基于数字高斯成形技术的X荧光谱仪的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核分析技术具有高精度、高灵敏度、微量元素等特点,能够提供其他检测手段所不能提供的信息,为多种学科的基础研究提供了灵敏而精确的实验方法和分析手段。因此,核仪器的发展一直受到人们广泛关注。20世纪90年代以来,随着电子技术的高度发展及其在核分析仪器中的应用,数字化已成为核分析仪器发展的主要方向。核分析仪器数字化的关键技术是数字脉冲成形技术,已成为近年来核信号处理最为活跃的研究领域。数字化脉冲成形不仅可代替复杂的模拟滤波成形电路,提高系统稳定性,而且还能改善系统灵活性和自适应性。
     如果核分析仪器中探测器产生的电荷被瞬时收集,则探测器和电荷灵敏前置放大器系统的输出信号可描述为基于一个时间常数的指数衰减信号。而高斯波形的脉冲信号在提高信号噪声比、减小弹道亏损等方面具有良好的综合表现。因此,为了提高分析仪器的综合性能,脉冲成形单元需要将指数衰减信号滤波变换为高斯波形信号。现有的基于分立元件设计的模拟成形技术,在工作稳定性、测量一致性、参数通用性和后期维护性等方面存在着诸多缺陷。此外,真正的高斯脉冲成形具有反因果部分,模拟系统难以实现。
     论文瞄准核分析仪器数字化的迫切需要,从精密信号放大、高速数据采集、数字脉冲处理技术以及硬件描述语言等脉冲成形的关键技术入手,提出了一种新的高斯脉冲数字成形方法,并以FPGA为硬件平台完成了硬件实现,最后以此为基础研制了数字X荧光谱仪系统。
     Sallen-Key滤波器(以下简称S-K滤波器)是一种常用的有源滤波电路,具有高通S-K滤波器和低通S-K滤波器2种形式。由于采用了正反馈控制,S-K滤波器具有较大的品质因数。将其应用于指数衰减信号的成形,可以在较少的级数下得到高斯波形。脉冲成形以S-K滤波器为理论基础,将滤波器传递函数改进为离散化处理,从而脉冲信号的数字成形。数字X荧光谱仪系统以Actel公司ProASIC3系列FPGA芯片为核心平台,配备相应的辅助电路,可以独立完成脉冲信号的采集、成形、甄别、存储和传输等过程。
     性能测试及初步实验表明,论文涉及软硬件设计先进,方案合理,研究工作的技术路线正确。论文的研究工作和成果符合我国国情,易于推广使用,具有明显的经济效益、社会效益和环境效益。
Nuclear analysis technique features as high precision, high sensitivity, trace, etc, and the nuclear analysis technique can provide the information which other detection means cannot, as well as provide sensitive and accurate analysis and experimental method for the fundamental research of multi-subjects. Therefore,the development of nuclear instrument has been widely drawn people’s attention. Since the 1990s, with the rapid development of electronic technique and its applications in nuclear analysis instruments, digitization has become the main development direction of the nuclear analysis instrument. The key of digitalizing the nuclear analysis instrument is digital pulse shaping technique, and it has become the most active field of research in nuclear signal processing in recent years. Digital pulse shaping technique can not only replace the complicated analog filtering shaping circuit and enhance the system stability, but also improve the flexibility and adaptability.
     If the electric charge was collected instantly which produced by the detector of the nuclear analysis instrument, so the output signal of detector and sensitive charge preamplifier system can be described as exponential decay signal which based on an time constant. While the pulse signal of Gaussian wave has a well synthetic performance in improving the signal noise ratio and reducing ballistic losses, etc. Therefore, in order to improve the combination property of analysis instrument, pulse shaping units need to filterable transform the exponential decay signal into Gaussian wave signal. Based on the existing discrete components design, the simulation shaping technique has many defects in working stability, measuring consistency, general parameter and late maintenance and so on. Moreover, the true Gaussian pulse shaping has the anti-causal part which result the analog system can hardly realize.
