一种新型超支化聚硅烷及其与富勒烯复合物的合成和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电高分子材料越来越引起人们的关注,其基础研究、器件制作和应用研究在国际上十分活跃。其中,研究得最深入且在实用化方面已有突破或有望获得突破的主要集中在电致发光和光伏打材料上。
     通过广泛的文献阅读发现,目前在聚合物电致发光材料和聚合物光伏打材料方面的研究主要集中在π-共轭聚合物上,较少有人关注σ-共轭聚合物。聚硅烷是一类新型σ共轭聚合物,主链全部为硅原子,由于σ电子沿整个硅链广泛离域而显示出特殊优异的光电性能,如强紫外吸收和荧光光谱,光导性好,同时很强的空穴流动性和传输能力,以及非线性光学性等。有很好的应用前景,引起了材料学家的极大兴趣。目前,在聚合物电致发光材料和聚合物光伏打材料方面的应用涉及到的主要是线型聚硅烷。与此同时,研究发现,超支化聚硅烷具有比线型聚硅烷更优异的光电性能:随着支化结构的增加,吸收光谱有红移,荧光光谱发生红移,Stokes位移增大,通过控制支化度及侧链官能团有望控制其发光颜色且使其能隙(Eg)减小,支化结构更有利于形成复合物。这些对于其在聚合物电致发光和光伏打器件中的应用都极其有利。
     我们的工作就是基于上述考虑,研究超支化聚硅烷及其与富勒烯的复合物在光电材料方面的开发和应用。在线型聚硅烷研究的基础上,采用二官能度硅烷(甲基苯基二氯硅烷)和三官能度硅烷(甲基三氯硅烷)为单体,在金属钠作用下于惰性溶剂甲苯中进行武兹偶联合成超支化聚硅烷。期望通过支化结构获得一些不同于线型聚硅烷的特殊优异的性能,特别是光电性能。参考π-共轭聚合物和富勒烯复合的基础和理论,采用原位聚合法制备超支化σ-共轭聚合物和富勒烯的复合物,即在富勒烯存在的条件下合成超支化聚硅烷。利用两者的3-D结构期望制备出一种新型具有互穿结构的电子给体/受体复合物。我们通过各种方式对产物进行全面的表征,研究了其结构、性质及潜在的应用前景。
     结果表明,我们采用武兹缩合法成功合成出了超支化聚硅烷PMPS-co-MS,产物溶解性良好,分子量较高,支化度较高,光致蓝光,荧光量子产率约为0.17,热稳定性良好,玻璃化转变温度高,是一种很好的蓝光聚合物发光材料。采用原位聚合法成功合成出了超支化聚硅烷/富勒烯的复合物;产物分子量较高,溶解性好,支化度较高,荧光猝灭明显,说明超支化聚硅烷和富勒烯之间可能发生了光诱导电子转移,是一种具有良好性能的新型电子给体/受体复合物。研究还发现在超支化聚硅烷和富勒烯之间可能存在π-π堆积作用,这种电子给体和受体之间的π-π堆积作用可能会使复合物具有许多奇异的性质和潜在的应用前景。
Recently, in the world, much attention has been paid on the fundamental research、devices preparing and application of optoelectric polymer materials. Among these, the researches are mainly focused on polymer light emitting materials and polymer photovoltaic materials.
     To date, the majority of works about the two areas reported in the previous literatures are mainly focused onπ-conjugated polymers, however, there are few works onσ-conjugated polymers. Polysilanes are a new class ofσ-conjugated polymers with the backbone consisting of tetrahedrally coordinated silicon atoms and different side-chain substituent groups. Due to the extensive delocalization ofσ-electrons along the silicon main chain,σ-conjugated polymers have many interesting electronic properties such as photoconductivity with high hole mobility, large nonlinear optical effects and effective UV light emission, which make them a promising application in optoelectric materials, and have drawn the interests of the material scientists. The common use of polysilanes as optoelectric materials has been mainly focused on one-dimensional linear polysilanes. Meanwhile, three-dimensional hyperbranched polysilanes different from linear polysilanes, have better optoelectric properties, such as, red shift of absorption and emission spectra, more large stokes shift, reduced bandgap due to the extent ofσ-conjugation at branching points. And its 3-D structure is very propitious to preparing electron donor/acceptor composite with interpenetrating structure with electron acceptor fullerene. All these make the hyperbranched polysilanes may be good candidates for polymer light emitting and polymer photovoltaic materials.
