先心病肺高压患者血管紧张素Ⅱ信号通路与肺水通道蛋白5表达变化意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     先天性心脏病合并肺动脉高压的发病机制复杂,参与因子众多,其发病机理至今尚未完全清楚。肾素-血管紧张素系统(RAS)在维持心血管功能稳定、水电解质平衡、细胞生长、组织纤维化等方面起着十分重要的作用,尤其对动脉血压的调节有重要意义。血管紧张素Ⅱ(AngiotensinⅡ,AngⅡ)是RAS的主要成分,它的生理作用主要由AngⅡ-1型受体(AT1)介导。AngⅡ与AT1在体循环中的作用已较清楚,但对其在肺动脉高压肺血管重塑的发生发展过程中作用的相关研究,文献报道很少。水通道(AQPs)是一组与水通透有关的细胞膜转运蛋白。AQP5分布于气管、主支气管直至细支气管的柱状上皮细胞顶膜、粘膜下腺腺泡细胞顶膜及I型肺泡上皮细胞,与与呼吸道上皮的屏障功能、细胞膜通透性以及呼吸道水平衡功能有关。
     本研究旨在通过检测AngⅡ信号通路及AQP5在先天性心脏病合并肺动脉高压患者肺组织中的变化,初步探讨其意义,以期为先天性心脏病合并肺动脉高压的防治提供新的思路和治疗靶点。
     方法:
     1.本研究符合医学道德伦理规范。选取拟手术治疗的室间隔缺损患者40例,根据术前超声多普勒测定的平均肺动脉压(mPAP),将患者分为4组。即无肺动脉高压组(组1,mPAP≤25mmHg,n=10);轻度肺动脉高压组(组2A,mPAP26mmHg~35mmHg,n=10);中度肺动脉高压组(组2B,mPAP36mmHg~45mmHg,n=10);重度肺动脉高压组(组2C,mPAP≥46mmHg,n=10)。
     2.各组取术前动脉血,以放射免疫法检测血浆血管紧张素Ⅱ含量。
     3.各组术中取肺组织,以免疫组化法检测肺组织血管紧张素Ⅱ1型受体表达、以Western blot检测肺组织磷酸化信号转换和转录激活因子1表达、以EMSA检测肺组织核转录因子-κB的活化水平、以RT-PCR检测肺组织水通道蛋白5 mRNA的表达、以Western blot检测肺组织水通道蛋白5的表达。
     4.在上述实验结果的基础上,另将8例先天性心脏病室间隔缺损合并重度肺动脉高压患者,观察血管紧张素转换酶抑制剂Captopril对先心病重度肺动脉高压患者肺组织AngⅡ信号通路及AQP5表达的影响。
     结果:
     1.随着肺动脉压的升高,患者血浆血管紧张素Ⅱ水平均增高,肺动脉高压组(组2A、组2B、组2C)均明显高于无肺动脉高压组(组1)(P<0.05)。
     2.随着肺动脉压的升高,患者肺组织血管紧张素Ⅱ1型受体表达均增高,肺动脉高压组(组2A、组2B、组2C)均明显高于无肺动脉高压组(组1)(P<0.05);磷酸化STAT1表达均增高,肺动脉高压组(组2A、组2B、组2C)均明显高于无肺动脉高压组(组1)(P<0.05);核转录因子-κB活化程度降低,肺动脉高压组(组2A、组2B、组2C)均明显低于无肺动脉高压组(组1)(P<0.05);AQP5 mRNA表达降低,肺动脉高压组(组2A、组2B、组2C)均明显低于无肺动脉高压组(组1)(P<0.05);AQP5蛋白含量降低;肺动脉高压组(组2A、组2B、组2C)均明显低于无肺动脉高压组(组1)(P<0.05)。
     3.血管紧张素转换酶抑制剂Captopril能抑制重度肺动脉高压患者肺组织AngⅡ信号通路的活性,并增加AQP5的表达,统计分析显示各组间均有显著性差异(P <0.05)。
     结论:
     1.在先天性心脏病肺动脉高压患者中,AngⅡ信号通路发生了明显的变化。随着肺动脉高压的升高,血浆AngⅡ浓度升高;肺组织AT1和磷酸化STAT1含量增高,核转录因子-κB活性降低,提示AngⅡ信号通路表达上调在继发性肺动脉高压发生发展过程中起重要作用。
     2.随着肺动脉压的升高,先天性心脏病患者肺组织中AQP5 mRNA和AQP5蛋白表达均降低,提示肺泡上皮细胞水平衡能力降低,可能是先天性心脏病合并肺动脉高压患者术后易发生肺水肿的重要机制。
     3.在重度肺动脉高压患者,术前口服血管紧张素转换酶抑制剂Captopril治疗,可以抑制肺组织血管紧张素Ⅱ信号通路活性,表现为血浆AngⅡ浓度降低;肺组织AT1和磷酸化STAT1含量减少,核转录因子-κB活性增强;而肺组织AQP5mRNA和AQP5蛋白表达相应增加。这提示,针对血管紧张素Ⅱ信号通路与水通道蛋白5的治疗,有助于改善肺组织血管重构和肺泡上皮水平衡能力。
Background and Object
     The pathogenesis of pulmonary hypertension with congenital heart disease has not been elucidated completely due to its complexity and numerous factors involved. Renin-angiotensin system (RAS) plays an important role in maintaining cardiovascular function stable, water-electrolyte balance, cell growth, and fibrous degeneration of tissues. Furthermore, it was of great importance to regulate pulmonary circulation. Angiotensin II (Ang II) was the main ingredient of RAS. Its physio-function was mainly mediated through angiotensin II receptor type 1 (AT1). The role played by Ang II and AT1 in general circulation has been detected clearly, and a consensus concerning its vital function in the process of myocardial apoptosis and remodeling has been achieved. However, few studies on its role in the genesis and development of hypertensive pulmonary vascular remodeling have been reported. Aquaporin (AQPs) was a group of cellular membrane transport protein related with water permeation. AQP5 was distributed in the respiratory epithelia from airtube to pulmonary alveolus, and involved in epithelial barrier function, membrane permeability, and water homeostasis in the respiratory epithelia.
     This study was designed to explore the significance of AngⅡsignal pathway and AQP5 expression in the lung of patients with congenital heart diseases and pulmonary hypertension, and to provide fresh perspective and treatment target for cure and precaution against CHD with PH.
     Methods:
     1.The study was under the guidance of the medical ethical principles. 40 cases of patients with ventricular septal defect repair were selected. The patients were divided into 4 groups according to mean pulmonary arterial pressure (mPAP) measured by pre-operative Doppler-echocardiogram: group 1 with mPAP≤25mmHg; group 2A with mPAP26~35mmHg; group 2B with mPAP36~45mmHg;group 2C with mPAP≥46mmHg). There were 10 patients in each group.
     2.Arterial blood of the patients in the 4 groups was sampled before the operation and AngⅡcontent in serum was measured by radio-immunity method.