     The dissertation aimed at the urgent need of digital nuclear instruments. According to the precision amplification, high-speed data acquisition and processing technology of digital pulse and hardware description language etc as the key technology of pulse shaping, it developed a new kind of Gaussian pulse shaping and digital realization method, completed a digital pulse shaping system based on FPGA. Sallen-Key Filter(S-K Filter in short) is a common kind of active filter, has two forms: high pass filter and low pass filter. S-K Filter has a greater quality factor because of using a positive feedback control. When it applied to the shaping of exponential decay signal, w can get the Gaussian wave in the few series. The digital pulse shaping system use the Actel Ltd. ProASIC3 series FPGA chips as the core platform, equip with relevant auxiliary circuits, can independently complete the pulse signal’s collection, output and forming etc. The pulse shaping based on S-K Filter, improved the filter transfer function to differentiation, then digital pulse signal shaped.
     Performance testing and preliminary experiments show that the designs of the hardware and software involved in the thesis was advanced, the program was reasonable and the studying technical route was right. The research and its results were in line with China's conditions, so it is easy to be promoted and it has obvious benefits of economic, social and environmental.
引文
[1]复旦大学、清华大学、北京大学,原子核物理实验方法(上)[M],北京:原子能出版社,1981
    [2]石玉春、吴燕玉,放射性物探[M],北京:原子能出版社,1986
    [3]曹利国,能量色散X射线荧光方法[M],成都:成都科技大学出版社,1998
    [4]曹利国,核地球物理勘探方法[M],北京:原子能出版社,1991
    [5]吴慧山,核技术勘查[M],北京:原子能出版社,1998
    [6]周蓉生,核方法原理及应用[M],北京:地质出版社,1994年3月第1版
    [7]王芝英、楼滨乔、朱俊杰等,核电子技术原理[M],北京:原子能出版社,1989
    [8]贾文懿,核地球物理仪器[M],北京:原子能出版社,1998
    [9]贾文懿,核地球物理的理论与实践[M],成都:四川大学出版社,2001
    [10]葛良全、周四春,核辐射测量方法[M],成都理工大学内部资料,2007
    [11]钱建复、沈庭云,核辐射剂量学[M],北京:国防工业出版社,2009
    [12]丁卫撑,基于扩散累积原理壤中氡α能谱测量系统研究[D],成都:成都理工大学博士论文,2009
    [13]周建斌,通用型低能高灵敏X荧光分析仪的研制[D],成都:成都理工大学博士论文,2008
    [14]张软玉,数字化核能谱获取系统的研究[D],成都:四川大学博士论文,2006
    [15]陈世国,数字核仪器系统中高斯成形滤波的设计与实现[D],成都:四川大学博士论文,2005
    [16] H.Koeman,“Filtering of signals obtained from semiconductor radiation detectors”,Philips Research Lab Endogen,The Netherlands(1973)
    [17] H.Koeman,Principle of operation and properties of a transversal digital filter,Nuclear Instruments and Methods. 123(l):169~180,1975
    [18] H.Koeman,Practical performance of the transversal digital filter in conjunction with X-ray detector and preamplifier,Nuclear Instruments and Methods. 123(l):181~187,1975
    [19] F.Hilsenrath, H.D.Voss, J.C.Bakke,Single-Chip pulse processor for nuclear spectroscopy,IEEE Transactions on Nuclear Seience 32(l):145~149,1984
    [20] R.E.Chrien, R.J.Sutter,Noise and pileup suppression by digital signal processing .Nuclear Instruments and methods in Physics Research, Section A:Accelerators,Spectrometers,Detectors A 249(2~3):421~425,1986
    [21] V.Drndarevie, P.Ryge, T.Gozani,Digital signal processing for high rate gamma-ray spectroscopy,Nuclear Instruments and methods in Physics Research, Section A:Accelerators,Spectrometers,Detectors and Associated Equipment 277(2~3):532~536,1989
    [22] Argonne National Laboratory,Report of workshop on“Digital electronics for Nuclear Structure Physics”,March 2~3,2001
    [23] XIA.DGF-4C , Digital Gamma Finder-digital spectroscopy with pulse shape ,analysis[EB/OL],http://www.xia.com/products.html
    [24] XIA.DXP-4C,Digital X-ray processor-ultra-high rate digital spectrometers [EB/OL],http://www.xia.com/products.html
    [25] XIA.DXPxMAP,Four-Channel PXI Digital X-ray Processor[EB/OL], http://www.xia.com/products.html
    [26] CANBERRA.Model2060,Digital Signal processor[EB/OL], http://www.canberra.com/products.htm
    [27] CANBERRA.DSA-2000,Digital spectrum analyzer[EB/OL], http://www.canberra.com/products.htm.
