感染性早产小鼠胎盘TLR4, NF-κB和TNF-α的表达及NAC的干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:早产是妊娠常见的并发症之一,感染是引起早产的最常见原因。本实验选择了脂多糖(Lipopolysaccharide, LPS)致感染性早产这一常见的妊娠并发症作为研究对象,通过研究感染性早产小鼠胎盘Toll样受体(4Toll-Like Receptor 4,TLR4),核转录因子-kappaB p65(nuclear factor-kappaB p65,NF-κBp65)和肿瘤坏死因子-α(Tumor Necrosis Factor-alpha,TNF-α)的表达以及N-乙酰半胱氨酸(N-acetylcysteine,NAC)的干预影响,探讨一种预防小鼠感染性早产发生的新策略,为临床上感染性早产的早期预防及早期治疗提供理论依据。
     方法:
     (1)孕鼠随机分为4组:对照组(NS)、模型组(LPS)、预防组(NAC+LPS)和治疗组(LPS+NAC);
     (2)复制小鼠的感染性早产模型,观察各组孕鼠发生早产的时间,记录早产共分为5个时间段(0-12h,12-24h,24-36h,36-48h,48h-);
     (3)利用逆转录-聚合酶链反应(RT-PCR)方法检测早产小鼠胎盘TLR4,NF-κBp65,TNF-αmRNA的表达,分析三者与感染性早产的关系,以及NAC干预后TLR4,NF-κBp65和TNF-αmRNA的表达变化;
     (4)利用免疫组化方法检测早产小鼠胎盘TLR4,NF-κBp65,TNF-α蛋白的表达,以及NAC干预后TLR4,NF-κBp65和TNF-α蛋白的表达情况。
     结果:
     (1)对照组无早产的发生, LPS组和对照组相比P=0.001,表明感染性早产模型成功建立,预防组与LPS模型组早产率比较P=0.041,早产率明显下降;
     (2)对照组都有TLR4、NF-κBp65、TNF-α的少量表达,LPS模型组和对照组相比三者表达都显著升高(P<0.05) ;
     (3)预防组和模型组相比,TLR4表达无明显变化,而NF-κBp65和TNF-α表达明显减少(P<0.05),并且早产率也明显下降(P<0.05);
     (4)治疗组和模型组相比无统计学意义(P>0.05)。
     结论:感染性早产模型成功建立,NAC可以降低感染性早产小鼠胎盘NF-κBp65和TNF-α的表达,在感染性早产的预防中有一定作用。
Objective: Preterm birth is a common complication of pregnancy and infections are caused by the most common cause of preterm birth. We select LPS-induced preterm birth with infection as a research object in this experiment. By studying Toll-Like Receptor 4(TLR4), nuclear factor -kappaBp65(NF-κBp65), Tumor Necrosis Factor-alpha(TNF-α)expression in the mouse placenta of preterm birth, as well as the impact of N-Acetylcysteine(NAC) intervention, new preventions of premature birth occur in the future are explored. In addition, we may provide a theoretical basis for early clinical prevention and treatment of preterm birth with infection.
     Methods:
     (1) Pregnant mice were randomly divided into 4 groups: control group (NS), model group (LPS), prevention group (NAC + LPS) and treatment group (LPS + NAC);
     (2) Copy preterm birth mouse model of infection. Observe premature time in each group of pregnant mice and premature record is divided into five time periods(0-12h,12-24h,24-36h,36-48h,48h-);
     (3) Using RT-PCR to detect TLR4,NF-κBp65,TNF-αmRNA expression in the mouse placenta of preterm birth and analysis the relationship between the three and preterm birth with infection, as well as TLR4,NF-κB p65,TNF-αexpression changes after the NAC intervention;
     (4) Using immunohistochemistry to detect TLR4,NF-κBp65,TNF-αprotein expression in the mouse placenta of preterm birth and TLR4,NF-κB p65,TNF-αexpression after the NAC intervention.
     Results:
     (1) Without the occurrence of premature in control group and preterm rate in LPS group is P=0.001, compared with the control group and show that infection model succeeds to set up. Preterm rate in prevention group (P=0.041) significantly decreased, compared with the LPS model group;
     (2)The NS groups have TLR4,NF-κBp65 and TNF-αexpression at a low level and in LPS model groups expression of the three have significantly increased, compared with the NS groups(P<0.05);
     (3)In the NAC prevention groups the expression of TLR4 remained unchanged, while the expression of NF-κBp65 and TNF-αhave decreased and the percentage of preterm birth has decreased, compared with the LPS groups(P<0.05);
     (4)NAC therapy groups were not significant, compared with the LPS groups (P>0.05).
