新型两亲性氟碳—碳氢杂化的无规共聚物的合成表征及自组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究内容包含三个部分:第一部分,合成一系列阳离子型两亲性无规聚合物,测定共聚体系的竞聚率,研究共聚物水溶液的性质和在水相及乙醇-水混合溶剂中的自组装行为;第二部分,合成一系列具有pH和温度响应性的含氟两亲性无规共聚物,研究共聚物水溶液的性质和不同pH条件下在水溶液中的自组装行为;第三部分,研究pH响应性阳离子型微凝胶的制备及性质研究。
     第一部分:阳离子型两亲性无规共聚物的合成、表征、竞聚率测定及自组装研究
     以偶氮类引发剂AIBN(偶氮二异丁腈)为引发剂,正十二硫醇为链转移剂,无水乙醇为溶剂,采用普通自由基溶液共聚的方法对亲水性单体甲基丙烯酰氧乙基三甲基氯化铵(MADQUAT)和疏水性单体甲基丙烯酸十八烷酯(SMA)进行溶液共聚,并利用FT-IR,~1H NMR和MALDI-TOF MS对产物的结构和组成进行表征,结果表明此两亲性阳离子型共聚物已成功合成。采用核磁共振测定共聚物的组成,用F-R方法计算出r_(MADQUAT)=0.83,r_(SMA)=0.25。利用表面张力法和接触角法测定共聚物在水溶液中的表面活性,结果表明,该阳离子型两亲性共聚物具有良好的表面活性。共聚物在水溶液中的临界聚集浓度(cac)通过表面张力法、荧光探针法、电导率法的测定而获得。将此两亲性阳离子型无规共聚物置于于水或乙醇/水的混合溶剂中进行自组装,利用透射电镜(TEM)和动态激光光散射对共聚物的自组装行为进行研究,实验结果显示该无规共聚物在水相或乙醇/水混合溶液中都能形成良好的自组装。
     第二部分:具有pH和温度响应性的两亲性含氟无规共聚物的合成和自组装研究
     通过常规自由基溶液共聚的方法,合成了一系列具有pH/温度响应性的两亲性含氟无规共聚物(PDMAEMA-co-PDFMA)。亲水性单体为甲基丙烯酸-2-(二甲氨基)乙酯(DMAEMA),疏水性单体为甲基丙烯酸十二氟酯(DFMA)。通过核磁共振(~1H NMR、~(19)F NMR)、红外光谱(FT-IR)、凝胶渗透色谱(GPC)等对含氟共聚物的结构、分子量及分子量分布进行表征。共聚物的热性质通过热重分析(TGA)进行研究,结果表明此共聚物具有良好的热稳定性。对含氟共聚物的水溶液进行表面张力和接触角测试,结果表明,此两亲性含氟无规共聚物具有很高的表面活性,能显著降低水的表面张力。共聚物的pH/温度响应性通过表面张力测定、电导率测定、稳态荧光法、浊点测定进行研究,结果显示此含氟共聚物具有明显的pH/温度响应。共聚物在水溶液中的临界聚集浓度(cac)随着疏水性单体(DFMA)片段的增加而变小。通过透射电镜(TEM)、~1H NMR谱图对共聚物在不同pH水溶液中自组装行为进行表征。结果显示,共聚物PDMAEMA-co-PDFMA在水溶液中可以自组装成各种形态的聚集体。
     第三部分:pH响应性阳离子型微凝胶的制各及性质研究
     以甲基丙烯酸-(N,N-二甲氨基)乙酯(DMAEMA)和丙烯酸乙酯(EA)为共聚单体,二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,采用半连续乳液聚合法,制备了具有pH响应性的阳离子型微凝胶,并研究不同聚合条件对所合成的微凝胶性质的影响。通过透射电子显微镜(TEM)、激光粒度分析仪和流变仪对微凝胶进行一系列表征。研究了介质pH值对微凝胶的形态、平均粒径、zeta电位、溶液浊度(透光率)的影响,以及不同浓度氯化钠溶液对微凝胶分散体系稳定性的影响。结果表明,该阳离子型微凝胶体系具有良好的pH响应性,在pH 7左右发生相转变。此外,研究表明不同浓度氯化钠溶液对微凝胶的稳定性有一定影响,临界絮凝浓度约为1.3 mol·L~(-1)。
There are three parts included in this thesis research:(1) synthesis of a series of amphiphilic cationic random copolymers,measurement of reactivity ratios between the two monomers and research the self-assembly behavior in water and water-ethanol mixtures;(2) synthesis of a series of amphiphilic fluorinated random copolymers with pH/temperature response and research the self-assembly behavior in aqueous solution of various pH values;(3) synthesis of a series of pH-responsive cationic microgels and research the pH-responsive behavior.
