秦山地区核电厂海水系统管道防腐对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属的腐蚀是金属在环境的作用下所引起的破坏或变质。腐蚀的类型按腐蚀过程可分化学腐蚀和电化学腐蚀;按金属腐蚀破坏的形态和腐蚀区的分布,可分为均匀腐蚀和局部腐蚀。根据腐蚀机理,腐蚀防护一般对策是:隔离法、增加电势法、阴极保护法、改善环境和介质(缓蚀剂)或采用耐腐蚀材料。
     在滨海核电站,海水管道有不锈钢管道、碳钢加内衬(衬涂层、衬橡胶、衬塑料、衬水泥砂浆)管道、钢筋混凝土管道及对强度要求不高的塑料管道。
     本文系统调查和研究了秦山地区核电厂海水管道的腐蚀状况和不同防护措施的防护效果。经过几年的运行后,不少设备和管道都遭到了不同程度的局部腐蚀,造成部分设备管道需要更换及维修。腐蚀形态主要有点蚀、晶间腐蚀、磨损腐蚀(冲刷)、电偶腐蚀和缝隙腐蚀。
     尽管不锈钢具有很好耐蚀性能,但核电站海水系统环境特殊,氯离子含量较高,常有污物粘附在管道内壁,有的管道海水处于静止的状态,导致不锈钢海水管道经常腐蚀穿孔。腐蚀机理一般为点蚀,往往伴随晶间腐蚀和应力腐蚀。故奥氏体不锈钢不适用于海水环境。海水管道应尽量采用碳钢加内衬的管道,比较好的形式如浸塑碳钢(或低合金)钢管。只要内衬不破损,就不会发生腐蚀问题。部分环境可考虑使用双相不锈钢。对已经选用奥氏体不锈钢管道的电厂,应加强对不锈钢管道的维护如清洁和检查,避免静止海水长时间浸泡。也可采用涂层防护。
     碳钢或低合金钢材料在海水中均匀腐蚀速率很低,也发生溃疡腐蚀、冲刷腐蚀和电偶腐蚀等局部腐蚀。故除受到管道尺寸限制而不能实施防腐措施外,一般的防腐对策是:尽量采用碳钢加内衬的海水管道,也可采用涂层与阴极保护(牺牲阳极)的联合保护和外加电流阴极保护。
     碳钢加内衬管道的腐蚀模式有均匀腐蚀、缝隙腐蚀和电偶腐蚀。碳钢加内衬的海水管道发生腐蚀穿孔的原因,主要是内衬由于老化、碰伤或其他局部缺陷导致的破损,内衬破损后,由于碳钢基体本身不耐海水腐蚀,很快就会导致穿孔,穿孔由内向外发展。碳钢加内衬管道也有由外向内发展的可能,主要是因为其他设备的泄漏导致海水直接接触碳钢基体,进而导致腐蚀发生。这种腐蚀方式在管道穿墙孔处很容易出现,这当然是一个运行维护问题,
     碳钢管道腐蚀的对策包括:采用绝缘的涂层隔离海水介质,保护管道不受腐蚀;也可采用涂层与阴极保护(牺牲阳极)的联合保护和外加电流阴极保护。对受管道直径限制的不能进行内衬涂层的管道和部件,必须定期监督,并在适当时候进行更换。对即使受到涂层保护的管道,由于受到涂层老化和冲刷影响,涂层也会破坏导致管道腐蚀,因此保证管道的可更换及防腐涂层修复的可达是非常重要的。
     碳钢的电偶腐蚀是很重要的一种腐蚀。若腐蚀电位比碳钢海水管道高的某金属材料如不锈钢与碳钢管道形成电偶对,为电偶腐蚀创造了条件。特别是管道内衬材料破损后,由于形成了大阳极小阴极,将会加速碳钢基体的腐蚀穿孔。
     电偶腐蚀对策有:设计中尽量避免不同金属的直接连接,选用同种材质或电位相近的材料;如果按工艺要求不可避免不同材质相连,应采取涂料防腐。注意涂漆原则“涂料一定要刷在耐蚀金属上”;用绝缘材料或涂层在连接处对双金属进行电绝缘。
     针对水泥砂浆衬里脱落情况,定期对原有的水泥沙浆防腐层进行检查和维护,同时对管道强化阴极保护,可极大地降低管道的腐蚀。采用聚合物水泥砂浆或者“高分子-陶瓷”复合材料衬里也是不错选择。钢筋混凝土管道和塑料管道很少出现腐蚀问题。
     秦山地区核电厂海水系统的冷却水取自杭州湾入海口,海水含沙量大,泥沙沉积现象严重,对管道或设备冲刷腐蚀严重。目前只能通过改变运行方式来避免泥沙堵塞,对于冲刷腐蚀,可以采用好的涂层如环氧玻璃鳞片,并使防腐的修复可达,来达到控制冲刷腐蚀的目的。秦山二期安全厂用水系统(以下简称SEC)造就成功地达到了此目的。
Corrosion is the deterioration or breakage of metals and alloys due to the effects environment. Corrosion can be sorted into chemical and electrochemical corrosion based on deteriorating processing, or uniform and local corrosion based on breakage form and eroded zone. According to the deterioration mechanism, corrosion can be defended by various ways, such as isolating method, increasing of the anode potential, cathode protection, improving the environment or media-additive and using corrosion-resistant materials.