     3.Lung tissues of the patients in each group was sampled during the operation. AT1 expression was measured by immunohistochemistry, Phosphorylated STAT1 expression was detected by Western blot, The activity of NF-κB ascertained by EMSA. AQP5 mRNA expression was inspected by RT-PCR, AQP5 protein expression was checked-out by Western blot.
     4.Eight patients with severe PAH were treated with oral Captopril pre-operative for two weeks,. The effects of Captopril on the Ang II signal pathway and expression of AQP5 in the lung of patients with severe PAH were investigated.
     Results:
     1.With the increase of pulmonary arterial pressure, Ang II contents in serum of all the patients tended to rise. Ang II contents in serum of Group 2A, 2B and 2C were remarkably higher than that of Group 1 (p<0.05).
     2.With the increase of pulmonary arterial pressure, AT1 expressions in the patients’lung tissues rose gradually. AT1 expressions of group 2A, 2B and 2C were remarkably higher than that of group 1 (p<0.05). Phosphorylated STAT1 contents in patients’lung tissues rose gradually. Phosphorylated STAT1 contents of group 2A, 2B and 2C were remarkably higher than that of group 1 (p<0.05). The activity of NF-κB in patients’lung tissues decrease gradually. The activity of NF-κB in group 2A, 2B, and 2C were remarkably lower than that of group 1 (p<0.05). AQP5 mRNA and protein expression in patients’lung tissues decline gradually. AQP5 mRNA and protein expression in group 2A, 2B and 2C were remarkably lower than that of group 1 (p<0.05).
     3.Captopril could inhibit the activity of Ang II signal pathway and promote the expression of AQP5 mRNA and protein in the lung tissue of patients with pulmonary arterial hypertension. The difference was significant between the control group and treatment group (p<0.05).
     Conclusion:
     1.Ang II signal pathway of patients with congenital heart disease changed remarkably with the increase of pulmonary arterial pressure. The serum Ang II level elevated. The AT1 expressions and phosphorylated STAT1 contents increased. But the activity of NF-κB decreased. The results implicated that the increasing activity of Ang II signal pathway play an important role in the pathogenesis in the genesis and development of secondary pulmonary arterial hypertension.
     2.With the increase of pulmonary arterial pressure, AQP5 mRNA expression and AQP5 protein content gradually decreased in the lung tissues of the patients with congenital heart disease. The results implicated that there would be some disfunction of water balance ability of alveolar epithelium in lung tissues of the patients with pulmonary hypertension. It was probably the important mechanism for congenital heart disease with pulmonary hypertension tends to pneumonedema post operation.
     3.In the patients with severe pulmonary hypertension, oral captopril pre-operative inhibited the activity of Ang II signal pathway of Ang II levels, AT1 expressions, phosphorylative STAT1 contents. At the same time , the NF-κB activity increased, and AQP5 mRNA and AQP5 protein expression up-regulated in the lung tissues of the patients. The results recommended that the therapy targeted on Ang II signal pathway and AQP5 expression would improve the pulmonary vascular remodeling and water homeostasis in the respiratory epithelia.
引文
1.吴清玉:中国心脏外科研究进展,中华医学信息导报,2007年5月27日(22)10: 15~17
    2.齐建光,杜军保.肺动脉高压发病机制和诊治研究进展[J]中国循证儿科杂志,2006, 1(1): 46-56.
    3.荆志成.我国肺动脉高压专家共识阐释[J].中国实用内科杂志, 2007, 27(4): 246-249.
    4. Raiesdana A, Loscalzo J. Pulmonary arterial hypertension[J]. Ann Med. 2006, 38(2): 95-110.
    5. Komers R, Lindsley JN, Oyama TT, et al. Renal p38 MAP kinase activity in experimental diabetes[J]. Lab Invest 2007, 87: 548–58.
    6. Tojo A, Onozato ML, Kobayashi N, et al. Antioxidative effect of p38 mitogen-activated protein kinase inhibitor in the kidney of hypertensive rat[J]. Hypertens 2005, 23: 165–74.
    7. Schutzer WE, Xue H, Reed JF, et al. Effect of age on vascular beta2-adrenergic receptor desensitization is not mediated by the receptor coupling to Galphai proteins[J]. Gerontol A Biol Sci Med Sci 2006, 61: 899–906.
    8. Stamler JS, Loh E, Roddy MA, et al. Nitric oxid and endothelin effects: nitric oxide regulates basal systemicand pulmonary vascular resistancein healthy humans[J]. Circulation, 1994, 9(5): 20352-2040.
    9. Steihorn RH, Fineman JR. The pathophysiology of pulmonary hypertension in congenital heart disease[J]. Artificial Organs, 1999,23(11): 9702974.
    10.徐卓明,苏肇伉,陈玲,等。先天性心脏病合并肺动脉高压时肺组织病理与免疫组化研究[J].临床儿科学杂志, 2002, 20(12): 748-750
    11. Hillier C, Berry C, Petrie MC, et al. Effects of urotensinⅡin human arteries and veins of varying caliber[J ]. Circulation, 2001, 103(10): 1378~1381.
    12. Adhikary L, Chow F, Nikolic-Paterson DJ, et al. Abnormal p38 mitogen-activated rotein kinase signalling in human and experimental diabetic nephropathy[J ]. Diabetologia 2004; 47: 1210–22.
    13. Du L, Sullivan CC, Chu D, et al. Signaling molecules in nonfamilial pulmonaryhypertension. N. Engl[J ]. Med. 2003: 348, 500–509.
    14. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism[J ]. Diabetes 2005; 54: 1615–25
    15. Louzier V, Raffestin B, Leroux A, et al. Role of VEGF-B in the lung during development of chronic hypoxic pulmonary hypertension[J ]. Am. J. Physiol: Lung Cell. Mol. Physiol. 2003. 284, L926– L937.
    16. de Borst MH, Navis G, de Boer RA, et al. Specific MAP-kinase blockade protects against renal damage in homozygous TGR(mRen2)27 rats[J ]. Lab Invest 2003, 83: 1761–70.
    17. Tsiani E, Lekas P, Fantus IG, et al. High glucose-enhanced activation of mesangial cell p38 MAPK by ET-1, ANG II, and platelet-derived growth factor[J]. Am J Physiol Endocrinol Metab 2002, 282: E161–9.
    18. Olzinski AR, McCafferty TA, Zhao SQ, et al. Hypertensive target organ damage is attenuated by a p38 MAPK inhibitor: role of systemic blood pressure and endothelial protection[J]. Cardiovasc Res 2005, 66: 170–8.
    19. Hoch M, Netz H. Heart failure in pediatric patients[J] Thorac Cardiovasc Surg, 2005, 53: 129-134.
    20. de Groot BL, Grubmuller H. Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF. Science. 2001,94: 2353-2357.
    21. King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996; 58: 619-648.
    22. Verkman AS, Binder DK, Bloch O, et al. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice[J]. Biochem. Biophys. Acta 2006. (1758), 1085–1093.