     In this work, we report on the synthesis and characterization of a novel hyperbranched polysilane and its composite with fullerene.
     Based on the previous reports of linear polysilanes, we synthesized a novel hyperbranched polysilane polymethylphenylsilane-co-methylsilane (PMPS-co-MS) via Wurtz-type reaction using dichloromethylphenylsilane and trichloromethylsilane as monomers, which is designed to obtain better optoelectric properties than linear polysilanes. Then, based on the synthesis and theory ofπ-conjugated polymers/fullerene composites, we prepared a novel hyperbranchedσ-conjugated polymer/fullerene using in-situ polymerization, that is synthesized the hyperbranched polysilane in the presence of fullerene. The novel electron donor/acceptor composite may have well defined interpenetrating structure because of 3-D structure of both hyperbranched polysilane and fullerene. We also characterized by means of methods and discussed the structures, properties, and potential applications of the products.
     After fully studied, we found that: The resulting hyperbranched polysilane synthesized via Wurtz-type reaction shows good solubility in common organic solvents, high molecular weight (Mw=12093), well defined hyperbranched structure, blue fluorescence with a quantum yield about 0.17, good thermal stability, and high glass transition temperature. All these indicate that it may be a good optoelectric material. The composite we prepared shows good solubility, high molecular weight, good thermal stability, well defined interpenetrating structure, effective photoinduced electron transfer indicated by the obvious photoluminescence (PL) quenching, which suggests that it may be a good electron donor/acceptor composite. Further discussion found that there may beπ-πstacking between hyperbranched polysilane and fullerene, which may make the composite have many interesting properties and promising applications.
引文
[1] 董建华. 重大项目“有机/聚合物光电信息材料与器件”成果介绍. 中国科学基金,2001,13(5):306-308
    [2] 黄可知,张超灿,吴力立. 高分子信息材料的研究进展. 国外建材科技,2002,23(1):36-38
    [3] 苏望. 有机/高分子发光材料被列为“973”攻关项目. 化工新型材料,2003,31(3):42
    [4] 梁红兵. OLED产业化进程. 中国电子报,2004-03-26
    [5] Burroughes J H, Bradley D D C, Brown A R, etal. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347(3): 539-541
    [6] 李文连. π-共轭高分子光电性能及聚合物LED. 液晶与显示,1997,12(3):215-222
    [7] 李晓常,孙景志,马於光,等. 聚合物半导体电致发光显示器件. 高等学校化学学报,1999,20(2):309-314
    [8] 王建营,李银奎,胡文祥. 聚合物电致发光器件的研究进展. 半导体光电,1998,19(5):283-286
    [9] 邱勇,高鸿锦,宋心琦. 有机聚合物薄膜电致发光器件的研究进展. 化学进展,1996,8(3):221-230
    [10] 彭强,谢明贵. 共轭聚合物材料及电致发光器件. 化学研究与应用,2004,16(5):585-589
    [11] Brown S. Polymer light-emitting diodes. www.research.philips.com, 2005-12-30
    [12] Chao T C, Lin Y T, Yang C Y, etal. Highly effectively UV organic light-emitting devices based on bi(9,9-diaryfluorene)s. Advanced Materials, 2005, 17(8): 992-996
    [13] Liu X M, Xu J, Lu X, etal. Novel glassy tetra (N-alkyl-3- bromacarbazole- 6- yl) silanes as building blocks for efficient and nonaggreting blue-light-emitting tetrahedral materials. Organic Letters, 2005, 7(14): 2829-2832
    [14] Zheng S, Shi J. Novel blue–light-emitting polymers containing dinaphthylanthracene moiety. Chemical Materials, 13(12): 4405-4407
    [15] Li H, Hu Y, Zhang Y, etal. Novel thermal stable blue-light-emitting polymer containing N,N,N’,N’-tetraphenyl-phenylenediamine units and its intramolecular energy transfer. Chemical Materials, 2002, 14(11): 4484-4486
