PR-XP1基因的克隆及在C6/36耐药细胞株中抗性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚊虫作为全球广泛分布的最主要的医药害虫,传播多种致命疾病,严重威胁人类的健康。目前防控蚊虫危害的主要手段仍是化学防治;其中又以拟除虫菊酯类杀虫剂的使用最为广泛;然而其大量、长期的使用已使蚊虫产生了越来越严重的抗药性。因此,探明蚊虫针对拟除虫菊酯类杀虫剂的抗性机理,尤其抗性相关基因及其功能的研究就是非常必要的。长期以来,由于研究对象的复杂性以及研究技术的限制,目前对淡色库蚊氯菊酯抗性相关基因及其功能仍知之甚少。为了探索抗性淡色库蚊中全新的氯菊酯抗性相关基因并在细胞水平初步研究其抗性功能,本课题以抗性品系淡色库蚊与蚊虫C6/36细胞为研究对象,开展相关工作。
     首先,采用了异硫氰酸胍法、Trizol法、Trizol改良法、Trizol+ CTAB法与CTAB法五种不同RNA提取方法对适合抗性品系淡色库蚊总RNA提取的最佳方法进行了探讨。通过对RNA纯度、浓度检测以及利用荧光实时定量PCR技术对不同基因的模板绝对值的监测验证,初步明确了本实验室首创Trizol + CTAB法是从淡色库蚊中提取总RNA的最佳方法,可以为淡色库蚊杀虫剂抗性相关基因克隆及其后续研究提供了新的模板获取技术。
     其次,根据库蚊抗性相关EST(NCBI登录号为EC093826.1)设计基因特异性引物(GSP),利用了SMART-RACE技术,克隆出了目的基因5’/3’-末端序列,并进一步拼接、克隆得到了cDNA全长序列;再使用NCBI ORF finder软件定位其开放阅读框。结果显示,这是一条cDNA全长为2004 bp的全新基因,将其命名为PR-XP1,其编码蛋白为249个氨基酸。而后通过同源性比对、分子系统进化树构建、编码蛋白理化特性预测、疏水性及跨膜区预测、信号肽位点预测、磷酸化位点分析等生物信息软件的运用,对PR-XP1基因及其编码蛋白进行了评估与预测。结果表明,PR-XP1基因属于一个昆虫中独有的短序列“Hypothetic”蛋白基因家族;该基因编码蛋白具有特异的U型结构疏水性跨膜区,且具有很多磷酸化位点,因而推测其功能与杀虫剂抗性相关。其抗性相关也进一步被荧光实时定量PCR(相对定量)的监测结果所证实:PR-XP1基因在抗性品系蚊中表达量高于敏感品中的1.11倍。
     第三,蚊虫抗性相关基因的功能研究无论是利用基因沉默技术还是转基因诱导方法,其细胞水平研究都必须有一个适合的抗性模型。基于此,我们采用MTT法检测了氯菊酯对蚊虫C6/36细胞杀伤作用(半数致死浓度为517.64μg/ml);并根据该数据计算后,利用逐步冲击法成功构建了在含300μg/ml氯菊酯的培养液中稳定生长及传代的耐药细胞株,并且还将继续筛选。最后,利用半定量RT-PCR方法检测了此前刚克隆获得的PR-XP1基因在该耐药细胞株中得相对表达量为普通细胞株的1.7倍以上。
     综上所述,本研究为在淡色库蚊中研究抗性基因提供了总RNA提取的最佳方法;克隆了氯菊酯抗性相关基因PR-XP1并分析了相关的生物信息,以及监测了其抗性超量表达现象;并初步建立了蚊虫C6/36氯菊酯耐药细胞株以及首次验证了抗性相关基因在该耐药细胞株中的表达差异,为相关抗性基因功能的研究和蚊虫抗药性机制的探明提供了重要线索。
As the most widespread medical pest, mosquitoes could spread many deadly diseases, which threat human health seriously. Currently, chemical control is still the the primary way of mosquito control; and among them, Pyrethroid insecticides are used widely. However, mosquitos have formed more and more resistance to Pyrethroids for long-term and far-ranging using. Therefore, it is is very necessary to investigate the mechanism of resistance, expecially resistance related genes to pyrethroids. Because of the limited research strategy and technology, currently the permethrin-resistant genes and their functions of Culex pipiens pallens are still far to clarified. In order to investigate the new permethrin-resistant genes of Culex pipiens pallens and explore their Resistant function in cell, this study use resistant strain Culex pipiens pallens and mosquito C6/36 cell to carried out related work.