     Conclusion: Infection model is successful to set up, NAC can reduce the expression of NF-κBp65 and TNF-αin the mouse placenta of premature birth and have a protective effect of premature birth .
引文
[1] Romero R, Sirtori M, Oyarzun E, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol,1989,161(3): 817~824.
    [2] Woods JR. Reactive oxygen species and preterm premature rupture of membranes–a review. Placenta, 2001, 22(SupplA):S38~44.
    [3] Hamilton BE, Martin JA, Sutton PD. Births: preliminary data for 2002. Natl Vital StatSystem Rep, 2003, 51(11):1~20.
    [4] Goldenberg RL, Culhane JF. Infection as a cause of preterm birth. Clin Perinatol, 2003, 30(4): 677~700.
    [5] Romero R, Espinoza J, Goncalves LF, et al. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med, 2006,11(5):317~326 .
    [6] Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388 (6640):394~397.
    [7] Takeda K, Kaisho S, Akira S. Toll-like receptors. Ann Rev Immunol, 2003, 21: 335~376.
    [8] Lin Y, Xie MS, Chen YJ, et al. Preterm delivery induced by LPS in syngeneically impregnated BALB/c and NOD/SCID mice. J Reprod Immunol, 2006, 71(2):87~101.
    [9] Huazhang AN, Golen DT, Wang JE, et al. The primers are referenced to involvement of ERK, p38and NF-KB singal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cell . Immunology, 2002,106 (1):38~45.
    [10]姜智海,宋伟民.核转录因子-kappaB在PM2.5染毒小鼠急性肺损伤中的作用.环境与职业医学, 2005,22(6):483~501.
    [11] Zhang C, Li XY, Zhao L, et al. Lipopolysaccharide(LPS) up-regulates the expression of haem oxygenase-1 in mouse placenta. Placenta,2007,28(8-9): 951~ 957.
    [12] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4):783~801.
    [13] Gioannini TL, Weiss JP. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol Res, 2007,39(1-3):249~260.
    [14] Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol ,2007,19(1):3~10.
    [15]龚非力.医学免疫学.第2版.北京:科学出版社, 2004,274.
    [16] Holmlund U, Cebers G, Dahlfors AR, et al. Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like receptor-4 in the human placenta. Immunology, 2002,107(1):145~151.
    [17] Beijar EC, Mallard C, Powell TL. Expression and subcellular localization of TLR-4 interm and first trimester human placenta. Placenta, 2006,27(2-3):322~326.
    [18] Abrahams VM, Bole-Aldo P, Kim YM, et al. Divergent trophoblast responses to bacterial products mediated by TLRs. J Immunol, 2004, 173(7):4286~4296.
    [19] Kumazaki K, Nakayama M, Yanagihara I, et al. Immunohistochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum Pathol, 2004, 35 (1): 47 ~54.
    [20] Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med, 2007, 13(11):460~469.
    [21] Olivier S, Robe P, Bours V. Can NF-κB be a target for novel and efficient anti-cancer agents? Biochem Pharmacol, 2006,72(9):1054~1068.
    [22] Garside H, Stevens A, Farrow S, et al. Glucocorticoid ligands specify different interactions with NF-kappaB by allosteric effects on the glucocorticoid receptor DNA binding domain. J Biol Chem, 2004, 279(48):50050~50059.
    [23] Lappas M,Yee K,Permezel M,et al.Sulfasalazine and BAY 11-7082 interfere with the nuclear factor-kappa B and I kappa B kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro.Endocrinology, 2005,146(3):1491~1497.
    [24] Canavan TP, Simhan HN. Innate immune function of the human decidual cell at the maternal-fetal interface. J Reprod Immunol, 2007,74(1-2):46~52.
    [25] Schmid RM, Adler G. NF-κB /Rel/ IκB: Implications in gastrointestinal diseases. Gastroenterology, 2000, 118(6): 1208~1228.
    [26] Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF- induced NF-κB and cell death responses in A20 deficient mice. Science, 2000, 289(5488): 2350~2354.
    [27]赵宏伟,田秀珠,杨晓丽,等. TNFα、IL-4及IL-10在妊高征孕妇胎盘中的表达.生殖与避孕, 2005,25(1): 22~27.