    [16] Morin J F, Leclerc M. 2,7-Carbazole-based conjugated polymers for blue, greenand red light emission. Macromolecules, 2002, 35(22): 8413-8417
    [17] Chan K L, Mckiernan M J, Towns C R, etal. Poly(2,7-dibenzosilole): A blue light emitting polymer. Journal of American Chemical Society, 2005, 127(21): 7662-7663
    [18] Zheng S, Shi J, Mateu R. Novel blue light emitting polymer containing an adamantane moiety. Chemical Materials, 2000, 12(7): 1814-1817
    [19] Liu B, Yu W L, Lai Y H, etal. Blue-light-emitting fluorene-based polymers with tunable electronic properties. Chemical Materials, 2001, 12(6): 1984-1991
    [20] Qiu S, Liu L, Wang B, etal. Facile synthesis of carbazole-containing semiladder polyphenylenes for pure-blue electroluminescence. Macromolecules, 2005, 38(16): 6782-6788
    [21] 李建保,周益春. 新材料科学及其实用技术. 北京: 清华大学出版社, 2004: 92-95
    [22] Li T, Bo Z. “AB2+AB” Approach to hyperbranched polymers used as polymer blue light emitting materials. Macromolecules, 2004, 37(6): 2013-2015
    [23] Brunner K. Photovoltaic devices. www.cdtltd.co.uk, 2005-12-30
    [24] Sariciftci N S, Smilowitz L, Heeger A J, etal. Photoinduced electron transfer from a conducting polymer to buckkminsterfullerene. Science, 1992, 258(4): 1474
    [25] Wang Y. Photoconductivity of fullerenedoped polymers. Nature, 1992, 356(6): 585-587
    [26] Mort J, Machonkin M, Ziolo R, etal. Electronic carrier transport and photogeneration in buckminsterfullerne films. Applied Physics Letters, 1992, 61(15): 1829-1831
    [27] Wang Y. Photophysical properties of fullerenes and fullerene/N,N-Diethylaniline charge-transfer complex. Journal of Physics Chemistry, 1992, 96(2): 764-767
    [28] Lee C H, Yu G, Moses D, etal. Sensitization of the photoconductivity of conducting polymer by C60: photoinduced electron transfer. Physics Review B, 1993, 48(20): 15425-15427
    [29] Lee K, Kim H. Polymer photovoltaic cells based on conjugated polymer-fullerene composites. Current Applied Physics, 2004, 4(3): 323-326
    [30] Ramos A M, Rispens M T, van Duren J K J, etal. Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes. Journal of American Chemical Society, 2001, 123(27): 6714-6715
    [31] Tada K, Onoda M. Loading fullerene into a conjugated polymer without chemical modification. Advanced Functional Materials, 2004, 14(2): 139-144
    [32] Somez G, Shen C K F, Rubin Y, etal. The unusual effect of bandgap lowering by C60 on a conjugated polymer. Advanced Materials, 2005, 17(7): 897-900
    [33] 郑立平,周清梅,王飞,等. 新型C60衍生物的合成及其太阳能电池性能. 化学学报,2004,62(1):88-94
    [34] 黄红敏,贺庆国,蔺洪振,等. 共轭聚合物/ C60复合体系及其在光伏打电池中的应用. 感光科学与光化学,2002,20(1):69-76
    [35] Lee Kwanghee, Janssen R A J, Sariciftci N S, etal. Direct evidence of photoinduced electron transfer in conducting-polymer-C60 composites by infrared photoexcitation spectroscopy. Physics Review B, 1994, 49(8): 5781-5784
    [36] Yu G, Gao J, Hummelen J C, etal. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5): 1789-1791
    [37] 邓建平. 功能材料聚硅烷的合成表征与应用. [南京师范大学学位论文]. 南京:南京师范大学,2002,3-20
    [38] 黄世强,孙争光,李盛彪,等. 新型有机硅高分子材料. 北京:化学工业出版社,2004,129-182
    [39] 冯圣玉,张洁,李美江,等. 有机硅高分子及其应用. 北京:化学工业出版社,2004,180-197
    [40] Jones R G, Ando W, Chojnowski. Silicon-containing polymers. The Netherlands: Kluwer Academic Publishes, 2000, 351-574
    [41] Miller R D, Thompson D, Sooriyakumaran R, etal. The synthesis of soluble, substituted silane high polymers by Wurtz coupling techniques. Journal of Polymer Science: Part A: Polymer Chemistry, 1991, 29(7): 813-824