    [28] CANBBERA.Model2026,Spectroscopy Amplifier[EB/OL], http://www.eanberra.eom/Produets.htm
    [29] EG&G ORTEC.DSPEC,Digital Gamma-Ray Spectrometer[EB/OL], http://www.ortec-online.com/products.html
    [30] EG&G ORTEC.DSPECPLUS,Digital Gamma-Ray Spectrometer with ZDT[EB/OL],http://www.ortec-online.com/products.html
    [31] EG&G ORTEC.DSPECjr,High Performance DSP-Based Gamma Spectrometer[EB/OL],http://www.ortec-online.com/products.html
    [32] EG&G ORTEC.DSPECjr2.0,High Performance DSP-Based Gamma Spectrometer with ZDT[EB/OL],http://www.ortec-online.com/products.html
    [33] EG&G ORTEC.DSPECPRO , Advanced Gamma-Spectrometer for HPGe Detector Systems[EB/OL],http://www.ortec-online.com/products.html
    [34] AMPTEK.DP5,Digital Pulse Processor[EB/OL],http://www.amptek.com
    [35] AMPTEK.PX4,Digital X-Ray Spectrometer with ZDT[EB/OL], http://www.amptek.com
    [36]李东仓、杨磊、田勇等,基于Sallen-Key滤波器的核脉冲信号成形电路研究[J],核电子学与探测技术,2008,28(3):563~566
    [37] Puncochar J., Analysis of Sallen-Key low-pass filters with real operational amplifiers [J],Transactions of the VSB-Technical University Ostrava,1995,5(1):232~238
    [38] Texas Instruments,Analysis of the Sallen-Key Architecture[EB/OL],http://www.TI.com
    [39] A.Pu11ia, A.Geraei, G.Ripamonti,Quasi-optimum gamma and X spectroscopy Based on real-time digital techniques[J],Nuclear Instruments and Methods in Physics Research,SectionA:Accelerators,Spectrometers,Detectors and Associated Equipment,2000,439(2-3):378~384
    [40] E.Gatti, A.Geraci, G.Ripamonti,Optimum filters from experimentally measured no noise in high resolution nuclear spectroscopy[J],Nuclear Instruments and Methods in physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1998,417(1):131~136
    [41] Alberto Pullia,How to derive the optimum fi1ter in presence of arbitrary noises, time-domain constraints and shaped input signals:A new method[J],Nuclear Instruments and Methods in Physics Research,Section A:Accelerators,Spectrometers,Detector sand Associated Equipment,1997,397(2-3):414~425
    [42] A.Geraei, M.Zambusi, G.Ripamonti,Comparative study of the energy resolution achievable with digital signal processors in X-ray spectroscopy[J],IEEE Transactions on Nuclear Science,1996,43(2 pt 2):731~736
    [43] Joao M.Cardoso, Tiago Menezes, Carlos M.B.A. Correia, J.Basilio Simoes,CdZnTe spectra improvement through digital Pulse amplitude correction using the linear sliding method[J],Nuclear Instruments and Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2003,505(l-2):334~337