     (1) Synthesis of Amphiphilic Cationic Copolymers and Their Self-Assembly Behavior in Water and Water-Ethanol Mixtures
     In this part,a series of amphiphilic cationic random copolymers,namely poly[2-(methacryloyloxy)ethyl trimethylammonium chloride-co-stearyl methacrylate] or poly(MADQUAT-co-SMA),have been synthesized via conventional flee-radical copolymerization using 2,2'-azobisisobutyronitrile(AIBN) as initiator and n-dodecanethiol as chain transfer agent.The resultant products were then characterized by FT-IR,~1H NMR,MALDI-TOF MS measurements.The reactivity ratios(r_(MADQUAT)= 0.83,r_(SMA)=0.25) between the hydrophilic monomer MADQUAT and the hydrophobic monomer SMA were calculated by the Finemann and Ross method,which was based on the results of ~1H NMR analysis.The surface activity of the random copolymers was studied by the combination of surface tension and contact angle measurement.The critical aggregation concentrations(cac) of the copolymers in aqueous solution were determined by fluorescence probe method,electrical conductivity and surface tension measurement.Furthermore,using transmission electron microscopy(TEM),we could observe the self-assembly morphology of these random copolymer.All the results show that amphiphilic cationic random copolymers have a good self-assembly behavior in water and water-ethanol mixtures,even if they are ill-defined copolymers.
     (2) Study on Novel Amphiphilic Fluorinated Random Copolymers with pH/Temperature Response and Their Self-Assembly Behavior
     A series of studies on amphiphilic fluorinated random copolymers with pH/temperature response were herein described,wherein the copolymers,poly[1H,1H, 7H-dodecafluoroheptyl methacrylate-co-2-(N,N-dimethylamino)ethyl methacrylate]or poly(DFMA-co-DMAEMA),were synthesized via conventional free radical polymerization using 2,2'-azobisisobutyronitrile(AIBN) as initiator,and then characterized by FT-IR,~1H NMR,~(19)F NMR,and gel permeation chromatography(GPC) technique.The thermal stability of the copolymers was examined by thermogravimetric analysis(TGA).The aqueous solution behaviour of the copolymers was investigated by the combination of surface tension,electrical conductivity,fluorescence probe,cloud point and contact-angle measurement.The results indicate that the copolymers exhibit distinct pH/temperature-response properties and possess high surface activity.The critical aggregate concentration(cac) of the copolymers in aqueous solution decreases with the increase of hydrophobic DFMA segments.The self-assembly behaviour was studied by TEM analysis and ~1H NMR spectroscopy.A very interesting phenomenon was found that the aggregate morphologies changed as a function of the pH values of the aqueous solution.The mechanism of the self-assembly behavior was discussed.
     (3) Synthesis and Properties of pH-Responsive Cationic Microgels
     A series of pH-responsive cationic microgels have been synthesized via semi-continuous emulsion polymerization with 2-(N,N-dimethylamino)ethyl methacrylate(DMAEMA) and ethyl acrylate(EA) as comonomers,and ethylene glycol dimethacrylate as cross-linker.The effects of various conditions on the emulsion polymerization and the stability of microgels were studied in detail.The resultant microgels were characterized by transmission electron microscopy(TEM),dynamic light scattering(DLS) and rheometry.The pH-responsive behavior of the microgels was investigated by the measurements of Z-average diameter,zeta potentials,and the solution transmittance of the microgels at different pH values.Furthermore,the influence of NaCl solution on the stability of the microgels in aqueous solution was also studied.All the results show that the cationic mircrogels possess well pH-responsive property,and the phase variation happens at pH 7.0.Furthermore,the addition of NaCl solution can influence the stability of the microgels and the critical flocculent concention is about 1.3 g L~(-1).