    23. Shi LB, WR Skach, T Ma, et al. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry[J]. 1995, 34: 8250–8256.
    24. Fujiyoshi Y, Mitsuoka K, de Groot BL, et al. Structure and function of water channels[J].Curr Opin Struct Biol. 2002; 12(4): 509-515
    25. Burghardt B, Elkaer ML, Kwon TH, et al. Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas[J]. Gut. 2003; 52(7):1008-1016.
    26. Zhong SX, Liu ZH. Expression of aquaporins in the cochlea and endolymphatic sac of guinea pig[J]. Orl J Otorhinolaryngol Relat Spec. 2003; 65(5): 284-289.
    27. Pedro G, Nancy O, Francisco VS. Distribution of aquaporins in the colon of Octodon degus, a South American desert rodent[J]. Am J Physiol Regulatory Integrative Comp Physiol. 2002; 283: 779-788.
    28. Schey KL, Ball LE, Crouch RK, et al. The Distribution of Phosphorylated and Posttranslationally Modified Aquaporin 0 Within the Normal Human Lens[J]. Invest. Ophthalmol. Vis. Sci. 2003; 44: 4483
    29. Johannes L, Dominique LC, Andreas M, et al. Localization of epithelial sodium channel and aquaporin-2 in rabbit kidney cortex[J]. Am J Physiol Renal Physiol. 2000; 278: 530-539
    30. Elker ML, Lene NN, Veronika G, et al. Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways[J]. Am J Physiol Renal Physiol.2001; 281: 1047-1057
    31. Verkman AS. Roles of aquaporins in kidney revealed by transgenic mice[J].Semin. Nephrol. 2006. (26), 200–208.
    32. Tanaka M, Inase N, Fushini K, et al. Induction of aquaporin 3 by corticosteroid in a human airway epithelial cell line. Am J Physiol. 1997; 273: L1090-1095.
    33. Krane AM, Fortner CN, Hand A, et al. Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinergic stimulation. Proc Natl Acad Sci U.S.A.2001; 98:14114-14119.
    34. Dell’Albani P, Santangelo R, Torrisi L, et al. Role of the JAK/STAT signal transduction pathway in the regulation of gene expression in CNS. Neurochem Res, 2003, 28(1): 53-64.
    35. Liu T, Castro S, Brasier AR, et al. Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases[J]. Biol Chem, 2004, 279(4): 2461-2469.
    36. Takagi Y, Harada J, Chiarugi A, et al. STAT1 is activated in neurons after ischemia and contributes to ischemic brain injury[J]. Cereb Blood Flow Metab, 2002, 22(11): 1311-1318.
    37. Planas AM, Justicia C, Ferrer I. Stat1 in developing and adult rat brain. Induction after transient focal ischemia[J]. Neuroreport, 1997, 8(6): 1359-1362.
    38. Song Y. Role of aquaporins in alveolar fluid clearance in neonatal and adult lung, and in oedema formation following acute lung injury: studies in transgenic aquaporin nullmice. [J]. Physiol, 2000, 15(3): 771~779
    39. Anderson SD, Togias AG. Asthma and rhinitis [M]. Boston: Black well Scientific, 1995. 1178 ~1195.
    40. Krane CM. Aquapoein5- deficient mouse lungs are hyperresponsive to cholinergic stimulation [J ]. Proc Natl Acad Sci, 2001, 98: 14114~14119.
    41. Hatano S, Strasser T. World Health Organization 1975 primary pulmonary hypertension. Geneva: WHO, 1975.
    42. Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease [J]. Circulation, 1958, 18(4): 533-547.
    43.吴永平,车东媛,刘绍春.肺动脉高压时腺泡内微动脉壁胶原相对含量的改变[J ].徐州医学院学报,1994, 14(4): 283~284
    44.陶为科,叶世铎,孙宗全,等.先心病合并肺动脉高压病理学与血液动力学对比研究[J].中华胸心血管外科杂志, 1994, 10(4): 299-301.
    45.温进坤,韩梅.血管平滑肌细胞. [M]北京:科学出版社, 2005, 5. 192~209
    46. Horiuchi M, Akishita M, Dzau VJ. Recent progress in angiotensin type 2 receptor research in the cardiovascular system[J]. Hypertension, 1999, 33(5): 613-621.
    47. Jackson RM, Narkates AJ, Oparil S. Impaired pulmonary conversion of angiotensinⅠto angiotensinⅡin rats exposed to chronic hypoxia[J]. Appl Physiol, 1986, 60: 1121-1127.
    48. Aidan P. Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. [J]. Circulation, 2002, 106: 92-99
    49. Aklshita M, Ito M, Lehtonen JY, et al. Expression of the AT2 receptor developmentally programs extracellular signaregulated kinase activity and influences fetal vasculargrowth[J]. ClinInvest, 1999, 103(1): 63-71.
    50.李爱萍.不同水平干预对AngⅡ作用心肌细胞活力的影响[J].军医进修学院学报, 2004, 25(4): 252-254.
    51. Riegger GA, Hoferer P. A new experimental model for measurement of pulmonaryarterial haemodynamic variables in conscious rats beforeand after pulmonary embolism and during general anaesthesia. [J]. Cardiovasc Res1990, 24(4): 340~344.
    52. Kiely DG, Cargill RI, Wheeldon NM, et al. Haemodynamic and endocrine effects of type 1 angiotensin II receptor blockade in patients with hypoxaemic cor pulmonale. [J]. Cardiovasc Res, 1997, 33(1): 201~208.
    53. Cassis L, Shenoy U, Lipke D, et al. Lung angiotensin receptor binding during development of monocrotaline-induced pulmonaryhyp(characteristics) ertension. [J]. Bio (the) chem Pharmacol, 1997, 54(1): 27~31
    54. Kreutz R, Fernandez-Alfonso MS, Ganten D, et al. Effect of losartan on right ventricular hypertrophy and cardiac angiotensin I-converting enzyme activity in pulmonary hypertensive rats. Clin Exp Hypertens, 1996, 18(1): 101~111
    55. Rodriguez VJ, Ruiz OM, Ruperez M, et al. Endothelin-1, via ETA receptor and independently of transforming growth factor-[beta ], increases the connective tissue growth factor in vascular smooth muscle cells[J ]. Circulat Res ,2005, 97(2): 125~134.
    56. Grover TR, Zenge JP, Parker TA, et al. Vascular endothelial growth factor causes pulmonary vasodilation through activation of the phos-phatidylinositol~3-kinase-nitric oxide pathway in the late-gestation ovine fetus [J ]. Pediatr Res, 2002, 52(6): 907~912.
    57.马胜军,刘桂清,马增山,等。先天性心脏病伴肺动脉高压患者血清血管内皮生长因子与肺细小动脉形态变化的关系[J ].中华心血管病杂志,2004, 32(1): 40~43.