    [44] Simoes P.C.P.S., Veloso J.F.C.A, Dos Santos J.M.F. etc,Application of the digital pulse processing technique to gas proportional scintillation counters[J],IEEE Transactions on Nuclear Science,1997,44(3)521~526
    [45] Paulo C.P.S. Simoes, Jose C. Martins, Carlos M.B.A. Correia,New digital Signal Processing technique for applications in nuclear spectroscopy[J],IEEE Transactions on Nuclear Seience,1996,43(3 pt2 ):1804~1809
    [46] V.T. Jordanov, G..F. Knoll,Digital pulse-shape analyzer based on fast sampling of an integrated charge pulse[J],IEEE Transactions on Nuclear science,1995,42(4 pt l):683~687
    [47] Valentin T. Jordanov, Glenn F. Knoll, Alan C. Huber etc,Digital technique for real-time pulse shaping in radiation measurement[J],Nuclear Instruments and Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1994,353(1-3):261~264
    [48] Valentin T., Glenn F. Knoll,Digital synthesis of pulse shapes in real-time for high resolution radiation spectroscopy [J],Nuclear Instruments and Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1994,A345(2):337~345
    [49] Valentin Jordanov, Glenn F. Knoll, Digital pulse processor using a moving average techniques[J],IEEE Transactions on Nuclear Science,1993,40(4 pt 1):764~769
    [50]肖无云、魏义祥、艾宪芸,多道脉冲幅度分析中的数字基线估计方法[J],核电子学与探测技术,2005,25(6):601~604
    [51]敖奇、魏义祥、文向阳,基于DSP的数字化多道脉冲幅度分析器设计[J],核技术,2007,30(6):532~536
    [52]肖无云、魏义祥、艾宪芸,数字化多道脉冲幅度分析中的梯形成形算法[J],清华大学学报(自然科学版)[J],2005,45(6):810~812
    [53]张软玉、陈世国、罗小兵等,数字化核能谱获取中信号处理方法的研究[J],原子能科学技术,2004,38(5):252~255
    [54]张软玉、陈世国、王鹏等,数字核谱仪中条件线路的一种最佳实现方法[J],核电子学与探测技术,2003,23(6):544~547
    [55]庹先国、滕彦国、徐争启等,X射线荧光方法在矿区环境地球化学研究中的应用[J],地球科学--中国地质大学学报,2003,28(6):702~705
    [56]庹先国、任家富、郭海等,X荧光现场取样技术在大红山铜矿的应用[J],金属矿山,2003,(10):43~45
    [57]庹先国、成毅、穆克亮等,攀矿铁精矿矿浆品位的原位EDXRF分析试验[J],分析试验室,2006,25(3):12~16
    [58]庹先国、程渤、徐争启等,X射线荧光自动分类分析技术在矿产资源环境评价中的应用[J],成都理工大学学报(自然科学版),2006,33(6):603~610
    [59]葛良全、赖万昌、林玲等,水底沉积物原位X射线荧光测量中水分的影响与校正[J],核技术,2004,27(4):273~276
    [60]葛良全;赖万昌;林延畅,现场X射线荧光检测技术研究[J],四川地质学报,2006,26(2):117~120
    [61]方方,野外地面伽玛射线全谱测量研究[D],成都:成都理工大学博士论文,2001
    [62]方方、李丹、陈伟等,常压空气网栅脉冲电离室测氡仪的研制[J],核电子学与探测技术,2010,17(1):563~569
    [63]周四春、王德明、侯克功等,X荧光取样技术在铜矿山的应用研究[J],有色矿山,2001,30(2):4~11
    [64]周四春、赵友清、张玉环,克服矿化不均匀效应的X荧光取样最佳测网[J],核技术,2000,23(9):632~636