引文
1.Zhao,H.;Douglas,E.P.;Harrison,B.S.;Schanze,K.S..Preparation of CdS nanoparticles in salt-induced block copolymer micelles.Langmuir,2001,17:8428-8433.
    2.Moffitt,M.;Eisenberg,A..Scaling relations and size control of block ionomer microreactors containing different metal ions.Macromolecules,1997,30:4363-4373.
    3.Borisov,O.V.;Zhulina,E.B..Effect of salt on self-assembly in charged block copolymer micelles.Macromolecules,2002,35:4472-4480.
    4.Allen,C.;Maysinger,D.;Eisenberg,A..Nano-engineering block copolymer aggregates for drug delivery.Colloid.Surface.B,1999,16:3-27.
    5.Lazzari,M.;L(?)pez-Quintela,M.A..Block copolymers as a tool for nanomaterial fabrication.Adv.Mater.,2003,15:1583-1594.
    6.Pilon,L.N.;Armes,S.P.;Findlay,P.;Rannard,S.P..Synthesis and characterization of shell cross-linked micelles with hydroxy-functional coronas:a pragmatic alternative to dendrimers.Langmuir,2005,21:3808-3813.
    7.Zhang,Y.W.;Jiang,M.;Zhao,J.X.;Wang,Z.X.;Dou,H.J.;Chen,D.Y..pH-responsive core-shell particles and hollow spheres attained by macromolecular self-assembly.Langmuir,2005,21:1531-1538.
    8.Zhang,Q.;Remsen,E,E.;Wooley,K.L..Shell cross-linked nanoparticles containing hydroltically degradable,crystalline core domains.J.Am.Chem.Soc.,2000,122:3642-3651.
    9.Zhang L.;Eisenberg A..Multiple morphologies and characteristics of crew-cut micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in solution.Science,1995,268:1728-1730.
    10.Zhang L.;Eisenberg A..Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions.J.Am.Chem.Soc.,1996,118:3168-3181.
    11.Gao Z.;Varshney S.K.;Wong S.;Eisenberg A..Block copolymer "crew-cut" micelles in water.Macromolecules,1994,27:7923-7927.
    12.Yu K.;Zhang L.;Eisenberg A..Novel morphologies of "crew-cut" aggregates of amphiphilic diblock copolymers in dilute solution.Langmuir,1996,12:5980-5984.
    13.Zhang L.;Eisenberg A..Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions.Macromolecules,1996,29:8805-8815.
    14.Zhang L.;Barlow R.J.;Eisenberg A..Scaling relations and coronal dimensions in aqueous block polyelectrolyte micelles.Macromolecules,1995,28:6055-6066.
    15.Zhang L.;Bartels C.;Yu Y.;Shen H.;Eisenberg A..Mesosized crystal-like structure of hexagonally packed hollow hoops by solution selF-assembly of diblock copolymers.Phys.Rev.Lett.,1997,79:5034-5037.
    16.Zhang,L.F.;Eisenberg,A..Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions.J.Am.Chem.Soc.,1996,118:3168-3181.
    17.Wong,G.C.L.;Tang,J.X.;Lin,A.;Li,Y.;Janmey,P.A.;Safinya,C.R..Hierarchical self-assembly of F-actin and cationic lipid compleses:stacked three-layer tubule networks.Science,2000,288:2035-2039.
    18.Sohn,B.H.;Choi,J.M.;Yoo,S.;Yunm S.H.;Zin,W.C.;Jung,J.C.;Kanehara,M.;Hirata,T..Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer rnicelles.J.Am.Chem.Soc.,2003,125:6368-6369.
    19.Shen H.;Zhang L.;Eisenberg A..Thermodynamics of crew-cut micelle formation of polystyrene-b-poly(acrylic acid) diblock copolymers in DMF/H2O mixture.J.Phys.Chem.B,1997,101:4697-4708.