    [42] 董占能,李春华,郭玉忠. 聚硅烷Wurtz合成及β-SiC纤维制备的机理. 昆明理工大学学报(理工版),2003,28(2):21-24
    [43] 曾红梅,傅鹤鉴. 聚硅烷的合成及应用. 化学研究与应用,2001,13(3):233-238
    [44] 王旭东. 新型聚硅烷合成与性能研究:[湖南大学硕士学位论文],长沙:湖南大学化学化工学院,2001,1-10
    [45] 胡慧萍,黄可龙,潘春跃,等. 聚硅烷的合成、表征及光敏性研究. 高分子材料科学与工程,2001,17(2):149-153
    [46] Kim H K, Matyjaszewski K. Preparation of polysilanes in the presence of ultrasound. Journal of American Chemical Society, 1988, 110(10): 3321-3324
    [47] Matyjaszewski K, Greszta D, Hrkach J S, etal. Sonochemical synthesis ofpolysilanes by reductive coupling of disubstituted dichlorosilanes with alkali metals. Macromolecules, 1995, 28(1): 59-72
    [48] Czubarow P, Sugimoto T, Seyferth D. Sonochemical synthesis of a poly(methylsilane), a precursor for near-stoichiometric SiC. Macromolecules, 1998, 31(2): 229-238
    [49] Nishido R, Ikoma, Kawasaki S, etal. Process for the preparation of polysilanes. United States Patent. 6174982B1, 2001-01-16
    [50] Takeda K, Teramae H, Matsumoto N. Electronic structure of chainlike polysilane. Journal of American Chemical Society, 1986, 108(26): 8186-8193
    [51] 曹晴,陆云,薛奇. 聚硅烷研究进展(Ⅱ)聚硅烷的电子结构与电子光谱特性. 高分子通报,1998,11(2):40-45
    [52] Miller R D, Michl J. Polysilane high polymers, Chemical Reviews, 1989, 89(6): 1359-1410
    [53] Seki S, Koizumi Y, Kawaguchi T, etal. Dynamics of positive charge carriers on Si chains of polysilanes. Journal of American Chemical Society, 2004, 126(11): 3521-3528
    [54] 邢欣,李效东,王戈,等. 聚硅烷导电性能的研究进展. 有机硅材料,2002,16(4):21-24
    [55] 吴俊珺,顾庆超. 链状聚硅烷的导电性质和电子状态. 高分子通报,1995,8(2):117-120
    [56] 雷艳秋,黄世强. 聚硅烷的电子特性及非线性光学材料. 弹性体,2003,13(4):50-54
    [57] 史保川,李国威,张茂根,等. 聚甲基四苯基硅烷的合成及非线性光学性质的研究. 有机硅材料及应用,1997,11(6):1-4
    [58] 胡慧萍,陈德本,钟家永. 聚硅烷的热分解动力学研究. 高分子材料科学与工程,1994,10(2):82-86
    [59] Trefonas P, West R, Miller R D. Polysilane high polymers: mechanism of photodegration. Journal of American Chemical Society,1982, 107(9): 2723-2742
    [60] 王旭东,徐伟箭. 聚硅烷的合成及其光学性能研究应用进展. 化工新型材料,1999,27(7):8-10
    [61] 杨建文,陈永烈. 水溶性光聚合引发剂研究进展. 高分子通报,1997,10(3):154-161
    [62] Peinado C, Alonso A, Catalina F, etal. Using linear and branched polysilane for the photoinitiated polymerization of a commercial silicone-acrylate resin: a real time FTIR study. Journal of Photochemistry and Photobiology A: Chemistry,2001, 141(1): 85-91
    [63] 曹晴,陆云,薛奇. 聚硅烷研究进展(Ⅰ)聚硅烷的合成及应用. 高分子通报,1998,11(1):41-47
    [64] Yuan C H, Hoshino S, Toyoda S, etal. Room-temperature near-ultraviolet electroluminescence from a linear silicon chain. Applied Physics Letters, 1997, 71(23): 3326-3328
    [65] Suzuki H, Meyer H, Hoshino S, etal. Charge carrier and exciton dynamics in polysilane-based multilayer light-emitting diodes as monitored with electroluminescence. Journal of Luminescence, 1996, 66&67(5): 423-428
    [66] Suzuki H, Hoshino S, Yuan C H, etal. Near-ultraviolet electroluminescence from polysilanes. Thin Solid Films, 1998, 331(1): 64-70
    [67] Suzuki H, Hoshino S, Furukawa K, etal. Polysilane light-emitting diodes. Polymer ffor Advanced Technologies, 2000, 87(4): 1968-1973
    [68] Hoshino S, Evata K, Furukawa K. Near-ultraviolet electroluminescenct performance of polysilane-based light-emitting diodes with a double-layer structure. Journal of Applied Physics, 2000, 87(4): 1968-1973
    [69] Wang Y, West R, Yuan C H. Fullerene-doped polysilane photoconductor. Journal of American Chemical Society, 1993, 115(9): 3844-3845