    58. Zhao QW, Ishibashi M, Hiasa KI, et al. Essential role of vascular endo-thelial growth factor in angiotensinⅡ-induced vascular inflammation and remodeling [J]. Hypertension, 2004, 44(3): 264~270.
    59. Adatia I, Barrow SE, Stratton PD, et al. Vascular endothelial responses, prostanoids, and flow: thromboxane A sub 2 and prostacyclin biosynthesis in children and adolescents with pulmonary vascular disease [J]. Circulation, 1993, 88(51): 2117~2122.
    60. Haroun H, Bradbury D, Clayton A, et al. Interleukin-1[beta], transforming growth factor-[beta]1, and bradykinin attenuate cyclic AMP production by human pulmonaryartery smooth muscle cells in response to prostacyclin analogues and prostaglandin F2 by cyclooxygenase-2 induction and downregulation of adenylyl cyclase isoforms 1 ,2 ,and 4[J ] .Circulat Res, 2004, 94(3): 353~361.
    61.夏伟,赵翠芬,李福海,等. MMP-1、MMP-3对高动力血流状态肺血管重建的影响[J].山东大学学报(医学版), 2004, 42(6): 694~697.
    62. Ivy DD, Mc Murtry IF, Colvin K, et al. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: A new model of severe pulmonary arterial hypertension[J]. Circulation, 2005, 111(22): 2988~2996.
    63. Matsushita M, Shichiri M, Imai T, et al. CO2 expression of urotensinⅡand its receptor(GPR14) in human cardiovascular and renal tissues. [J]. Hypertension, 2001, 19(12): 2185~2190.
    64. Djordjevic T, BelAiba RS, Bonello S, et al. Human urotensinⅡis a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells. [J]. Arterioscler Thromb Vasc Biol, 2005, 25(3): 519~525.
    65. Wang H, Mehta JL, Chen K, et al. Human urotensinⅡmodulates collagen synthesis and the expression of MMP-1 in human endothelial cells [J ]. J Cardiovasc Pharmacol, 2004, 44(5): 577~581.
    66. Hillier C, Berry C, Petrie MC, et al. Effects of urotensinⅡin human arteries and veins of varying caliber [J]. Circulation, 2001, 103(10): 1378~1381.
    67. Wistow GJ, Pisano MM, Chepelinsky AB. Tandem sequence repeats in transmembrane channel proteins[J]. Trends Biochem. Sci. 1991; 16: 170–171
    68. Bai LK, Fushimi S, Sasaki, et al. Structure of aquaporin-2 vasopressin water channel[J]. J. Biol. Chem. 1996; 271: 5171–5176
    69. Preston GM,. Jung JS, Guggino WB, et al. Membrane topology of aquaporin CHIP: analysis of function epitope-scanning mutants by vectorial proteolysis[J]. J. Biol. Chem. 1994; 269: 1668–1673
    70. Liu YL, Matsuzaki T, Nakawara T, et al,.Expression of aquaporin 3 (AQP3) in normal and neoplastic lung tissues. Hum. Pathol. 2007(38), 171–178.
    71. Pedersen PS, Braunstein TH, Jorgensen A, et al. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress. Pflugers Arch. 2007. (453), 777-785.
    72. Hu J, Verkman AS. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J. 2006(20), 1892-1894.
    73. Duffels MG, Engelfriet PM, Berger RM, et al. Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry[J]. Int J Cardiol, 2007, 120(2): 198-204.
    74. Shi LB, Skach WR, Ma T, et al. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry[J]. 1995; 34: 8250-8256.
    75. Levin MH, Verkman AS. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest. Ophthalmol. Vis. Sci. 2006(47), 4365–4372.
    76. Levin MH, Sullivan S, Nielson D, et al. Hypertonic saline therapy in cystic fibrosis: evidence against the proposed mechanism involving aquaporins. J. Biol. Chem. 2006(281), 25803–25812.
    77. Donaldson SH, Bennett WD, Zeman KL, et al. Mucus clearance and lung function in cystic fibrosiswith hypertonic saline. N. Engl. J. Med. 2006(354), 241-250.
    78. Hara-Chikuma M, Verkman AS. Physiological roles of glycerol ransporting aquaporins-the aquaglyeroporins. Cell. Mol. Life Sci. 2006(63), 1386-1392.
    79. Skach WL, Shi B, Calayag MC, et al. Topology and biogenesis of the CHIP28 water channel at the endoplasmic reticulum[J]. J. Cell Biol. 1994; 125: 803-816.
    80. Saadoun S, Papadopoulos MC, Hara-Chikuma M, et al. Impairment of angiogenesis and cell migration by targeted of aquaporin-1 gene disruption. Nature 2005. (434), 786-792.
    81. Sidhaye V, Hoffert JD, King LS. cAMP has distinct acute and chronic effects on aquaporin-5 in lung epithelial cells. J. Biol. Chem. 2005. (280), 3590-3596.
    82. Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. 2005. (118), 3225-3232.
    83. Verkman AS. Roles of aquaporins in kidney revealed by transgenic mice.Semin. Nephrol. 2006(26), 200-208.
    84. Verkman AS, Binder DK, Bloch O, et al. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochem. Biophys. Acta 2006(1758), 1085–1093.
    85. Shi LB, Skach WR, Ma T, et al. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry[J]. 1995;34: 8250–8256
    86. Fujiyoshi Y, Mitsuoka K, de Groot BL, et al. Structure and function of water channels[J]. Curr Opin Struct Biol. 2002; 12(4): 509-515
    87. Burghardt B, Elkaer ML, Kwon TH, et al. Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas[J]. Gut.2003;52(7): 1008-1016
    88. Zhong SX, Liu ZH. Expression of aquaporins in the cochlea and endolymphatic sac of guinea pig[J]. ORL J Otorhinolaryngol Relat Spec. 2003; 65(5): 284-289
    89. Pedro Gallardo, Nancy Olea, Francisco V Sepúlveda. Distribution of aquaporins in the colon of Octodon degus, a South American desert rodent[J]. Am J Physiol Regulatory Integrative Comp Physiol. 2002; 283: 779-788
    90. Schey KL, Ball LE, Crouch RK, et al. The Distribution of Phosphorylated and Posttranslationally Modified Aquaporin 0 Within the Normal Human Lens[J]. Invest. Ophthalmol. Vis. Sci. 2003; 44: 4483.
    91. Johannes L, Dominique LC, Andreas M, et al. Localization of epithelial sodium channel and aquaporin-2 in rabbit kidney cortex[J]. Am J Physiol Renal Physiol. 2000; 278: 530-539
    92. Elkjer ML, Nejsum LN, Veronika G, et al. Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways[J]. Am J Physiol Renal Physiol. 2001; 281: 1047-1057
    93. Giuseppe C, Amelia M, Yoon S, et al. Expression and Localization of the Aquaporin-8 Water Channel in Rat Testis[J]. Biol Reprod.2001; 64: 1660-1666.