    20.Zhang,H.;Ni,P.H.;He,J.L.;Liu,C.C..Novel fluoroalkyl end-capped amphiphilic diblock copolymers with pH/Temperature response and self-assembly behavior.Langmuir,2008,24:4647-4654.
    21.Zhang L.;Eisenberg A..Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution.Polym.Adv.Technol.,1998,9:677-699.
    22.Shen H.;Eisenberg A..Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H_2O.Macromolecules,2000,33:2561-2572.
    23.Shen,H.;Eidenberg,A..Morphological phase diagram for a ternary system of block copolymer Ps_(310)-b-PAA_(52)/Dioxane/H_2O.J.Phys.Chem.B,1999,103:9473-9487.
    24.Yu Y.;Zhang L.;Eisenberg A..Morphologenic effect of solvent on crew-cut aggregates of amphiphilic diblock copolymers.Macromolecules,1998,31:1144-1154.
    25.Sun J.;Deng C.;Chen X.;Yu H.;Tian H.;Sun J.;Jing X..Self-assembly of polypeptide-containing ABC-type triblock copolymers in aqueous solution and its pH dependence.Biomacromolecules,2007,8:1013-1017.
    26.Aswal V.K.;Goyal P.S..Dependence of the size of micelles on the salt effect in ionic micellar solutions.Chem.Phys.Lett.,2002,364:44-50.
    27.Yoshida E.;Ohta M..Micelle formation of a diblock copolymer having pyridine as pendant groups by carboxylic acids in nonselective solvents.Colloid.Polym.Sci.,2006,284:718-724.
    28.Steinbeck,C.A.;Hedin,N.;Chmelka,B.F..Interactions of charged porphyrins with nonionic triblock copolymer hosts in aqueous solutions.Langmuir,2004,20:10399-10412.
    29.Luo,L.;Eisenberg,A..One-step preparation of block copolymer vesicles with vesicles with preferentially segregated acidic and basic corona chains.Angew.Chem.Int.Ed.,2002,41:1001-1004.
    30.Choucair A.;Eisenberg A..Control of amphiphilic block copolymer morphologies using solution conditions.Eur.Phys.J.E,2003,10:37-44.
    31.Kubowicz S.;Baussard J-F.;Lutz J--F.;Th(u|¨)nemann A.F.;von Berlepsch H.;Laschewsky A..Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium.Angew.Chem.Int.Ed.,2005,44:5262-5265.
    32.Mao,J.;Ni,P.H.;Mai,Y.Y.;Yan,D.Y..Multicomparment micelles from hyperbranched star-block copolymers containing polycations and fluoropolymer segment.Langmuir,2007,23:5127-5134.
    33.Zhang,L;Eisenberg,A..Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution.J.Polym.Sci.B.Polym.Phys.,1999,37:1469-1484.
    34.Liu,F.;Eisenberg,A..Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine).J.Am.Chem.Soc.,2003,125:15059-15064.
    35.Yang,J.Y.;Xu,C.Y,;Jindich,K..Refolding hydrogels self-assembled from N-(2-Hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation.Biomacromolecules,2006,7:1187-1195.
    36.Elena,S.;Agnieszka,T.;Galder,K..Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymer.Effect of epoxidation degree.Macromolecules,2006,39:2254-2261.
    37.Liu,X.Y.;Kim,J.S.;Wu,J.;Eisenberg,A..Bowl-shaped aggregates from the self-assembly of an amphiphilic random copolymer of poly(styrene-co-methacrylic acid).Macromolecules,2005,38:6749-6751.
    38.Li,Y.B.;Deng,Y.H.;Tong,X.L.Wang,X.G.Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer.Macromolecules,2006,39:1108-1115.
    39.Yu,H.J.;Wang,L.;Zhou,J.F.;Dong,X.C.;Jiang,G.H..Preparation and se]f-assembly of poly(diglycidylmaleale-co-stearyl methaerylate).J.Appl.Polym.Sci.,2007,105:1156-1161.
    40.Yu,H.J.;Wang,L.;Zhou,J.F.;Jiang,G.H.;Zhao,Z.R..Study on the synthesis of poly(diglycidylmaleate-co-stearyl methacrylate) and morphology conversion of their self-assembly systems.J.Phys.Chem.B,2006,110:837-841.