    [28]Tanaka Y, Narahara H, Takai N, et al. Interleukin-1beta and interleukin-8 in cervicovaginal fluid during pregnancy. Am J Obstet Gynecol, 1998, 179(3Pt1): 644 ~ 649.
    [29] Romero R, Avila C, Santhanam U, et al. Amniotic fluid interleukin-6 in preterm labor association with infection. J Clin Invest, 1990, 85(5):1392~1400.
    [30] Beloosesky R, Gayle DA, Amidi F, et al. N-acetyl-cysteine suppresses amniotic fluid and placenta inflammatory cytokine responses to lipopolysaccharide in rats. Am J Obstet Gynecol,2006,194(1):268~273.
    [31] Kelly GS. Clinical Applications of N- acetylcysteine. Altern Med Rev, 1998, 3(2):114~127.
    [32] Buhimschi IA, Buhimschi CS, Weiner CP. Protective effect of N-acetylcysteine against fetal death and preterm labor induced by maternal inflammation. Am J Obstet Gynecol, 2003,188 (1): 203~208.
    [33] Traenckner EB, Wilk S, Baeuerle PA. A proteasome inhibitor prevents activation of NF–kappa B and stabilizes a newly phosphorylated form of Ikappa B-alpha that is still bound to NF– kappa B. EMBO J, 1994,13(22):5433~5441.
    [34] Martin V, Herrera F, Garcia-Santos G, et al. Signaling pathways involved in antioxidant control of glioma cell proliferation. Free Radic Biol Med, 2007,42(11):1715~1722.
    [35] Liu J, Yoshida Y, Yamashita U. DNA-binding activity of NF-κB and phosphorylation of p65 are induced by N-acetylcysteine through phosphatidylinositol (PI)3 -kinase. Mol Immunol, 2008, 45(15):3984~3989.
    1. Romero R, Sirtori M, Oyarzun E, Avila C, Mazor M, Callahan R, Sabo V, Athanassiadis AP, Hobbins JC. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes.Am J Obstet Gynecol 1989; 161: 817–24.
    2. Woods JR. Reactive oxygen species and preterm premature rupture of membranes-a review. Placenta 2001; 22:S38–44.
    3. Hamilton BE, Martin JA, Sutton PD. Births: preliminary data for 2002. Natl Vital StatSystem Rep 2003;51:1–20.
    4. Goldenberg RL, Culhane JF. Infection as a cause of preterm birth. Clin Perinatol 2003; 30:677-700.
    5. Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA , Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med 2006;11:317-26 .
    6. Hillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschenbach DA. A case-control study of chorioamnionitis in prematurity. N Engl J Med 1988; 319: 972–978.
    7. Akira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol 2004;4: 499–511.
    8. Baldwin AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649–83.
    9. Lin Y, Xie M, Chen Y, Di J, Zeng Y. Preterm delivery induced by LPS in syngeneically impregnated BALB/c and NOD/SCID mice. J Reprod Immunol 2006; 71:87-101.
    10. An H, Yu Y, Zhang M, Xu H, Qi R, Yan X, Liu S, Wang W, Guo Z, Guo J, Qin Z, Cao X. Involvement of ERK, p38and NF-κB singal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide In mouse dendritic cell. Immunology 2002;106:38-45.
    11. Jiang ZH, Song WM. The role of NF-κB in acute lung injury mice exposed to PM2.5. Huanjing Yu Zhiye Yixue 2005;22:483-501.
    12. Zhang C, Li XY, Zhao L, Wang H, Xu DX. Lipopolysaccharide (LPS) up-regulates the expression of haem oxygenase-1 in mouse placenta. Placenta 2007;28:951-57.
    13. Fromowitz FB, Viola MV, Chao S, Oravez S, Mishriki Y, Finkel G, Grimson R, Lundy J. Ras p21 expression in the progression of breast cancer. Hum Pathol 1987; 18: 1268-75.
    14. Beutler B. Innate immune responses to microbial poisons: discovery and function of the Toll-like receptors. Annu Rev Pharmacol Toxicol 2003; 43: 609- 28.
    15. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388:394-97.
    16. Abrahams VM, Mor G. Toll-like receptors and their role in the trophoblast. Placenta 2005;26:540-47.
    17. Holmlund U, Cebers G, Dahlfors AR, Sandstedt B, Bremme K, Ekstr?m ES, Scheynius A. Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like receptor-4 in the human placenta. Immunology 2002;107:145-51.