    94. Nuria PS, Corinne B, Ivan S, et al. Aquaporin 9 Expression along the Male Reproductive[J] Tract. Biol Reprod. 2001; 65: 384-393.
    95. Morishita Y, Sakube Y, Sasaki S, et al. Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms[J]. J Pharmacol Sci. 2004 Nov; 96(3): 276-279.
    96. Verkman AS. Physiological importance of aquaporin water channels[J]. AnnMed, 2002, 34(3): 192-200.
    97. Yang B, Gillespie A, Carlson EJ, et al. Neonatal mortality in an aquapor in-2 knock-in mouse model of recessive nephro genic diabetes insipidus[J].J BiolChem, 2001, 276 (4): 2775-2779.
    98. Verkman AS, Yang B, Song Y, et al. Role of water channels influid transport studied by phenotype analysis of aquaporin knockout mice[J]. Exp Physiol, 2000, 85: 233S-241S.
    99. Yasui M, Hazama A, Kwon TH, et al. Rapid gating and anion permeability of an intracellular aquaporin[J]. Nature, 1999, 402(6758): 184-187.
    100. Kageyama Y, Ishibashi K, Hayashi T, et al. Expression of aquaporins7 and 8 in the developing rat testis[J]. Andrologia, 2001, 33(3): 165-169.
    101. Song Y, Jayaraman S, Yang B, et al. Role of aquaporin water channels in airway fluid transport, humidification, and surface liquid hydration[J]. J Gen Physiol, 2001, 117(6): 573-582.
    102. Verkman AS. Applications of aquaporin inhibitors [J]. Drug News Perspect, 2003, 14 (7): 412-420.
    103. Christensen BM, Zelenina M, Aperia A, et al. Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/ antagonist treatment [J]. Am J Physiol Renal Physiol. 2000, 278(1): F29-42
    104. Raúl AM, Pamela ST, Linh DP, et al. Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes [J]. Am J Physiol Gastrointest Liver Physiol. 1999; 276: 280-286.
    105. Fabiana G, Arlinet K, Cecilia L, et al. The Water Channel Aquaporin-8 is Mainly Intracellular in Rat Hepatocytes, and Its Plasma Membrane Insertion Is Stimulated by Cyclic AMP[J]. J. Biol. Chem. 2001; 276: 12147-12152.
    106. Jennifer ET, Carissa MK, Cindy JB, et al. Tumor Necrosis FactorInhibits Aquaporin 5 Expression in Mouse Lung Epithelial Cells[J]. J. Biol. Chem.2001; 276: 18657-18664.
    107. Van Hoek AN, Wiener MC, Verbavatz JM, et al. Purification and structurefunction analysis of PNGase F- and endo-b-galactosidase-treated CHIP28 water channels[J].Biochemistry.1995; 34: 2212-2219.
    108. Towne JE, Harrod KS, Krane CM, et al. Decreased expression of aquaporin ( AQP ) 1 and AQP5 in moude lung after acute viral infection [J]. Am J Respir Cell Mol Biol, 2000, 22(1): 34~44.
    109. Jiao GY, Li ER, Yu RJ. Decreased expression of AQP1 and AQP5 in acute injured lungs intats [J]. China Medical Journal, 2002, 155: 963~967.
    110. Gabazza EC, Kasper M, Ohta K, et al. Decrease dexpression of aquaporin-5 in bleomyc in-induced lung fibrosis in the mouse [J]. Pathol Int, 2004, 54 (10): 774~780.
    1.吴清玉:中国心脏外科研究进展,中华医学信息导报,2007年5月27日(22)10:15~17
    2.周爱卿.心导管术:先天性心脏病诊断与治疗[ M] .第1版.济南:山东科学技术出版社,1997. 1952198.
    3. Hatano S, Strasser T. World Health Organization 1975 primary pulmonary hypertension. Geneva: WHO, 1975.
    4.秦玉明,沈捷,周爱卿.小儿肺动脉局压临床治疗进展.临床儿科杂志. 2001:1912: 120-122
    5. Heath D, Edwards J E. The pathology of hypertensive pulmonary vascular disease[J]. Circulation, 1958, 18(4): 533-547.
    6. Stamler JS, Loh E, Roddy MA, et al. Nitric Oxid and Endothelin Effects: Nitric Oxide Regulates Basal Systemic and Pulmonary Vascular Resistance in Healthy Humans [J]. Circulation, 1994, 89(5): 2035~2040.
    7. Steihorn RH, Fineman JR. The pathophysiology of pulmonary hypertension in congenital heart disease [J]. Artificial Organs, 1999, 23(11): 970~974.
    8.徐卓明,苏肇伉,陈玲,等.先天性心脏病合并肺动脉高压时肺组织病理与免疫组化研究[J].临床儿科学杂志, 2002, 20(12): 748~750.
    9. Millatt LJ, Whitley GS, Li DC, et al. Evidence for dysregulation of dimethylarginine dimethy laminohydrolase I in chronic hypoxia-induced pulmonary hypertension [J]. Circulation, 2003, 108(12): 1493~1498.
    10. Black SM, Bekker JM, Johengen MJ, et al. Altered regulation of the ET-1 cascade in lambs with increased pulmonary blood flow and pulmo2nary hypertension [J]. Pediatr Res, 2000, 47(1): 97~106.
    11. Komers R, Lindsley JN, Oyama TT, et al. Renal p38 MAP kinase activity in experimental diabetes. [J]. Lab Invest 2007; 87: 548–58.
    12. Adhikary L, Chow F, Nikolic-Paterson DJ, et al. Abnormal p38 mitogen-activated rotein kinase signalling in human and experimental diabetic nephropathy. [J].Diabetologia 2004; 47: 1210–22.
    13. Du L, Sullivan CC, Chu D, et al. Signaling molecules in nonfamilial pulmonary hypertension. [J]. N. Engl. J.Med. 2003: 348, 500–509.
    14. Tojo A, Onozato ML, Kobayashi N, et al. Antioxidative effect of p38 mitogen-activated protein kinase inhibitor in the kidney of hypertensive rat. [J]. J Hypertens 2005; 23: 165–74.
    15. Louzier V, Raffestin B, LerouxA, et al. Role of VEGF-B in the lung during development of chronic hypoxic pulmonary hypertension. [J]. Am. J. Physiol: Lung Cell. Mol. Physiol. 2003. 284, L926–L937.
    16.吴永平,车东媛,刘绍春.肺动脉高压时腺泡内微动脉壁胶原相对含量的改变[J].徐州医学院学报,1994, 14(4): 283~284.
    17. de Borst MH, Navis G, de Boer RA, et al. Specific MAP-kinase blockade protects against renal damage in homozygous TGR(mRen2)27 rats. [J]. Lab Invest 2003; 83: 1761–70.
    18. Schutzer WE, Xue H, Reed JF, et al. Effect of age on vascular beta2-adrenergic receptor desensitization is not mediated by the receptor coupling to Galphai proteins. [J]. J Gerontol A Biol Sci Med Sci 2006; 61: 899–906.