    [65]周建斌、马英杰、童运福等,基于PDA的便携式X荧光分析仪的研制[J],核电子学与探测技术,2010,30(2):272~277
    [66]周建斌、王磊,基于以太网的多道分析器的设计[J],核电子学与探测技术,2009,29(1):36~41
    [67]周建斌、周蓉生、黄锦华,C8051F020 MCU在核谱测量系统中的应用研究[J],核电子学与探测技术,2005,25(5):515~518
    [68]周建斌、黄锦华,USB接口技术在核谱测量系统中的应用研究[J],核电子学与探测技术,2004,24(5):506~510
    [69]马英杰、周蓉生、方方,基于掌上型电脑的便携式X荧光测量系统[J],核电子学与探测技术,2004,24(6):626~629
    [70]马英杰、周蓉生、方方,小型化管激发X射线荧光仪的研制[J],成都理工大学学报(自然科学版),2004,31(1):103~107
    [71]马英杰、周蓉生、刘银兵等,基于掌上型电脑的核数据采集系统的研究[J],物探与化探,2002,26(4),315~317
    [72]周伟、方方、李学华等,采用FPGA技术的多道核谱分析仪设计与实现[J],核电子学与探测技术,2005,25(6):651~653
    [73]周伟、方方、郑永明等,氡标准室中浓度智能控制系统的实现[J],核电子学与探测技术,2007,27(4):713~715
    [74]周伟、方方、李琳琳等,一种新型便携式辐射检测仪的实现[J],核电子学与探测技术,2009,29(3):546~549
    [75]周伟、方方、李扬红等,Time-to-Count测量方法的应用研究[J],铀矿冶,2009,28(4):209~212
    [76]陈世国、吉世印、刘万松,基于小波分析的指数衰减信号高斯脉冲成形[J],物理学报,2008,57(5):2282~2287
    [77]陈世国、吉世印、刘万松,基于小波分析的高斯脉冲成形的递归实现[J],物理学报,2009,58(5):3041~3046
    [78]李东仓、杨磊、田勇等,基于Sallen-Key滤波器的核脉冲成形电路研究[J],核电子学与探测技术,2008,28(3):563~566
    [79]李东仓、李庆、杨磊等,多模式仿核脉冲随机信号发生器研究[J],兰州大学学报(自然科学版),2007,43(3):110~113
    [80]李东仓、杨磊、袁树林等,仿核脉冲的随机信号发生器研究[J],核电子学与探测技术,2007,27(2):223~226
    [81]杨磊、李东仓、吕振肃等,仿核脉冲的高斯分布信号发生器[J],自动化仪表,2007,28(5):29~31
    [82]丁洪林,核辐射探测器(国防特色教材.核科学与技术)[M],哈尔滨:哈尔滨工程大学出版社,2010-11-14
    [83]汲长松,核辐射探测器及其实验技术手册[M],北京:原子能出版社,1990
    [84] G..伯托利尼,A.科什,半导体探测器[M],北京:原子能出版社,1975
    [85]奥塞夫,核辐射探测器入门[M],北京:原子能出版社,1980
    [86]何振亚,数字信号处理的理论与应用[M],北京:人民邮电出版社,1983
    [87]王兆华、黄翔东,数字信号全相位谱分析与滤波技术[M],北京:电子工业出版社,2009
    [88]黄煦涛,二维数字信号处理[M],北京:科学出版社,1985
    [89]许景波,高斯滤波器逼近理论与应用研究[D],哈尔滨:哈尔滨工业大学博士论文,2007
    [90]奚大顺、何为民,放射性物探仪器[M],北京:原子能出版社,1987
    [91]陆坤、奚大顺、李之权等,电子设计技术[M],成都:电子科技大学出版社,1997
    [92]余小平、奚大顺,电子系统设计(基础篇)[M],北京:北京航空航天大学出版社,2007
    [93]童诗白,模拟电子技术[M],北京:高等教育出版社,1995
    [94]阎石,数字电子技术[M],北京:高等教育出版社,1998
    [95]田耕、徐文波,FPGA开发应用教程[M],北京:清华大学出版社,2008
    [96]薛小刚、葛毅敏,ISE 9.X FPGA/CPLD设计指南[M],北京:人民邮电出版社,2008
    [97]李肇庆、廖峰、刘建存等,USB接口技术[M],北京:国防工业出版社,2004
    [98]陈启美、丁传锁,计算机USB接口技术[M],南京:南京大学出版社,2003
    [99]马忠梅,单片机的C语言应用程序设计[M],北京:北京航空航天大学出版社,2001
    [100]李华,MCS-51系列单片机实用接口技术[M],北京:北京航空航天大学出版社,1996
    [101] Bertin E.P.,X射线光谱分析导论[M],北京:地质出版社,1981
    [102]阿福宁、古尼切娃,岩石矿物的X射线荧光光谱分析[M],北京:地质出版社,1980
    [103]谢忠玫,X射线光谱分析[M],北京:科学出版社,1982
    [104]张金山,Visual C++5.0易学活用[M],成都:四川大学出版社,1997
    [105]官章全,Visual C++6.0类库大全[M],北京:电子工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700