    18. Beijar EC, Mallard C, Powell TL. Expression and subcellular localization of TLR-4 in term and first trimester human placenta. Placenta 2006;27:322-26.
    19. Abrahams VM, Bole-Aldo P, Kim YM, Straszewski-Chavez SL, Chaiworap- ongsa T, Romero R, Mor G. Divergent trophoblast responses to bacterial products mediated by TLRs. J Immunol 2004; 173:4286-96.
    20. Kumazaki K, Nakayama M, Yanagihara I, Suehara N, Wada Y. Immunohis- tochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum Pathol 2004; 35:47-54.
    21. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5:749–59.
    22. Hayden MS, West AP Ghosh S. NF-kappaB and the immune response. Oncogene 2006; 25: 6758–80.
    23. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest 2001;107:7–11.
    24. Garside H, Stevens A, Farrow S, Normand C, Houle B, Berry A, Maschera B, Ray D. Glucocorticoid ligands specify different interactions with NF-kappaB by allosteric effects on the glucocorticoid receptor DNA binding domain. J Biol Chem 2004;279:50050-9.
    25. Canavan TP, Simhan HN. Innate immune function of the human decidual cell at the maternal-fetal interface. J Reprod Immunol 2007; 74: 46-52.
    26. Tanaka Y, Narahara H, Takai N, Yoshimatsu J, Anai T, Miyakawa I. Interleukin-1beta and interleukin-8 in cervicovaginal fluid during pregnancy. Am J Obstet Gynecol 1998;179:644-9.
    27. Romero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin-6 in preterm labor,association with infection. J Clin Invest 1990; 85:1392-400 .
    28. Silver RM, Lohner WS, Daynes RA, Mitchell MD, Branch DW. Lipopolysaccharide-induced fetal death: the role of tumor-necrosis factor-alpha. Biol Reprod 1994;50:1108–12.
    29. Holmgren C, Esplin MS, Hamblin S, Molenda M, Simonsen S, Silver R. Evaluation of the use of anti-TNF-alpha in an LPS-induced murine model. J Reprod Immunol 2008;78:134-9.
    30. Beloosesky R, Gayle DA, Amidi F, Nunez SE, Babu J, Desai M, Ross MG. N-acetyl-cysteine suppresses amniotic fluid and placenta inflammatory cytokine responses to lipopolysaccharide in rats. Am J Obstet Gynecol 2006; 194:268-73.
    31. Martin V, Herrera F, Garcia-Santos G, Antolin I, Rodriguez-Blanco J, Rodriguez C. Signaling pathways involved in antioxidant control of glioma cell proliferation. Free Radic Bio Med 2007; 42:1715-22.
    32. Liu J, Yoshida Y, Yamashita U. DNA-binding activity of NF-κB and phosphorylation of p65 are induced by N-acetylcysteine through phosphatidylinositol (PI) 3-kinase . Mol Immunol 2008;45:3984-9.
    33. Sugiyama K, Muroi M, Tanamoto K. A novel TLR4-binding peptide that inhibits LPS-induced activation of NF-κB and in vivo toxicity. Eur J Pharmacol 2008;594:152-6.
    [1]Green NS, Damus K, Simpson JL,et al. Research agenda for preterm birth: recommendations from the March of Dimes. Am J Obstet Gynecol, 2005,193(3): 626-635 .
    [2] Goldenberg RL, Culhane JF. Infection as a cause of preterm birth. Clin Perinatol, 2003, 30(4): 677-700.
    [3] Seitz M. Toll-like receptors: sensors of the innate immune system. Allergy,2003,58 (12): 1247-1249.
    [4]GilmoreTD.Introduction to NF-kappaB: players, pathways,perspectives. Oncogene, 2006, 25 (51):6680-6684.
    [5] Karin M,Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol, 2005,5(10):749-759.
    [6] Kawai T,Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med,2007, 13(11):460-469.
    [7] Schmid RM, Adler G. NF-κB /Rel/ IκB: Implications in gastrointestinal diseases. Gastroenterology, 2000, 118(6): 1208-1228.
    [8] Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF- induced NF-κB and cell death responses in A20 deficient mice. Science, 2000, 289(5488): 2350-2354.
    [9] Kajino S, Suganuma M, Teranishi F, et al. Evidence that de novo protein synthesis is dispensable for anti-apoptotic effects of NF-κB. Oncogene, 2000, 19 (18): 2233 -2239.
    [10] Gilmore TD,Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene, 2006,25(51):6887-6899.