    19. Tsiani E, Leaks P, Fantus IG, et al. High glucose-enhanced activation of mesangial cell p38 MAPK by ET-1, ANG II, and platelet-derived growth factor. [J]. Am J Physiol Endocrinol Metab 2002; 282:E161–9.
    20. Olzinski AR, McCafferty TA, Zhao SQ, et al. Hypertensive target organ damage is attenuated by a p38 MAPK inhibitor: role of systemic blood pressure and endothelial protection. [J]. Cardiovasc Res 2005; 66: 170–8.
    21. Tojo A, Onozato ML, Kobayashi N, Goto A, Matsuoka H, Fujita T. Antioxidative effect of p38 mitogen-activated protein kinase inhibitor in the kidney of hypertensive rat. J Hypertens 2005; 23: 165–74.
    22.陶为科,叶世铎,孙宗全,等.先心病合并肺动脉高压病理学与血液动力学对比研究[J ] .中华胸心血管外科杂志,1994 ,10 (4) :299~301.
    23. Noda K, Sasaguri M , Ideishi M , et al. Role of locally formed angiotensin-Ⅱandbradykinin in the reduction of myocardial infarct size in dogs. [J]. Cardiovasc Res, 1993, 27(2): 334~340
    24. Johnston CI. Tissue angiotensin converting enzyme in cardiac and vascular hypertrophy, repaire, and remodeling. Hypertension, 1994, 23(2): 258~268
    25. Stroth U, Unger T. The rennin-angiotensin system and its receptors. J Cardiovasc. Pharmacol, 1999, (33 Suppl 1): S21~28.
    26. Molteni A, Zakheim RM, Mullis KB. The effect of chronic alveolar hypoxia on lung and serum angiotensin I converting enzyme activity. Proc Soc Exp Biol Med, 1974, 147(1): 263~265.
    27. Milledge J S. Angiotensin converting enzyme and hypoxia. Bull Eur Physiopathol Respir, 1984, 20(6): 481~485.
    28. Milledge JS, Catley DM. Angiotensin converting enzyme response to hypoxia in man: its role in altitude acclimatization. Clin Sci, 1984, 67(4): 453~456.
    29. Milledge JS, Catley DM, Ward MP. Renin-aldosterone andangiotensin-converting enzyme during prolonged altitude exposure. J Appl Physiol, 1983, 55(3): 699~702.
    30. Orrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme and angiotensinⅡin development of hypoxic pulmonary hypertension. Am J Physiol, 1995, 269 (4 Pt 2): H1186~1194.
    31. Bertolino F, Valentin JP, Maffre M, et al. Losartan prevents pulmonary hypertension induced by a thromboxane A2 analog. Arch Mal Coeur Vaiss, 1994, 87(8): 971~974.
    32. Bertolino F, Valentin JP, Maffre M, et al. Prevention of thromboxane A2 receptor-mediated pulmonary hypertension by a nonpeptide angiotensinⅡtype1 receptor antagonist. J Pharmacol Exp Ther, 1994, 268 (2): 747~752.
    33. Oldner A, Wanecek M, Weitzberg E. et al. AngiotensinⅡreceptor antagonism increases gut oxygen delivery but fails to improve intestinalmucosal acidosis in porcine endotoxin shock. Shock, 1999, 11(2): 127~135.
    34. Sakio H, Iwase Y, Okuda C. The effectiveness of angiotensinⅡantagonist on experimental pulmonary embolism-comparison of propranolol with prostaglandin F2 alpha. Masui, 1990, 39(9): 1142~1147.
    35. Riegger GA, Hoferer P. A new experimental model for measurement of pulmonary arterial haemodynamic variables in conscious rats beforeand after pulmonary embolism and during general anaesthesia.Cardiovasc Res ,1990 ,24 (4) :340~344
    36. Kiely DG, Cargill RI, Wheeldon NM, et al. Haemodynamic and endocrine effects of type 1 angiotensin II receptor blockade in patients with hypoxaemic cor pulmonale. Cardiovasc Res, 1997, 33(1): 201~208.
    37. Cassis L, Shenoy U, Lipke D, et al. Lung angiotensin receptor binding during development of monocrotaline2induced pulmonaryhyp (characteristics) ertension. Bio(the) chem Pharmacol, 1997 ,54(1): 27~31
    38. Kreutz R, Fernandez-Alfonso MS, Ganten D, et al. Effect of losartan on right ventricular hypertrophy and cardiac angiotensin I-converting enzyme activity in pulmonary hypertensive rats. Clin Exp Hypertens, 1996, 18 (1): 101~111.
    39.马胜军,刘桂清,马增山,等.先天性心脏病伴肺动脉高压患者血清血管内皮生长因子与肺细小动脉形态变化的关系[J].中华心血管病杂志,2004 ,32(1) :40~43.
    40. Rodriguez2Vita J, Ruiz2Ortega M, Ruperez M, et al. Endothelin21, via ETA receptor and independently of transforming growth factor 2[beta], increases the connective tissue growth factor in vascular smooth muscle cells[J]. Circulat Res, 2005, 97 (2): 125~134.
    41. Grover TR, Zenge JP, Parker TA, et al. Vascular endothelial growth factor causes pulmonary vasodilation through activation of the phos-phatidylinositol~3-kinase-nitric oxide pathway in the late-gestation ovine fetus[J]. Pediatr Res, 2002, 52(6): 9072912.
    42. Zhao QW, shibashi M, Hiasa KI, et al. Essential role of vascular endo-thelial growth factor in angiotensinⅡ-induced vascular inflammation and remodeling[J]. Hypertension, 2004, 44(3): 264~270.
    43. Adatia I, Barrow SE, Stratton PD, et al. Vascular endothelial responses, prostanoids, and flow: thromboxane A sub 2 and prostacyclin biosynthesis in children and adolescents with pulmonary vascular disease[J]. Circulation, 199388 (5 Pt 1): 2117~2122.
    44. El-Haroun H, Bradbury D, Clayton A, et al. Interleukin-1[ beta ], transforming growth factor-[beta]1, and bradykinin attenuate cyclic AMP production by human pulmonary artery smooth muscle cells in response to prostacyclin analogues and prostaglandin F2 by cyclooxygenase-2 induction and downregulation of adenylyl cyclase isoforms 1, 2, and 4[J ]. Circulat Res, 2004, 94(3): 353~361.
    45.夏伟,赵翠芬,李福海,等. MMP-1、MMP-3对高动力血流状态肺血管重建的影响[J].山东大学学报(医学版),2004,4 (6): 694~697.
    46. Ivy DD, Mc Murtry IF, Colvin K, et al. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: A new model of severe pulmonary arterial hypertension [J]. Circulation, 2005, 111(22): 2988~2996.
    47. Matsushita M, Shichiri M, Imai T, et al. Co-expression of urotensinⅡand its receptor (GPR14) in human cardiovascular and renal tissues [J]. J Hypertension, 2001, 19 (12): 2185~2190.