    41.Yan,L.F.;Zhang,G.Z.;Liu,G.M.;Ji,J.;Li,W..Synthesis and self-assembly of amphiphilic maleic anhydride-slearyl methacrylate copolymer.J.Appl.Polym.Sci.,2006,100,3718-3726.
    42.Zhou,J.F.;Wang,L.;Wang,C.L.;Chen,T.;Yu,H.J.;Yang,Q..Emulsifier-free synthesis and self-assembly of an amphiphilic poly(styrene-co-acrylic acid)copolymer.Polymer,2005,46:11157-11164.
    43.Liu,J.W.;Kim,J.S.;Eisenberg,A..Self-assembly of mixtures of block copolymers of poly(styrene-b-acrylic acid) with random copolymers of poly(styrene-co-methacrylic acid).Langmuir,2006,22:419-424.
    44.Kojima,T.;Satokawa,S.;Kato,S.;Vijayanand,S.P..Copolymerization of 4-biphenyl methacrylate with glycidyl methacrylate:synthesis,characterization,thermal properties and determination of monomer reactivity ratios.Polym.Bull.,2007,58:861-872.
    45.Reddy,B.S.R.;Balasubramaniam,S.;Suriyan,M.R.4-acetamidophenyl acrylate copolymers with acrylonitrile and N-vinyl-2-pyrrolidone:synthesis,chracterization,and reactivity ratios.J.Appl.Polym.Sci.,2006,99:1919-1927.
    46.Yang,Y.;Mikes,F.;Yang,L.;Liu,W.H.;Okamoto,Y..Novel amorphous perfluorocopolymeric system:copolymers of perfluoro-2-methylene-1,3-dioxolane derivatives.J.Polym.Sci.Part A.Polym.Chem.,2006,44:1613-1618.
    47.Eren,T.;K(u|¨)sefo(?)lu,S.H..Synthesis and characterization of copolymers of bromoacrylated methyl oleale.J.Appl.Polym.Sci.,2004,94:2475-2488.
    48.Arun,A.;Reddy,B.S.R..The influence of comonomer(2-hydroxyethyl acrylate) and keto group on photocrosslinking property of arylidene polymers.J.Polym.Sci.Part A.Polym.Chem.,2004,42:3433-3444.
    49.Nurkeeva,B.;Cianga,L.;Agag,T.;Yagci,Y.;Takeichi,T..Synthesis and characterization of maleimide(co)polymers with pendant benzoxazine group by photoinduced radical polymerization and their thermal curing.J.Polym.Sci.Part A.Polym.Chem.,2007,45:2774-2786.
    50.Rusu,M.C.;Rusu,M.;Popa,M.;Delaite,C.;Riess.G..New radio-opaque acrylic bone cements.I.The synthesis of bromine containing methacrylates.Polym.Bull.,2007,59:25-30.
    51.Nurkeeva,Z.S.;Mun,G.A.;Sergaziyev,D.A.;Fefelova,N.A.;Sarsenbaeva,A.S.;Khutoryanskiy,V.V..Synthesis of cationic water-soluble copolymers and hydrogels based on [2-(methacryloylosy)ethy]trimethylammonium chloride and 2-hydroxyethylacrylate and their complex formation with poly(acrylic acid).J.Polym.Sci.Part B.Polym.Phys.,2006,44,845-853.
    52.Candau.F.;Neyret,S.Selb,J..Synthesis in microemulsion and characterization of low charge density ampholytic terpolymers.Acta.Polym.,1996,47:323-332.
    53.Erol,I.;Ahmedzade,M..Free-radical copolymerization of 2-[3-(6-tetralino)-3-methylcyclobutyl]-2-ketoethyl methacrylate with acrylonitrile and styrene:synthesis,characterization,and monomer reactivity ratios.J.Appl.Polym.Sci.,2007,104:1979-1986.
    54.Tang H.;Zhu Z.G.;Wan,X.H.;Chen,X.F.;Zhou,Q.F..Tailoring thermotropic liquid crystalline properties of random copolymers based on vinyl monomers with laterally attached mesogenic and nonmesogenic substituents via no spacer.Macromolecules,2006,39:6887-6897.