    [11] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4):783-801.
    [12] Gioannini TL,Weiss JP. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol Res, 2007,39(1-3):249-260.
    [13] Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol, 2007,19(1):3-10.
    [14]龚非力.医学免疫学. 2版.北京:科学出版社, 2004, 274.
    [15] O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol, 2007,7(5):353-364.
    [16] Lye E, Mirtsos C, Suzuki N, et al. The role of interleukin 1 receptor-associated kinase-4(IRAK-4) kinase activity in IRAK-4-mediated signaling. J Biol Chem, 2004, 279(39): 40653-40658.
    [17] Keating SE, Maloney GM, Moran EM, et al. IRAK-2 participates in multiple toll-like receptor signaling pathways to NF-κB via activation of TRAF6 ubiquitination . J Biol Chem,2007,282(46):33435-33443.
    [18] Gohda J, Matsumura T, Inoue J. Cutting edge: TNFR-associated factor(TRAF)6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain- containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol , 2004,173(5):2913-2917.
    [19] Sato S, Sanjo H, Takeda K, et al. Essential function for the kinase TAK1 ininnate and adaptive immune responses. Nat Immunol, 2005,6(11):1087-1095.
    [20] Yamamoto M,Yamazaki S,Uematsu S, et al. Regulation of Toll/IL-1-receptor- mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature, 2004,430(6996):218-222.
    [21] Takaoka A,Yanai H,Kondo S, et al. Integralrole of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature, 2005,434(7030):243-249.
    [22] Meylan E,Burns K,Hofmann K, et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappaB activation. Nat Immunol, 2004,5(5):503-507.
    [23] Oganesyan G, Saha SK,Guo B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and-independent antiviral response. Nature, 2006, 439(7073): 208-211.
    [24] Guo B, Cheng G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem, 2007,282(16):11817-11826.
    [25] Moynagh PN. TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol, 2005,26(9):469-476.
    [26] Honda K,Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol, 2006, 6(9):644-658.
    [27] Balkundi DR, Ziegler JA, Watchko JF, et al.Regulation of FasL/Fas in human trophoblasts: possible implications for chorioamnionitis. Biol Reprod, 2003, 69(2): 718-724.
    [28] Jerzak M,Bischof P. Apoptosis in the first trimester human placenta: the role in maintaining immune privilege at the maternal–foetal interface and in the trophoblast remodelling. Eur J Obstet Gynecol Reprod Biol, 2002,100(2):138-142.
    [29] Holmlund U, Cebers G, Dahlfors AR, et al. Expression and regulation of the pattern recognition receptors Toll-like receptor-2 andToll-likereceptor-4 in the human placenta. Immunology, 2002,107(1):145-151.
    [30] Abrahams VM, Bole-Aldo P, Kim YM, et al. Divergent trophoblast responses to bacterial products mediated by TLRs. J Immunol ,2004, 173(7):4286-4296.
    [31] Beijar EC, Mallard C, Powell TL. Expression and subcellular localization of TLR-4 in term and first trimester human placenta. Placenta, 2006, 27(2/3):322-326.
    [32] Kumazaki K,Nakayama M,Yanagihara I,et al. Immunohistochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum Pathol, 2004,35(1):47-54.
    [33]Sugiyama K, Muroi M, Tanamoto K. A novel TLR4-binding peptide that inhibits LPS- induced activation of NF-κB and in vivo toxicity. Eur J Pharmacol, 2008, 594(1-3): 152 -156.
    [34] Garside H, Stevens A, Farrow S, et al. Glucocorticoid ligands specify different interactions with NF-kappaB by allosteric effects on the glucocorticoid receptor DNA binding domain. J Biol Chem, 2004, 279(48):50050-50059.
    [35] Kniss DA, Rovin B, Fertel RH , et al. Blockade NF-kappaB activation prohibits TNF-alpha-induced cyclooxygenase-2 gene expression in ED27 trophoblast-like cells.Placenta, 2001,22(1):80–89.
    [36] Allport VC, Pieber D, Slater DM, et al. Human labour is associated with nuclear factor-kappaB activity which mediates cyclooxygenase-2 expression and is involved with the‘functional progesterone withdrawal’. Mol Hum Reprod, 2001,7(6):581-586.
    [37] Canavan TP, Simhan HN. Innate immune function of the human decidual cell at the maternal-fetal interface. J Reprod Immunol, 2007, 74(1/2):46-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700