    48. Djordjevic T, BelAiba RS, Bonello S, et al. Human urotensinⅡis a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells [J]. Arterioscler Thromb Vasc Biol, 2005, 25(3): 519~525.
    49. Wang H, Mehta JL, Chen K, et al. Human urotensinⅡmodulates collagen synthesis and the expression of MMP-1 in human endothelial cells [J]. J Cardiovasc Pharmacol, 2004, 44(5): 577~581.
    50. Hillier C, Berry C, Petrie MC, et al. Effects of urotensinⅡin human arteries and veins of varying caliber [J]. Circulation, 2001, 103(10): 1378~1381.
    1. Denker, BM, Smith, BL, Kuhajda, FP, et al. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules [J]. J Biol Chem.1988; 263(30): 15634-156421.
    2. Preston GM, Carroll TP, Guggino WB, et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein [J]. Science.1992; 256(5055): 385-387.
    3. Wistow GJ, Pisano MM, Chepelinsky AB. Tandem sequence repeats in transmembrane channel proteins [J]. Trends Biochem. Sci. 1991; 16: 170–171.
    4. Bai L, Fushimi K, Sasaki S, et al. Structure of aquaporin-2 vasopressin water channel [J]. J. Biol. Chem. 1996; 271: 5171–5176
    5. Preston GM, Jung JS, Guggino WB, et al. Membrane topology of aquaporin CHIP: analysis of function epitope-scanning mutants by vectorial proteolysis [J]. J. Biol. Chem. 1994; 269: 1668–1673.
    6. Liu YL, Matsuzaki T, Nakawara T, et al. Expression of aquaporin 3 (AQP3) in normal and neoplastic lung tissues. [J]. Hum. Pathol. 2007 (38), 171–178.
    7. Pedersen PS, Braunstein TH, Jorgensen A, et al. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress. Pflugers Arch. 2007. (453), 777–785.
    8. Hu J, Verkman AS. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. [J]. FASEB J. 2006(20), 1892–1894.
    9. Hu J, Verkman AS. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB [J]. J. 2006(20), 1892–1894.
    10. Shi LB, Skach WR, Ma T. et al. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry [J]. 1995; 34: 8250–8256
    11. Levin MH, Verkman AS. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest. Ophthalmol. Vis. Sci. 2006(47), 4365–4372.
    12. Levin MH, Sullivan S, Nielson D, et al. Hypertonic saline therapy in cystic fibrosis: evidence against the proposed mechanism involving aquaporins. [J]. J. Biol. Chem. 2006(281), 25803–25812.
    13. Donaldson SH, Bennett WD, Zeman KL, et al. Mucus clearance and lung function in cystic fibrosiswith hypertonic saline. N. Engl. J. Med. 2006(354), 241–250.
    14. Hara-Chikuma M, Verkman AS. Physiological roles of glycerol ransporting aquaporins-the aquaglyeroporins. Cell. Mol. Life Sci. 2006(63), 1386–1392.
    15. Skach W, Shi LB, Calayag MC, et al. Topology and biogenesis of the CHIP28 water channel at the endoplasmic reticulum [J]. J. Cell Biol. 1994; 125: 803–816
    16. Bai L, Fushimi K, Sasaki S, et al. Structure of aquaporin-2 vasopressin water channel [J] J. Biol. Chem. 1996; 271: 5171–5176.
    17. Preston GM, Jung JS, Guggino WB, et al. Membrane topology of aquaporin CHIP: analysis of function epitope-scanning mutants by vectorial proteolysis [J]. J. Biol. Chem. 1994; 269: 1668–1673
    18. Saadoun S, Papadopoulos MC, Hara-Chikuma M, et al. Impairment of angiogenesis and cell migration by targeted of aquaporin-1 gene disruption. Nature 2005. (434), 786–792.
    19. Sidhaye V, Hoffert JD, King LS. cAMP has distinct acute and chronic effects on aquaporin-5 in lung epithelial cells. J. Biol. Chem. 2005(280), 3590–3596.
    20. Verkman AS, More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. 2005. (118), 3225–3232.
    21. Verkman AS. Roles of aquaporins in kidney revealed by transgenic mice.Semin. Nephrol. 2006. (26), 200–208.
    22. Verkman AS, Binder DK, Bloch O, et al. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochem. Biophys. Acta 2006. (1758), 1085–1093.
    23. Shi L B, Skach WR, Ma T, et al. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry [J]. 1995; 34: 8250–8256
    24. Fujiyoshi Y, Mitsuoka K, de Groot BL, et al. Structure and function of water channels [J]. Curr Opin Struct Biol. 2002; 12(4): 509-515
    25. Burghardt B, Elkaer ML, Kwon TH, et al. Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas [J]. Gut. 2003; 52(7): 1008-1016.
    26. Zhong SX, Liu ZH. Expression of aquaporins in the cochlea and endolymphatic sac of guinea pig [J]. ORL J Otorhinolaryngol Relat Spec. 2003; 65(5): 284-289
    27. Pedro G, Nancy O, Francisco V. Distribution of aquaporins in the colon of Octodon degus, a South American desert rodent [J]. Am J Physiol Regulatory Integrative Comp Physiol. 2002; 283: 779-788
    28. Schey KL, Ball LE, Crouch RK, et al. The Distribution of Phosphorylated and Posttranslationally Modified Aquaporin 0 Within the Normal Human Lens [J]. Invest. Ophthalmol. Vis. Sci. 2003; 44: 4483
    29. Loffing J, Loffing-Cueni D, Andreas M, et al. Localization of epithelial sodium channel and aquaporin-2 in rabbit kidney cortex [J]. Am J Physiol Renal Physiol. 2000; 278: 530 - 539
    30. Marie-Louise E, Lene N, Nejsum V, et al. Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways [J]. Am J Physiol Renal Physiol.2001; 281: 1047-1057.
    31. Giuseppe C, Amelia M, Yoon S, et al. Expression and Localization of the Aquaporin-8 Water Channel in Rat Testis [J]. Biol Reprod.2001; 64: 1660-1666.
    32. Pastor-Soler N, Corinne B, Ivan S, et al. Aquaporin 9 Expression along the Male Reproductive [J] Tract.Biol Reprod. 2001; 65: 384-393.
    33. Morishita Y, Sakube Y, Sasaki S, et al. Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms [J]. J Pharmacol Sci. 2004 Nov; 96(3): 276-279.
    34. Yang B. The human aquaporin gene family (review) [J]. Current Genomics, 2000,1(1): 91-102.
    35. Verkman AS.Physiological importance of aquaporin water channels [J]. AnnMed, 2002, 34(3): 192 -200.
    36. Yu HM, Sun BM, Bai Q, et al. Influence of acetazolamide on AQP1 gene expression in testis and on sperm count/motility in epididymis of rats [J]. Arch Androl, 2002, 48(4): 281 -294.