     Firstly, using five different method of guanidinium isothiocyanate, Trizol, advanced Trizol, Trizol plus CTAB, and CTAB to isloate the total RNA from Culex pipiens pallens, we have got a best strategy to isolate total RNA——our results suggested that the method of Trizol plus CTAB, invented by our lab——which provides a good technology for further researchin.
     Secondly, according to one Culex Pyrethroid-Resistance relevant EST(NCBI No. EC093826.1),we designed GSPs and used SMART-RACE technology to clone the gene 5’and 3’terminal sequence. And we tried to get the full length cDNA sequence by splicing, and after that we use NCBI ORF finder to position its open reading frame. The results showed that the full-length cDNA is 2004 bp, named the gene with PR-XP1, which encoding 249 amino acids. Additionally, bioinformatics software analysis, such as homologous comparison, phylogenetic tree construction, physical and chemical prop erties of protein-coding prediction, signal peptide sites prediction, phosphorylation site analysis and also on all suggested that gene PR-XP1 belongs to a more conservative“hypothetical protein”gene family,which only expressed in insects. The gene encodes a protein with a specific structure of U-hydrophobic transmembrane region, and has many phosphorylation sites; which revealed us to speculate that the function this gene is associated with insecticide resistance.And this was confirmed by the result of FQ-PCR monitoring, which showed that the expression level of PR-XP1 in resistant strains of mosquitoes was higher than 1.11 times in the sensitive strains.
     Thirdly, suitable cell model is necessary in studying the function of mosquito pesticide-resistance genes, in whether depending on the method of transgenic gene or virus induced gene silencing. Based on this, we used the MTT assay to detect the killing effect of permethrin on mosquito C6/36 cells(Lc50=517.64μg/ml), which could grow and passage stably in nutrient solution with the conentration of Pyrethroid is 300μg/ml, and further constructed resistant cell lines. Last, we used semi-quantitative RT-PCR to detect the expression level of resistant gene of PR-XP1, which increased more than 1.7 time in resistant cell lines to the control group .
     In summary, this study investigated the best strategy of total RNA extraction in Culex pipiens pallens; cloned permethrin-resistance related genes of PR-XP1 and analyzed by bioinformations, and then monitored the excessly expressional phenomenon. Based on these, this study further established mosquito C6/36 drug-resistant cell line to permethrin, and verified different expression level of resistance-related genes for the first time.And all of this provide an important clue for the studying and clarifying the mechanism of mosquito resistante gene.
引文
公茂庆,顾燕,胡小邦,孙艳,李秀兰,马磊,孙立新,孙静,钱瑾,朱昌亮孙. 2007.淡色库蚊细胞色素P450基因的克隆,序列分析及表达差异的鉴定.中国病原生物学杂志2(001), 62-66.
    王宁,傅洪拓,乔慧,吴滟,龚永生,蒋速飞,熊贻伟.青虾眼柄组织总RNA提取方法的比较和分析.中国农学通报27(03), 378-382.
    王宁,杨海山,刘洁,李玉. 2005.人肝癌多药耐药细胞系BEL-7402/ADM的建立及耐药相关基因表达检测.吉林大学学报:医学版31(003), 361-364.
    王华翌2008.一,电压门控钾离子通道Kv4的N端片段Kv4. 3N与通道调节亚基KChIP1 的蛋白复合物的结构与功能分析二,苏氨酸磷酸裂解酶SpvC与其底物肽段复合物的结构基础与其酶活机制的研究. (中国协和医科大学).
    王卫杰2007.淡色库蚊核糖体蛋白S4基因克隆及其在溴氰菊酯抗性作用中的初步研究. (南京医科大学).
    王姗姗,刘明,刘英,汪选斌. MTT法测定多柔比星和氟尿嘧啶及顺铂对肝癌耐药细胞Bel-7402/ADM的IC50值.医药导报29(005), 579-581.
    向志国,郑榜高,吴学渊. 2009.昆虫抗药性的产生及其治理对策.植物医生22(005), 6-8.
    朱昌亮,李建民. 2000.淡色库蚊细胞色素P450抗性相关基因克隆与初….中国寄生虫学与寄生虫病杂志18(005), 263-267.
    何蕴韶. 2001.荧光探针定量PCR技术. CHINESE JOURNAL OF MEDICINAL GUIDE 3(4).