    55.Rivas,B.L.;Geckeler,K.E..Synthesis and metal complexation of poly(ethyleneimine) and derivatives.Adv.Polym.Sci.,1992,102,171-188.
    56.Yao,K.J.;Qiu,Z.Q.;Ye,C.Y..Copolymerization of cis-butenedioic acid with sodium methallylsulfonate in an aqueous solution.J.Appl.Polym.Sci.,1990,40:1529-1539.
    57.Finemann,M.;Ross,S.D..Linear method for determining monomer reactivity ratios in copolymerization.J.Polym.Sci.,1950,5:259-265.
    58.kelen,T.;Tudos,F..Analysis of the Linear Methods for Determining Copolymerization Reactivity Ratios.I.A New Improved Linear Graphic Method.J Macromol.Sci.Chem,1975,9,1-27.
    59.Tudos,F.;Kelen,T.;Foldes-Berezhnykh,T.;Turcsanyi,B..Evaluation of high conversion copolymerization data by a liner graphical method.Catal.Lett.,1975,2:439-447.
    60.Kelen,T.;Tudos,F.;Turcsanyi,B.;Kennedy,J.P..Analysis of the linear methods for determining copolymerization reactivity ratios.Ⅵ.A comprehensive critical reexamination of oxonium ion copolymerizations.J.Polym.Sci.Polym.Chem.ED,1981,19:1119-1132.
    61.Dube,M.;Amin Sanayei,R.;Penlidis,A.;(?)Driscoll,R.;Reilly,P.M..A microcomputer program for estimation of copolymerization reactivity ratios.J.Polym.Sci.Part A,Polym.Chem.,1991,29:703-708.
    62.Mayo,F.R.;Lewis,F.M..Copolymerization.I.A basis for comparing the behavior of monomers in copolymerization;the copolymerization of styrene and methyl methacrylate.J.Am.Chem.Soc.,1944,66:1594-1601.
    63.Alvares,D.RS.;Menezes,S.MC.;Lucas,E.F..Kinetic study of the synthesis of a methacrylic ester copolymer by nuclear magnetic resonance.Polym.Int.,2004,53:1639-1643.
    64.Ge,X.W.;Ye,Q.;Xu,X.L.;Zhang,Z.C.;Chu,G.S..Studies of inverse emulsion copolymerization of(2-methacryloyloxyethyl) trimethyl ammonium chloride and acrylamide.J.Appl.Polym.Sci.,1998,67:1005-1010.
    65.Ge,X.W.;Ye,Q.;Xu,X.L.;Zhang,Z.C.;Sun,Q..Kinetics of emulsion copolymerization of (2-methacryloyloxyethyl) trimethyl ammonium chloride and acrylamide with gamma rays.Radiat.Phys.Chem.,1997,50:253-258.
    66.Pelton,R.H.;Chlbante,P..Preparation of aqueous latices with N-isopropylacrylamide.Colliod.Sulfate,1986,20:247-256.
    67.Dalmont,H.;Pinprayoon,O.;Saunders,B.R..Study of pH-responsive microgels containing methacrylic acid:effects of particle composition and added calcium.Langmuir,2008,24:2834-2840.
    68.Snowden,M.J.;Chowdhry,B.Z.;Vincent,B.;Morris,G.E..Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid:pH,ionic strength and temperature effects.J.Chem.Soc.Faraday.Trans.,1996,5013-5016.
    69.Tanaka,T.;Fillmore,D.;Sun,S.T.;Nishio,I.;Swislow,G.;Shah,A..Phase transitions in ionic gels.Phys.Rev.Lett.,1980,45:1636-1639.
    70.Sershen,S.R.;Westcott,S.L.;Halas,N.J.;West,J.L..Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery.J.Biomed.Mater.Res.,2000,51:293-298.
    71.Kim,J.;Nayak,S.;Lyon,L.A..Bioresponsive hydrogel microlenses.J.Am.Chem.Soc.,2005,127:9588-9592.