     In nuclear power plants, the sea water pipes in cooling system are made of stainless steels, carbon steels coupled with lining (painting, rubber, plastic and with polymer cement), reinforced concrete. Plastic pipes are applied to structures needing lower strength.
     In presented work, corrosion conditions the nuclear power plants in Qinshan area are surveyed systematically, and effectives of various protection methods are investigated as well. After years of operation, many equipments and pipes are subjected to local corrosion in different degrees, some of which had to be replaced or repaired. The corrosion forms include pitting corrosion, intergranular corrosion, abrasive corrosion-erosion, galvanic corrosion and crevice corrosion.
     In despite of high corrosion resistance, pipes made of stainless steels were eroded to perforation evermore due to the special characters of seawater system environment, such as high content of chlorine ion, adhering of feculencies and stock-still conditions of seawater in the pipes. Breakage mechanism of these pipes is tipping corrosion, accompanied with intergranular corrosion and stress corrosion cracking. As a result, austenitic stainless steels are inapplicable in seawater environment. Carbon steels with lining such as plastic planting steels or low alloying steels should be used in seawater pipes. Corrosion would never occur as long as the linings were in good condition. Double phase stainless steels should be taken into account in some environments. For the plants using pipes made of austenitic stainless steels, pipes maintenance such as cleaning and checking should be intensified to avoid long term dipping in the still seawater. Austenitic stainless steels pipes can be protected by coating as well.
     Carbon steels and low alloying steels have lower uniform corrosion velocity and suffer local corrosions such as ulcerative corrosion, erosion and galvanic corrosion. Piles are made of carbon steel with lining generally. Carbon and low alloying steels pipes can be protected by using combining of coating and cathode protecting-sacrificial anode or cathode protecting with additional current.
     Carbon steel pipes with lining also suffer uniform corrosion, crevice corrosion and galvanic corrosion. Due to its poor resistance to seawater local corrosion, carbon steel pipes were eroded from inner to outer leading to perforation when the lining was aged, injured or destructed by other local defects. They should also be eroded from outer to inner because of connecting of carbon steel matrix and seawater led by leakiness of other equipments. The later can be easily observed at the wall holes of pipes as problems of operating maintenance.
     Carbon steel pipes with lining can be protected by using insulating coating to separate pipe from seawater, coating and cathode protecting-sacrificial anode or cathode protecting with additional current. For pipes which can not be coated with lining restricted by their inner diameter, they should be monitored termly and replaced in due course. It is important to use replaceable pipe and to ensure the reliability of coating repair because the coat should be destructed by aging or erosion leading to corrosion of pipes.
     Galvanic Corrosion is an important form of corrosion, it occurs when electric couple was formed between the pipe and some kind of metal with potential higher than carbon steel. Perforating processing would be accelerated by the formation of big anode and small cathode when lining was destructed especially.
     Galvanic Corrosion can be conquered by following ways: selecting the same materials or materials with close potentials in design to avoid the connection between different materials; using coating when the connection of different materials can not be avoid according to the process and ensuring the dope attached on the material with higher corrosion resistant; insulating two kind of materials with insulative material or coating at the connection.
     Pipes with concrete slurry lining can be remarkably protected by termly inspecting and maintenance and intensified cathode protecting simultaneously. Polymer cement or high polymer/ceramic composite material lining is also good choices. Reinforced concrete pipe and plastic pipes are eroded seldom.