    宋德伟,马艳,冯颖,陈晓鸣. 2004.昆虫细胞工程研究进展.林业科学研究17(001), 116-124.
    李杰之,常晓彤,林坚,黄翠芬,周建光. 2002.从动物组织提取高纯度总RNA方法的改进及应用.生物技术通讯13(5), 346-348.
    李春晓,赵彤言,董言德. 2004.淡色库蚊乙酰胆碱酯酶全基因的克隆鉴定及蛋白同源模拟.寄生虫与医学昆虫学报11(003), 161-165.
    李海屏. 2004.世界杀虫剂发展趋势.农资科技003), 30-32.
    李飞,韩召军. 2001.我国棉蚜抗药性研究现状.棉花学报13(002), 121-124.
    沈国顺,刘丽霞. 2004.抑制性差减杂交技术(SSH)及其研究应用进展.中国兽医学报24(5), 511-514.
    邢桂春,张成岗,魏汉东,贺福初. 2001.采用RACE技术获得全长人新基因MAGE-D1.
    CHINESE JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 17(2).
    尚丹. 2005.基因芯片技术的研究进展.国外医学:生物医学工程分册28(001), 61-64.
    郭俊超,赵玉沛,廖泉,陈革,张立阳. 2005.胰腺癌耐药细胞株SW1990/FU的建立,鉴定及生物学特性.中国医学科学院学报27(005), 592-596.
    景天忠,王志英,刘宽余,齐凤慧. 2006.改进的一步法提取昆虫总RNA.林业研究:英文版17(002), 129-131.
    程宝鸾2000.动物细胞培养技术, Vol (华南理工大学出版社).
    魏宇宁,高丽丽,杨亚青. 2007. MTT法测定紫杉醇与奥沙利铂在不同分化程度胃腺癌细胞株中的敏感性.中国药房18(4), 267-268.
    刘进元,常智杰,赵广荣2002.分子生物学实验指导, Vol (清华大学出版社).
    孙立新2006.蚊抗药性相关基因NYD-Tr和NYD-Ch蛋白表达及其对溴氰菊酯代谢的研究.(南京医科大学).
    孙春晓,于常海. 2000.基因功能研究的技术和方法.国外医学:分子生物学分册22(002), 112-115.
    张贺,李波,周虚,谭建华. 2006.实时荧光定量PCR技术研究进展及应用. PROGRESS IN VETERINARY MEDICINE 27(z1).
    楼士林,杨盛昌,龙敏南,章军. 2002.基因工程.北京科学出版社.
    欧阳浩淼,夏桂先,刘祥林. 2004.仙鹤藓RNA提取不同方法比较.首都师范大学学报:自然科学版25(2), 57-57.
    谢伟伟,王凭青,杨青川,刘博,李志中. 2005.植物差异表达基因克隆技术及研究进展.重庆大学学报:自然科学版28(012), 96-100.
    谭文彬2007.蚊核糖体蛋白L39基因克隆及初步功能的研究. (南京医科大学).
    邓顺,张友军,褚栋. 2007.一种提取小型昆虫总RNA的有效方法.昆虫知识44(004), 593-596.
    顾燕2005.蚊抗药性相关新基因NYD-Ch和NYD-Tr的初步功能研究. (南京医科大学).
    马桢红,马良才. 1999.生物测定中LC50或LD50的Excell运算方法.医学动物防制15(011), 612-614.
    Alon M, Alon F, Nauen R,Morin S. 2008. Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect biochemistry and molecular biology 38(10), 940-949.
    Beaty B J,Marquardt W C 1996. The biology of disease vectors, Vol (University Press of Colorado). Berenbaum M R. 2002. Postgenomic chemical ecology: from genetic code to ecological interactions. Journal of chemical ecology 28(5), 873-896.
    Bermudez I, Hawkins C, Taylor A,Beadle D. 1991. Actions of insecticides on the insect GABA receptor complex. Journal of Receptors and Signal Transduction 11(1-4), 221-232.
    Bespalova I, Adkins S,Burmeister M. 1998. 3'RACE: skewed ratio of specific to general PCR primers improves yield and specificity. BioTechniques 24(4), 575.
    Bisset J, Rodríguez M M,Fernández D. 2006. Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba. Journal of medical entomology 43(6), 1185-1189.
    Black IV W,Vontas J. 2007. Affordable assays for genotyping single nucleotide polymorphisms in insects. Insect Molecular Biology 16(4), 377-387.