    72.Tan,B.H.;Kam,C.;Tama,T.;Lama,Y.C.;Tand,C.B..Microstructure and rheology of stimuli-responsive microgel systems-effect of cross-linked density.Adv.Colloid.Interface,2005,113:111-120.
    73.Jeenanong,A.;Kawaguchi,H..Effect of pH and temperature on the behavior of microgel in SPR sensor.Colloid.Surface.A,2008,315:232-240.
    74.Hoare,T.;Pelton,R..Highly pH and temperature responsive microgels functionalized with vinylacetic acid.Macromolecules,2004,37:2544-2550.
    75.Emileh,A.;Vasheghani-Farahani,E.;Imani,M..Preparation and characterization of pH-sensitive microgels of poly((2-dimethylamino) ethyl methacrylate).Macromol.Symp.,2007,255:1-7.
    76.Tan,B.H.;Ravi,R;Tam,K.C..Synthesis and characterization of novel pH-responsive polyampholyte microgels.Macromol.Rapid.Commun.,2006,27:522-528.
    77.Kim,E.J.;Cho,S.H.;Yuk,S.H..Polymeric microspheres composed of pH/temperature-sensitive polymer complex.Biomaterials,2001,22:2495-2499.
    78.Zhang,K.;Wu,X.Y..Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides.Biomaterials,2004,25:5281-5291.
    79.Mallika,D.;Sawitri,M.;Warren,C.W.C.;Eugenia,K..Biofunctionalized pH-responsive microgels for cancer cell targeting:rational design.Adv.Mater.,2006,18:80-83.
    80.Bromberg,L.;Temehenko,M.;Hatton,T.A..Dually responsive microgels from polyether-modified poly(acrylic acid):swelling and drug loading.Langmuir,2002,18:4944-4952
    81.Lopez,V.C.;Hadgraft,J.;Snowden,M..The use of colloidal microgels as a(trans) dermal drug delivery system.J.Int.J.Pharm.,2005,292:137-147.
    82.Franeos,G.;Elaissari,A.;Piehot,C..Adsorption of single-stranded DNA fragments onto cationic aminated latex particles.Langmuir,1997,13:701-707.
    83.Morris,G.E.;Vincent,B.;Snowden,M.J..Adsorption of lead ions onto N-isopropylacrylamide and acrylic acid copolymer microgels.J.Colloid.Interf.Sci.,1997,190:198-205.
    84.Jennifer,M.S.;Tony,T.;Christine,L.L.M.;Tony,J.F.;Brian,R.S..A study of pH-responsive microgel dispersions:from fluid-to-gel transitions to mechanical property restoration for load-bearing tissues.Soft.Matter.,2007,3:486-494.
    85.Sarah,L.;Paul,M.;Christine,L.L.;Tony,J.F.;Brain,R.S..Microgel particles containing methacrylic acid:pH-triggered swelling behavior and potential for biomaterial application.J.Colloid.Interf Sci.,2007,316:367-375.
    86.Debord,J.D.;Lyon,L.A..Thermoresponsive photonic crystals.J.Phys.Chem.B,2000,104:6327-6331.
    87.Bulmus,V.;Chan,Y.;Nguyen,Q.;Tran,H.L..Synthesis and characterization of degradable p(HEMA) microgels:use of acid-labile crosslinkers.Macromol.Biosci.,2007,7:446-455.
    88.Wang,G.W.;Huang,J.L..Synthesis and characterization of well-defined ABC 3-miktoarm star-shaped terpolymers based on poly(styrene),poly(ethylene oxide),and poly(ε-caprolactone) by combination of the "living"anionic polymerization with the ring-opening polymerization.J.Polym.Sci.A.Polym.Chem.,2008,46:1136-1150.
    89.Peter,K.;Thelakkat,M..Synthesis and characterization of bifunctional polymers canying tris(bipyridyl)ruthenium(Ⅱ) and triphenylamine units.Macromolecules,2003,36:1779-1785.
    90.Pang,X.H.;Wang,G.W.;Jia,Z.F.;Liu,C.;Huang,J.L..Preparation of the amphiphilic macro-rings of poly(ethylene oxide) with multi-polystyrene lateral chains and their extraction for dyes.J.Polym.Sci.Part A.Polym.Chem.,2007,45:5824-5837.