    37. Yang B, Gillespie A, Carlson EJ, et al. Neonatal mortality in an aquapor in-2 knock-in mouse model of recessive nephro genic diabetes insipidus [J]. J BiolChem, 2001, 276(4): 2775-2779.
    38. Ward DT, Hammond TG, Harris HW. Modulation of vaso pressin-elicited water transport by trafficking of aquaporin2-containing vesicles [J]. Annu Rev Physiol, 1999, 61 (1): 683-697.
    39. Verkman AS, Yang B, Song Y, et al. Role of water channels influid transport studied by phenotype analysis of aquaporin knockout mice. [J]. Exp Physiol, 2000, 85: 233S-241S.
    40. Yang B, Ma T, Verkman AS. cDNA coning gene organization and chromosomal localization of a human mercurial-in sensitive water channel: evidence for distinct transcription alunits [J]. J Biol Chem, 1995, 270(39): 22907-22913.
    41. Yang B, Brown D, Verkman AS. The mercurial-insensitive water channel (AQP-4) forms orthogonal arrays in stably trans fected CHO cells [J]. J Biol Chem, 1996, 271(9): 4577-4580.
    42. Song Y, Jayaraman S, Yang B, et al. Role of aquaporin water channels in airway fluid transport, humidification, and surface liquid hydration [J]. J Gen Physiol, 2001, 117(6): 573-582.
    43. Yasui M, Hazama A, Kwon TH, et al. Rapid gating and anion permeability of an intracellular aquaporin [J]. Nature, 1999, 402(6758): 184-187.
    44. Kageyama Y, Ishibashi K, Hayashi T, et al. Expression of aquaporins7 and 8 in the developing rat testis [J]. Andrologia, 2001, 33(3): 165-169.
    45. Hatakeyama S, Yoshida Y, Tani T, et al. Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. [J]. Biochem. Biophys Res Commun, 2001, 287(4): 814-819.
    46. Verkman AS. Applications of aquaporin inhibitors [J]. Drug News Perspect, 2003, 14 (7): 412-420.
    47. Christensen BM, Zelenina M, Aperia A, et al. Localization and regulation of PKA-phosphorylated AQP2 in response to V (2)-receptor agonist/ antagonist treatmen [J] Am J Physiol Renal Physiol. 2000 ;278(1): F29-42
    48. Verbalis JG, Murase T, Ecelbarger CA, et al. Studies of renal aquaporin-2 expression during renal escape from vasopressin-induced antidiuresis.[J]. Adv Exp Med Biol. 1998; 449: 395-406
    49. Birgitte MC, David M, Uffe BJ, et al. Acute effects of vasopressin V2-receptor antagonist on kidney AQP2 expression and subcellular distribution[J]. Am J Physiol Renal Physiol. 1998; 275: 285-297
    50. Raúl AM, Pamela ST, Linh DP , et al. Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes [J]. Am J Physiol Gastrointest Liver Physiol.1999; 276: 280-286.
    51. Fabiana G, Arlinet K, Larocca MC, et al. The Water Channel Aquaporin-8 is Mainly Intracellular in Rat Hepatocytes, and Its Plasma Membrane Insertion Is Stimulated by Cyclic AMP [J]. J. Biol. Chem. 2001; 276: 12147-12152
    52. Zea B, Richard LL, Spencer ID, et al. Keratinocyte Growth Factor Modulates Alveolar Epithelial Cell Phenotype In Vitro: Expression of Aquaporin 5 [J]. Am. J. Respir. Cell Mol. Biol. 1998(18): 554-561.
    53. Jennifer ET, Carissa MK, Cindy JB, et al. Tumor Necrosis FactorInhibits Aquaporin 5 Expression in Mouse Lung Epithelial Cells [J]. J. Biol. Chem.2001; 276: 18657-18664.
    54. Van Hoek AN, Wiener MC, Verbavatz JM, et al. Purification and structurefunction analysis of PNGase F- and endo-b-galactosidase-treated CHIP28 water channels [J]. Biochemistry.1995(34) 2212–2219.
    55. Baumgarten RM, H van de Pol, Wetzels JF, et al. Glycosylation is not essential for vasopressin-dependent routing of aquaporin-2 in transfected Madin-Darby canine kidney cells [J].J. Am. Soc. Nephrol. 1998(9): 1553–1559.
    56. Verkman AS, Alok K. Structure and function of aquaporin water channel [J]. Am. J. Physiol. Renal Physiol. 2000(278):F13-28
    57. Ren G, Cheng A, Melnyk P, et al. J Polymorphism in the packing of aquaporin-1 tetramers in 2-D crystals [J]. J Struct Biol. 2000 May; 130(1): 45-53.
    58. Sui HX, Han BG, Lee JK, et al. Structural basis of water-specific transport through the AQP1 water channel[J]. Nature, 2001(414): 872-878.
    59.隋海心,任罡等.水分子通道蛋白的结构与功能[J].化学进展,2004 16 (2): 145-152
    60. Song Y, Ma T, Mathay MA, et al. Role of aquaporin-4 in airspace to capillary aler permeability in intact mouse lung measured by a novel gravimetric method [J]. J GenPhysoil, 2000, 155(1):17~27.
    61. Towne JE, Harrod KS, Krane CM, et al. Decreased expression of aquaporin (AQP) 1 and AQP5 in moude lung after acute vi ral infection [J]. Am J Respir Cell Mol Biol, 2000, 22(1): 34~44.
    62. Jiao GY, Li ER, Yu RJ. Decreased expression of AQP1 and AQP5 in acute injured lungs intats [J]. China Medical Journal, 2002(155): 963~967.
    63. Song Y. Role of aquaporins in alveolar fluid clearance in neonatal and adult lung, and in oedema formation following acute lung injury: studies in transgenic aquaporin nullmice. [J]. J Physiol, 2000, 15(3): 771~779.
    64. Anderson SD, Togias AG. Asthma and rhinitis [M]. Boston: Black well Scientific, 1995. 1178~1195.
    65. Krane CM. Aquapoein5- deficient mouse lungs are hyperresponsive to cholinergic stimulation [J]. Proc Natl Acad Sci, 2001, 98: 14114~14119.
    66. Gabazza EC, Kasper M, Ohta K, et al. Decrease dexpression of aquaporin-5 in bleomyc in-induced lung fibrosis in the mouse [J]. Pathol Int, 2004, 54(10): 774~780.
    67. Tsang KW, Leung JC, Tipoe GL, et al. Down regulation of aquaporin-3 in bronchiectatic airways in vivo [J]. Respir Med, 2003, 97 (1): 59~64.
    68. Saadoun S, Verkman AS. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. [J]. Nature, 2005, 434:786~792.
    69. Xiang Y, Ma B, Li T, et al. Acetazolamide inhibits aquaporin-1 protein expression and angiogenesis [J]. Acta Pharmacol Sin, 2004, 25 (6): 812~816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700