    Bloomquist J, King E, Wright A, Mytilineou C, Kimura K, Castagnoli K,Castagnoli N. 1994. 1-Methyl-4-phenylpyridinium-like neurotoxicity of a pyridinium metabolite derived from haloperidol: cell culture and neurotransmitter uptake studies. Journal of Pharmacology and Experimental Therapeutics 270(2), 822.
    Brengues C, Hawkes N, Chandre F, McCarroll L, Duchon S, Guillet P, Manguin S, Morgan J,Hemingway J. 2003. Pyrethroid and DDT cross‐resistance in Aedes aegypti is correlated with novel mutations in the voltage‐gated sodium channel gene. Medical and veterinary entomology 17(1), 87-94.
    Brogdon W G,McAllister J C. 1998. Insecticide resistance and vector control. Emerging Infectious Diseases 4(4), 605.
    Brown A. 1958. The insecticide-resistance problem: a review of developments in 1956 and 1957. Bulletin of the World Health Organization 18(3), 309.
    Brown A. 1986. Insecticide resistance in mosquitoes: a pragmatic review. Journal of the American Mosquito Control Association 2(2), 123-140.
    Campbell P M, Newcomb R D, Russell R J,Oakeshott J G. 1998. Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect biochemistry and molecular biology 28(3), 139-150.
    Campos J, Andrade C F S,Recco-Pimentel S M. 2003. Malpighian tubule polytene chromosomes of Culex quinquefasciatus (Diptera, Culicinae). Memórias do Instituto Oswaldo Cruz 98(3), 383-386.
    Chandre F, Darriet F, Darder M, Cuany A, Doannio J, Pasteur N,Guillet P. 1998. Pyrethroid resistance inCulex quinquefasciatusfrom West Africa. Medical and veterinary entomology 12(4), 359-366.
    Chen L, Zhong D, Zhang D, Shi L, Zhou G, Gong M, Zhou H, Sun Y, Ma L,He J. Molecular Ecology of Pyrethroid Knockdown Resistance in Culex pipiens pallens Mosquitoes. PLoS One 5(7), e11681.
    Claudianos C, Russell R J,Oakeshott J G. 1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect biochemistry and molecular biology 29(8), 675-686.
    DeSilva D, Hemingway J, Ranson H,Vaughan A. 1997. Resistance to Insecticides in Insect Vectors of Disease: est [alpha] 3, a Novel Amplified Esterase Associated with Amplifiedest [beta] 1from Insecticide Resistant Strains of the MosquitoCulex quinquesfasciatus. Experimental parasitology 87(3), 253-259.
    Dong K. 1997. A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect biochemistry and molecular biology 27(2), 93-100.
    Dong K,Scott J G. 1994. Linkage of kdr-type resistance and the para-homologous sodium channel gene in German cockroaches (Blattella germanica). Insect biochemistry and molecular biology 24(7), 647-654. Feachem R G A, Phillips A A, Hwang J, Cotter C, Wielgosz B, Greenwood B M, Sabot O, Rodriguez M H, Abeyasinghe R R,Ghebreyesus T A. 2010.Shrinking the malaria map: progress and prospects. The Lancet 376(9752), 1566-1578.
    Ferreira L M, Rom o T P, Pompilio de-Melo-Neto O,Silva-Filha M H N L. The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored [alpha]-glucosidase, which does not bind to the insecticidal binary toxin. Insect biochemistry and molecular biology 40(8), 604-610.
    Feyereisen R 2005. Insect cytochrome P450, Comprehensive Molecular Insect Science. (Elsevier, the Netherlands).
    Frohman M A. 1995. Rapid amplification of cDNA ends. PCR Primer, 381-409.
    Giraudo M, Unnithan G C, Le Goff G,Feyereisen R. Regulation of cytochrome P450 expression in Drosophila: genomic insights. Pesticide biochemistry and physiology 97(2), 115-122.
    Grant D F,Hammock B D. 1992. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti. Molecular and General Genetics MGG 234(2), 169-176.
    Guerrero F D, Jamroz R C, Kammlah D,Kunz S E. 1997. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: identification of kdr and super-kdr point mutations. Insect biochemistry and molecular biology 27(8-9), 745-755.
    Hardstone M, Komagata O, Kasai S, Tomita T,Scott J. Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus. Insect Molecular Biology.
    Hemingway J. 1983. Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene 77(4), 477-480.