    91.He,J.L.;Ni,P.H.;Liu,C.C..Synthesis and characterization of amphiphilic fluorinated pentablock copolymers based in pluronic F127.J.Polym.Sci.Part A.Polym.Chem.,2008,46:3029-3041.
    92.Ch(?)cot,F.;Lecommandoux,S.;Gnanou,Y.;Klok,H.A..Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers.Angew.Chem.Int.Ed,2002,41:1339-1343.
    93.Zhang,Q.H.;Zhan,X.L.;Chen,F.Q.;Shi,Y.;Wang,Q.Y..Block copolymers of dodecafluoroheptyl methacrylate and butyl methacrylate by RAFT miniemulsion,J.Polym.Sci:Part A:Polym Chem.,2007,45:1585-1594.
    94.Ren,Y.;Lodge,T.P.;Hillmyer,M.A..A simple and mild route to highly fluorinated model polymers.Macromolecules,2001,34:4780-4787.
    95.Sa(l|¨)di,S.;Guittard,F.;Guimon,C.;G(?)ribaldi,S..Synthesis and characterization of copolymers based on styrene and partially fluorinated acrylates.Eur.Polym.J.,2006,42:702-710.
    96.Ni P.H.;Pan Q.S.;Zha L.S.;Wang C.C.;Ela(l|¨)ssari A.;Fu S.K..Syntheses and characterization of poly[2-(dimethylamino)ethyl methacrylate]-poly(propylene oxide)-poly[2-(dimethylamino)ethyl methacrylate]ABA triblock copolymers.J.Polym.Sci.A.Polym.Chem.,2002,40:624-631.
    97.Webber B.G.;Wardess E.J.;Armes S.P.;Tang Y.;Li Y..Biggs S..Nano-anemones stimulus-responsive copolymer-micelle surfaces.Adv.Mater.,2004,16:1794-1798.
    98.Song,Y.C.;Harry R.A..Dendrimers derived from polyphosphazene-poly(propyleneimine)systems:encapsulation and triggered release of hydrophobic guest molecules.Macromolecules,2007,40:3115-3121.
    99.Vieira N.A.B.;Moscardini M.S.;de Oliveira Tiera V.A.;Tiera M..Aggregation behavior of hydrophobically modified dextran in aqueous solution:a fluorescence probe study.Carbohydrate.Polym.,2003,53:137-143.
    100.Zhou J.C.;Zhuang D.Q.;Yuan X.F.;Jiang M.;Zhang Y.X..Association of fluorocarbon and hydrocarbon end-capped poly(ethylene glycol)s:NMR and fluorescence studies.Langmuir,2000,16:9653-9661.
    101.Plunkett K.N.;Zhu X.;Moore J.S.;Leckband D.E..PNIPAM chain collapse depends on the molecular weight and grafting density.Langmuir,2006,22:4259-4265.
    102.Durme K.V.;Mele B.V.;Bernaerts K.V.;Verdonck B.;Prez F.E.D..End-group modified poly(methyl vinyl ether):characterization and LCST demixing behavior in water.J.Polym.Sci.B.Polym.Phys.,2006,44:461-469.
    103.Zhu X.;Yan C.;Winnik F.M.;Leckband D..End-grafted low--molecular-weight PNIPAM does not collapse above the LCST.Langmuir,2007,23:162-169.
    104.Yasushi M.;Hiroki M.Isao I..Hydration changes during thermosensitive association of a block copolymer consisting of LCST and UCST blocks.Macromol.Rapid.Commun.,2004,25:1330-1334.
    105.Laukkanen A.;Valtola L.;Winnik F.M.;Tenhu H..Thermosensitive graft copolymers of an amphiphilic macromonomer and N-vinylcaprolactam:synthesis and solution properties in dilute aqueous solutions below and above the LCST.Polymer,2005,46:7055-7065.
    106.Liu,Q.Q.;Yu,Z.Q.;Ni,P.H..Micellization and application of narrowdistribution poly[2-(dimethylamino)methacrylate].Colloid.Polym.Sci.,2004,282:387-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700