some structure-activity relationship studies. J. Med. Chem., 1988, 31 (2): 283~284
    [161] Nicholas, B.; Michael, P. C. Studies in anthracycline synthesis: simple Diels-Alder routes to pachybasin,ω-hydroxypachybasin, aloe-emodin, and fallacinol. J. Org. Chem., 1985, 50 (1): 139~141
    [162] Bernd, L.; Yulita, P.; Christoph, E.; et al. Syntheses and properties of two heterocyclically substituted hypericin derivatives: 10,11-dibenzothiazolyl-10,11-dideme- thylhypericin and 10,11-dibenzoxazolyl-10,11-didemethylhypericin. Monatshefte fuer Chemie, 2005, 136 (5): 777~793
    [163] Zhang, W.; Zhang, J. X.; Chen, Y. J.; Guo, D. A. Biotransformation of three free anthraquinones by mucor spinosus. Chin. J. Nat. Med., 2003, 1 (4): 219~223
    [164] Katja, S. D.; Bernd, H.; Thilo, H.; et al. Synthesis of 3-aryloxy-2-iodoemodines by oxidation of emodin with (diacetoxyiodo) arenas. Eur. J.Org. Chem., 2004, (4): 894~898
    [165] Nadia, F.; Philippe, M.; Martine, M.; et al. Synthesis of quinone and xanthone analogs of rhein. Tetrahedron, 2001, 57 (44): 9131~9135
    [166] Kharlamova, T. V.; Dzhimbaev, B. Z. Synthesis of 1,8-dihydroxy-3-methyl-6-(2- oxohexyloxy)-9,10-anthraquinone and its derivatives. Izvestiya Natsional’noi Akademii Nauk Respubliki Kazakhstan, Seriya Khimicheskaya, 2003, (2): 57~64
    [167] David, E. Z.; Chih-Min, K.; James, C. P.; Leon, H. Z. Novel anthraquinone inhibitors of human leukocyte elastase and cathepsin G. J. Med. Chem., 1992, 35 (9): 1597~1605
    [168] Zhang, W.; Ye, M.; Zhan, J.; et al. Microbial glycosylation of four free anthraquinones by Absidia coerulea. Biotechnology Letters, 2004, 26 (2): 127~131
    [169] Lars, T.; Katja, S. D.; Vera, K.; et al. Synthesis and biological evaluation of new derivatives of emodin. Bioorg. Med. Chem., 2004, 12 (22): 5961~5971
    [170] Harlamova, T. V. Interaction of emodin with ethylenediamine and 1,2-diaminopropane. Izvestiya Natsional’noi Akademii Nauk Respubliki Kazakhstan, Seriya Khimicheskaya, 2004, (1): 35~39
    [171] Tan, J. H.; Zhang, Q. X.; Huang, Z. S.; et al. Synthesis, DNA binding and cytotoxicity of new pyrazole emodin derivatives. Eur. J. Med. Chem., 2006, 41 (9): 1041~1047
    [172] Muzychkina, R. A.; Pribytkova, L. N. Bromination of emodin. Khimiya Prirodnykh Soedinenii, 1990, (5): 618~621
    [173] Kintsurashvili, L. A.; Sikharulidze, M. I.; Buyanov, V. N.; Turabelidze, D. G. Synthesis of amino derivatives of 1,6,8-trihydroxy-3-methyl-9,10-anthraquinone. Chemistry of Natural Compounds, 2000, 35 (6): 619~620
    [174] Hadj-Hamdri, A.; Vidal-Cros, A.; Gaudry, M.; et al. Synthesis of high specific radioactivity [3H]emodin. Journal of Labelled Compounds & Radiopharmaceuticals, 1995, 36 (8): 795~799
    [175] Nobuhisa, M.; Sonoko, N.; Noriko, I.; Yoshio, U. The chemical structure and the mutagenicity of emodin metabolites. Agric. Biol. Chem., 1990, 54 (5): 1247~1252
    [176] Tarasankar, P.; Anjali, P. Selective hydroxymethylation of emodin. Bull. Chem. Soc. Jpn., 1991, 64 (12): 3755~3757
    [177]汪显阳,孙作民.大黄素铜(Ⅱ)配合物的合成、表征及抑菌活性.中国现代实用医学杂志, 2004, 3 (23,24): 3~5
    [178]汪显阳,孙作民,房喻.大黄素与铜(Ⅱ)、锌(Ⅱ)、铝(Ⅲ)配位能力的研究.白求恩医科大学学报, 1995, 21 (4): 20~21
    [179] Baenriger, J. U.; Green, E. D. Biology of Carbohydrates, 1991, (3): l
    [180] Matzuk, M. M.; Keene, J. L.; Boime, I. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. Journal of Biological Chemistry, 1989, 264 (5): 2409~2414
    [181] Albersheim, P.; Darvill, A.; Augur, C.; et a1. Oligosaccharins: oligosaccharide regulatory molecules. Accounts of Chemical Research, 1992, 25 (2): 77~83
    [182] Axford, J. Glycobiology and medicine: an introduction. Journal of the Royal Society of Medicine, 1997, 90 (5): 260~264
    [183]郭宗儒.药物化学总论.北京:中国医药科技出版社,1994.87~88
    [184] Osman, N.; McKenzie, I. F.; Ostenried, K.; et a1. Combined transgenic expression ofα- galactosidase andα1,2-fucosyltransferase leads to optimal reduction in the major xenoepitope Galalpha (1,3) Gal. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (26): 14677~14682
    [185]卢睿春,侯振建,刘婉乔.亨氏马尾藻硫酸多糖抗肿瘤活性的研究.海洋科学,1998,(3):63~64
    [186]周绪斌,宣华,李荣秀.组特异性亲和配基在分离纯化中的应用.中国生化药物杂志,2000,21(6):308~310
    [187]邱蔚然,高淑红,庄庆祺.核糖在保护心脏功能中的作用.中国生化药物杂志,2000,21(6):319~321
    [188]付新梅,江涛,王奎旗,等.糖类对先导化合物的化学修饰及其在药学中的应用.中国海洋药物,2001,(3,4):54~62
    [189] Tewey, K. M.; Rowe, T. C.; Yang, L.; et a1. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Sci., 1984, 226 (4673): 466~468
    [190] Zunino, F.; Pratesi, G.; Perego, P. Role of the sugar moiety in the pharmacological activity of anthracyclines: development of a novel series of disaccharide analogs. Biochem. Pharmacol. 2001, 61 (8): 933~938
    [191] Arcamone, F.; Animati, F.; Bigioni, M.; et a1. Configurational requirements of the sugar moiety for the pharmacological activity of anthracycline disaccharides. Biochem. Pharmacol., 1999, 57 (10): 1133~1139
    [192] Kozikowski, A. P.; Lee, J. A synthetic approach to the cis-fused marine pyranopyrans, (3E)-and (3Z)-dactomelyne. X-ray structure of a rare organomercurial. J. Org. Chem., 1990, 55 (3): 863~870
    [193] Mitchell, S. A.; Pratt, M. R.; Hruby, V. J.; Polt, R. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J. Org. Chem., 2001, 66 (7): 2327~2342
    [194] Dess, D.; Kleine, H. P.; Weinberg, D. V.; Kaufman, R. J.; Sidhu, R. S. Phase-transfer catalyzed synthesis of acetylated arylβ-D-glucopyranosides and arylβ-D-galactopyranosides. Synthesis, 1981, 11: 883~885

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700