    [70] Lee J, Seoul C, Park J, etal. Fullerene/Poly (methylphenylsilane) (PMPS) organic photovoltaic cells. Synthetic Metals, 2004, 145(1): 11-14
    [71] Kepler R G, Cahill P A. Photoinduced charge transfer and charge generation in polysilane films containing C60 molecules. Applied Physics Letters, 1993, 63(11): 1552-1554
    [72] Watanabe A, Ito O. Photoinduced electron transfer between C60 and polysilane studied by laser flash photolysis in the near-IR region. Journal of Physics Chemistry, 1994, 98(31): 7736-7740
    [73] 顾涛,徐建敏,陈万喜,等. 富勒烯化聚甲基苯基硅烷的合成及光电导性. 高等学校化学学报,1999,20(1):150-152
    [74] Wilson W L, Weidaman T W. Excited-state dynamics of one- and two-dimensional σ-conjugated silicon frame polymers: dramatic effects of branching in a series of hexylsilyne-branched poly(hexylmethylsilylene)copolymers. Journal of Physics Chemistry, 1991, 95(11): 4568-4572
    [75] Biancomi P A, Schilling F C, Weidman T W. Ultrasound-mediated reductive condensation synthesis of silicon-silicon bonded network polymers. Macromolecules, 1989, 22(4): 1697-1704
    [76] Watanabe A, Miike H, Tsutsuml Y, etal. Photochemical properties of network and branched polysilanes. Macromolecules, 1993, 26(8): 2111-2116
    [77] Watanabe A. Optical properties of polysilanes with various silicon skeletons. Journal of Organometallic Chemistry, 2003, 685(1): 122-133
    [78] Peng Z, Si W, Lin S, etal. Synthesis and characterization of branched copolysilanes of high molecular weight with high steric hindrance. European Polymer Journal, 2002, 38(8): 1635-1643
    [79] Vermeulen L A, Smith K, Wang J. Electrochemical polymerization of alkyltrichlorosilane monomers to form branched Si backbone polymers. Electrochimica Acta, 1999, 45(7): 1007-1014
    [80] Watanabe A, Nanjo M, Sunaga T, etal. Dynamics of the excited state of polysilane dendrimers: origin of the broad visible emission of branched silicon chains. Journal of Physics Chemistry A, 2001, 105(26): 6436-6442
    [81] Biancomi P A, Weidman T W. Poly(n-hexylsilyene): synthesis and properties of the first alkyl silicon[RSi]n network polymer. Journal of American Chemical Society, 1988, 110(7): 2342-2344
    [82] Sekiguchi A, Nanjo M, Kabuto C, etal. Polysilane dendrimers. Journal of American Chemical Society, 1995, 117(14): 4195-4196
    [83] Sartoratto P P C, Davanzo C U, Yoshida I V P. Photooxidation studies on branched polysilanes. European Polymer Journal, 1997, 33(1): 81-88
    [84] Bley R A, Kauzlarich S M. A low-temperature solution phase route for the synthesis of silicon nanoclusters. Journal of American Chemical Society, 1996, 118(49): 12461-12462
    [85] Kr?stchmer W, Fostiropoulos K, Huffman D R. The infraed and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chemical Physics Letters, 1990, 170(1): 167-170
    [86] 王国建. 高分子合成新技术. 北京:化学工业出版社,2004,177-205
    [87] 段小芳,郑莹,张中岳. 碳笼烯(C60)在高分子领域中的研究进展. 高分子通报,2000,13(1):20-32
    [88] Guldi D M. Fullerene: three dimensional electron acceptor materials. Chemical Communications, 2000, 7(5): 321-327
    [89] Flory P J. Molecular size distribution in three dimensional polymers. Ⅵ.Branched polymers containing A-R-Bf-1 type units. Journal of American Chemical Society, 1951, 74(11): 2718-2723
    [90] 张俐娜,薛奇,莫志深,等. 高分子物理近代研究方法. 武汉:武汉大学出版社,2003,43-63
    [91] 黄春辉,李富友,黄岩谊. 光电功能超薄膜. 北京:北京大学出版社,2001,196-306
    [92] Hunter C A, Sanders J K M. The nature of π-π interactions. Journal of American Chemical Society, 1990, 112(14): 5525-5534

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700