     Surveys and investigations of presented wok indicate that the cooling water of nuclear power plants of Qinshan area is introduced from the seaport of Hangzhou gulf contains high quantity of sand. Serious aggradation of sand leads to grievous erosion of pipes and equipments. Sand jam is merely avoided by altering of operating mode. Erosion can be controlled by using such as epoxy glass squama coating and ensuring the reliability of repair as successfully performed in SEC system modification of Qinshan phase II.
引文
[1] 国家发展和改革委员会, 核电中长期发展规划, 北京,2007
    [2] 杨武等译,尤利格腐蚀手册(原著第 2 版),化学工业出版社,2005
    [3] 周荣生,核材料科学,上海交通大学
    [4] 黄淑菊,金属腐蚀与防护,西安交大出版社
    [5] 王朝辉等,管道防腐设计中电偶效应不容忽视,腐蚀与防护 2001 年第一期
    [6] 蔡邦宏,防治金属腐蚀的五大对策,化学工程师,2002 年 02 月
    [7] 核工业第二研究设计院,SEN、SEC、CRF 系统手册
    [8] 刘飞华,白容国等,核电站海水冷却系统的腐蚀与防腐蚀设计,
    [9] 核工业第二研究设计院,秦山核电二期工程海水泵房设计方案论证,1994。
    [10] 核工业第二研究设计院,秦山核电二期工程厂址有关的设计参数(第二版),1992。
    [11] 武红兵,宋建军,秦山地区核电站海水冷却水系统泥沙淤积和腐蚀现象与对策,核工程研究与设计,2005 年 12 月
    [12]李强,泥沙淤积对海水取水系统的影响,工程师职称论文
    [13]钟赵江,张耀等,核电站海水系统对设备管道的腐蚀与防护,全面腐蚀控制, 2007 年第 3期
    [14]丁有元,SEC 反冲洗管道腐蚀缺陷处理建议
    [15]丁有元,张维,关于凝气器 C1 入口二次滤网 2CRF505FI 管段防腐处理
    [16]简隆新,时建华,岭澳核电站循环水过滤系统 316L 不锈钢管道点腐蚀的理论分析,核电,2005 年第 1 期
    [17]何天荣,双相不锈钢及其特殊性能与应用,南方金属,2005,(01)
    [18]孙文山,双相不锈钢及其应用,南方金属,2005,No.01
    [19]曲政, 庞其伟, 孟超,钢质海水管道的选材及防护,热力发点,2004 年 VOL33
    [20]曲政等 滨海电厂钢质海水管道的选材及防护,热力发电 2004(10)
    [21]吴念,我国衬塑钢管发展中的若干问题,国外塑料,2005 年 23 卷 第 12 期
    [22]刘传敬,浸塑防腐技术简介,管道技术与设备,1997 年 第 6 期
    [23]丁有元,1#机组海水管道腐蚀状况检测结果汇报
    [24]郑宏练,秦山核电站大口径海水管道内壁防腐系统,浙江电力,1997 年第 1 期
    [25]上海无损检测中心,海水管道测厚综合报告
    [26]夏兰廷等, 碳钢及低合金钢的海水腐蚀性能,铸造设备研究 2002 年第 4 期
    [27]彭乔等,海水输送管线的腐蚀与外加电流阴极保护,东北电力技术,1995 年第 6 期
    [28]吴建华,陈光章,海底管线的腐蚀保护—管道腐蚀与防护讲座之六,管道技术与设备,2000年第 6 期
    [29]唐玲宝,海水管阴极保护装置的现状及其改造方案,材料保护,2002 年 1 月第 35 卷第 1期
    [30]张恩奎,牺牲阳极保护在凝汽器碳钢防腐中的应用,东北电力技术,2001 年第 2 期
    [31]孟超等,阴极保护技术在滨海电厂凝汽器防腐上的应用,腐蚀科学与防护技术,2001 年 11月,第 13 卷增刊
    [32]周德勤,阴极保护技术在海工钢结构中的应用,中国港湾建设,2000 年 6 月第 3 期
    [33]焦玉斌,外加电流的阴极保护在德国集装箱船舶上的应用,江苏船舶,第 15 卷第 5 期
    [34]董学旺,油气田地面工程(OGSE),水泥砂浆衬里管道防腐技术,第 19 卷第 3 期(2000. 5)
    [35]刘飞华,虽卫国,大亚湾核电站核岛重要厂用水系统(SEC)典型的腐蚀事件及评价

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700