    Hemingway J, Boddington R, Harris J,Dunbar S. 1989. Mechanisms of insecticide resistance in< i> Aedes aegypti(L.)(Diptera: Culicidae) from Puerto Rico. Bulletin of Entomological Research 79(01), 123-130.
    Hemingway J, Field L,Vontas J. 2002. An overview of insecticide resistance. Science 298(5591), 96. Hemingway J,Georghiou G P. 1983. Studies on the acetylcholinesterase of Anopheles albimanus resistant and susceptible to organophosphate and carbamate insecticides* 1. Pesticide biochemistry and physiology 19(2), 167-171.
    Hemingway J, Hawkes N J, McCarroll L,Ranson H. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect biochemistry and molecular biology 34(7), 653-665.
    Hu X, Sun Y, Wang W, Yang M, Sun L, Tan W, Sun J, Qian J, Ma L,Zhang D. 2007. Cloning and characterization of NYD-OP7, a novel deltamethrin resistance associated gene from Culex pipiens pallens. Pesticide biochemistry and physiology 88(1), 82-91.
    Karunaratne S H P P, Jayawardena K G I,Hemingway J. 1995. The cross-reactivity spectrum of a polyclonal antiserum raised against the native amplified A2 esterase involved in insecticide resistance. Pesticide biochemistry and physiology 53(2), 75-83.
    Komagata O, Kasai S,Tomita T. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect biochemistry and molecular biology 40(2), 146-152.
    La Rosée P, Corbin A S, Stoffregen E P, Deininger M W,Druker B J. 2002. Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer research 62(24), 7149.
    Leblanc G A,Cochrane B J. 1985. Modulation of substrate-specific glutathione S-transferase activity in Daphnia magna with concomitant effects on toxicity tolerance. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 82(1), 37-42.
    Li Z, Yu M, Zhang H, Wang H Y,Wang L F. 2005. Improved rapid amplification of cDNA ends (RACE) for mapping both the 5'and 3'terminal sequences of paramyxovirus genomes. Journal of virological methods 130(1-2), 154-156.
    Liu N,Scott J. 1997. Phenobarbital induction of CYP6D1 is due to atransacting factor on autosome 2 in house flies, Musca domestica. Insect Molecular Biology 6(1), 77-81.
    Liu N,Scott J G. 1998. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect biochemistry and molecular biology 28(8), 531-535. Livak K J,Schmittgen T D. 2001.利用实时定量PCR和2-△△CT法分析基因相对表达量. METHODS 25(402-408.
    Lu H L, Kersch C N, Taneja-Bageshwar S,Pietrantonio P V. A Calcium Bioluminescence Assay for Functional Analysis of Mosquito (< em> Aedes aegypti) and Tick (< em> Rhipicephalus microplus) G Protein-coupled Receptors. Journal of Visualized Experiments50).
    Maitra S, Dombrowski S M, Basu M, Raustol O, Waters L C,Ganguly R. 2000. Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster. Gene248(1-2), 147-156.
    Martinez‐Torres D, Foster S, Field L, Devonshire A,Williamson M. 1999. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach‐potato aphid, Myzus persicae (Sulzer)(Hemiptera: Aphididae). Insect Molecular Biology 8(3), 339-346.
    Martinez A, Kastner B,Taeusch H. 1999. Hyperphagia in neonates withdrawing from methadone. Archives of disease in childhood. Fetal and neonatal edition 80(3), F178.
    Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L,Chenchik A. 1999. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic acids research 27(6), 1558.
    Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B,Wernsdorfer W H. 2009. From malaria control to eradication: The WHO perspective. Tropical Medicine & International Health 14(7), 802-809.
    Meyer D A, Carter J M, Johnstone A F M,Shafer T J. 2008. Pyrethroid modulation of spontaneous neuronal excitability and neurotransmission in hippocampal neurons in culture. Neurotoxicology 29(2), 213-225.
    MITSUHASHI J,Grace T. 1970. The effects of insect hormones on the multiplication rates of cultured insect cells in vitro. Applied Entomology and Zoology 5(4), 182-188.
    Miyazaki M, Ohyama K, Dunlap D Y,Matsumura F. 1996. Cloning and sequencing of thepara-type sodium channel gene from susceptible andkdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Molecular and General Genetics MGG 252(1), 61-68.
    Miyazaki S,Motoi Y. 1996. Purification and characterisation of chicken liver monomeric glutathione peroxidase. British poultry science 37(3), 651-660.
    Morin S, Williamson M, Goodson S, Brown J, Tabashnik B,Dennehy T. 2002. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect biochemistry and molecular biology 32(12), 1781-1791. Narahashi T. 1989. The role of ion channels in insecticide action.
    Nene V, Wortman J R, Lawson D, Haas B, Kodira C, Tu Z J, Loftus B, Xi Z, Megy K,Grabherr M. 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316(5832), 1718.
    Newcomb R D, Campbell P M, Russell R J,Oakeshott J G. 1997. cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect biochemistry and molecular biology 27(1), 15-25.
    Pridgeon J W,Liu N. 2003. Overexpression of the cytochrome c oxidase subunit I gene associated with a pyrethroid resistant strain of German cockroaches, Blattella germanica (L.). Insect biochemistry and molecular biology 33(10), 1043-1048.
    Ramphul U, Boase T, Bass C, Okedi L M, Donnelly M J,Müller P. 2009. Insecticide resistance and its association with target-site mutations in natural populations of Anopheles gambiae from eastern Uganda. Transactions of the Royal Society of Tropical Medicine and Hygiene 103(11), 1121-1126.
    Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova M V, Unger M F, Collins F H,Feyereisen R. 2002. Evolution of supergene families associated with insecticide resistance. Science 298(5591), 179.
    Ranson H, Jensen B, Vulule J, Wang X, Hemingway J,Collins F. 2000. Identification of a point mutation inthe voltage‐gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Molecular Biology 9(5), 491-497.
    Ray D E,Fry J R. 2006. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacology & therapeutics 111(1), 174-193.
    Schuler T H, Martinez-Torres D, Thompson A J, Denholm I, Devonshire A L, Duce I R,Williamson M S. 1998. Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pesticide biochemistry and physiology 59(3), 169-182.
    Scott J G, Liu N,Wen Z. 1998. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins1. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 121(1-3), 147-155.
    Shen B, Dong H Q, Tian H S, Ma L, Li X L, Wu G L,Zhu C L. 2003. Cytochrome P450 genes expressed in the deltamethrin-susceptible and-resistant strains of Culex pipiens pallens. Pesticide biochemistry and physiology 75(1-2), 19-26.
    Shuman E K. 2011.Global climate change and infectious diseases. The International Journal of Occupational and Environmental Medicine 2(1 January).
    Small G, Karunaratne S,Hemingway J. 1998. Characterization of amplified esterase Estbeta1 (2) associated with organophosphate resistance in a multi-resistant population of the mosquito Culex quinquefasciatus from Cuba. Medical and veterinary entomology 12(2), 187.
    Smartt C T,Erickson J S. 2009. Expression of a Novel Member of the Odorant-Binding Protein Gene Family in Culex nigripalpus (Diptera: Culicidae). Journal of medical entomology 46(6), 1376-1381. Soderlund D,Knipple D. 2003. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect biochemistry and molecular biology 33(6), 563-577.
    Soderlund D M. 2008. Pyrethroids, knockdown resistance and sodium channels. Pest management science 64(6), 610-616.
    Tolle M A. 2009. Mosquito-borne diseases. Current Problems in Pediatric and Adolescent Health Care 39(4), 97-140.
    Tomita T,Scott J G. 1995. cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly. Insect biochemistry and molecular biology 25(2), 275-283.
    Vontas J G, Small G J,Hemingway J. 2001. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemical Journal 357(Pt 1), 65.
    Wei Z P. 2008. Effect of thuringiensin to insects and it’s carcinogenicity on rat. Williamson M S, Denholm I, Bell C A,Devonshire A L. 1993. Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Molecular and General Genetics MGG 240(1), 17-22.
    Williamson M S, Martinez-Torres D, Hick C A,Devonshire A L. 1996. Identification of mutations in the houseflypara-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Molecular and General Genetics MGG 252(1), 51-60.
    Wise R P, Bronson C R, Schnable P S,Horner H T. 1999. The Genetics, Pathology, and Molecular Biology of T-Cytoplasm Male Sterility in Maize*. Advances in agronomy 65(79-83, 83a, 83b, 83c, 85-104,104a, 106-130.
    Xu Q, Liu H, Zhang L,Liu N. 2005. Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance. Pest management science 61(11), 1096-1102.
    Yamamoto K, Fujii H, Aso Y, Banno Y,Koga K. 2007. Expression and characterization of a sigma-class glutathione S-transferase of the fall webworm, Hyphantria cunea. Bioscience, biotechnology, and biochemistry0), 701110261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700