小G蛋白ROP6在百脉根结瘤信号途径中功能及作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豆科植物分泌类黄酮化合物,能诱导根瘤菌结瘤基因的表达,合成结瘤因子(NF),结瘤因子作为根瘤菌共生信号分子作用于寄主植物,在结瘤起始阶段发挥关键作用。植物中的结瘤因子受体NFR1和NFR5被认为共同参与接收结瘤因子信号,并与之相结合,然后依次将结瘤因子信号传递到下游调控结瘤基因,从而引起宿主植物细胞一系列形态、生理及生化变化。尽管NFR5在百脉根结瘤信号转导中起着至关重要的作用,但是它接收并传递结瘤因子信号的生化机制我们知之甚少。我们用酵母双杂交技术筛选出了与结瘤因子受体NFR5相互作用的蛋白-百脉根小G蛋白ROP6,并证实ROP6作为正调节子参与根瘤菌对豆科植物的侵染和根瘤的发育。其主要研究结果如下:
     1.以NFR5激酶结构域(NFR5-PK)为诱饵,通过酵母双杂交系统,筛选百脉根AD-cDNA文库分离得到小GTPase ROP6蛋白。利用体外蛋白pull-down以及烟草体内Co-IP等技术证实了全长的NFR5与ROP6蛋白之间的相互作用。同时构建ROP6的两个突变体,组成型活化突变体ROP6-CA (constitutively active mutants)和功能缺失突变体ROP6-DN (dominant negative mutants)。利用体外蛋白pull-down和烟草体内BiFC实验验证了NFR5与ROP6两个突变体蛋白之间的相互作用。
     2.利用基因枪轰击洋葱表皮细胞以及农杆菌介导百脉根毛根转化的方法将ROP6基因导入植物细胞,结果表明ROP6定位于植物细胞的细胞膜和细胞质中。我们用双分子荧光互补技术(BiFC)观察NFR5与ROP6在烟草叶片中的相互作用。ROP6和NFR5分别融合到青色荧光蛋白的N末端(SCN)和C末端(SCC)。SCC:NFR5和ROP6:SCN在烟草叶片细胞中共表达时,在细胞膜观察到强烈的青色荧光信号。BiFC实验证实NFR5与ROP6在植物细胞的细胞膜相互作用。
     3.通过薄板层析板(TLC)分离GTP和GDP,放射自显影检测水解产物[a-32P]GDP的方法测定ROP6蛋白的GTPase酶活,结果证实野生型的ROP6能够水解GTP,自身具有微弱的GTP酶活,在反应体系中加入NFR1和/或NFR5蛋白均不影响ROP6的GTPase酶活。
     4. Real-time PCR结果显示接种根瘤菌以后ROP6基因在百脉根根中的表达量明显升高。为了从细胞学水平检测ROP6基因的时空表达,我们构建了ROP6Pro:GUS重组质粒,用组织化学染色的方法观察ROP6基因在转化毛根中的表达,结果显示接种根瘤菌之前ROP6在根的维管束,根尖,根毛中均有少量表达,接种之后,这些部位表达量显著增加。并且在发育的根瘤皮层中ROP6基因的表达量较高,而成熟和衰老的根瘤中ROP6的表达量明显降低。启动子实验结果与Real-time PCR结果一致,证实了ROP6基因的表达确实依赖于根瘤菌的侵染。因此我们推测ROP6参与根瘤菌的侵染和根瘤的发育。
     5.通过RNA干扰(RNAi)技术下调表达ROP6基因,结果显示ROP6的RNAi抑制了植株侵染线的形成和结瘤的起始,导致RNAi植株结瘤数目明显减少。ROP6RNAi毛根中两个早期结瘤素基因NIN和ENOD40-2的表达受到明显抑制,说明ROP6是早期结瘤素基因诱导表达所必须的。这个结果证实ROP6在共生信号转导途径中发挥正调控作用。
     6.利用毛根转化技术将ROP6, ROP6-CA, ROP6-DN导入百脉根中过量表达,观察接种根瘤菌后根毛的变形表型,结果显示过量表达ROP6和ROP6-CA使得根毛的变形增加,而过量表达ROP6-DN使得根毛的变形大大减少。说明ROP6的不同活化状态能够影响根毛对结瘤因子的感知,超表达ROP6和ROP6-CA都能够增强根毛对结瘤因子的感知,而超表达ROP6-DN使得根毛对结瘤因子的感知大大降低。
Production of Nod factor molecule is activated by the release of plant predominantly flavonoids, Nod factors are a novel general class of signal molecules produced by rhizo-bia, which play a key function in the initial steps of nodulation. Both NFR1and NFR5are predicted to participate in the reception and transduction of Nod factor signal, and trans-mit it to the downstream genes. Then, there are a series of physiological and biochemical changes in host plant cells. Although NFR5is known to be essential in the Nod factor signaling in Lotus japonicus, the biochemical mechanism leading to Nod factor-induced transcriptional activation is obscure. In this report we describe a small GTPase ROP6in-teracted with Nod factor receptor NFR5and our experimental data demonstrate a role of ROP6as a positive regulator of infection thread formation and nodulation in L. japonicus. The specific research results are as follows:
     1. We use the atypical kinase domain (NFR5-PK) as bait to screen a Lotus cDNA li-brary constructed in the prey vector pGADT7-Rec and identify a small GTPase ROP6. Protein pull-down assay in vitro and Co-IP assay in planta show that the full-length NFR5could interact with ROP6. On the other hand, we construct ROP6-CA (constitutively ac-tive) and ROP6-DN (dominant negative) mutants. Using protein pull down assay in vitro and BiFC assay in planta, we find that NFR5is able to interacte with ROP6-CA and ROP6-DN respectively.
     2. ROP6is localized to the plasma membrane and cytoplasm in onion epidermal cells through particle bombardment. Similar localization results are also observed in Lo-tus hairy roots. We perform bimolecular fluorescence complementation (BiFC) to assess the interaction between NFR5and ROP6in tobacco leaves. ROP6and NFR5are fused to the split cyan fluorescent protein N terminus (SCN) and C terminus (SCC), respectively. When SCC:NFR5with ROP6:SCN are coexpressed in the leaf cells, strong cyan fluores-cent signals are detected at the plasma membrane. BiFC assay suggests that ROP6inter-acted with NFR5at the plasma membrane of living plant cells.
     3. Purified ROP6is incubated with [a-32P]GTP, and the reaction product [a-32P]GDP is detected by autoradiography on thin-layer chromatography plates (TLC). ROP6is able to hydrolyze GTP to GDP. Only wild-type ROP6has intrinsic GTPase activity without the requirement for NFR1and/or NFR5proteins in vitro.
     4. Real-time PCR approach showes that ROP6transcripts are highly expressed in the roots of L. japonicus after inoculation with M. loti. To investigate the spatial pattern of ROP6expression at the cellular level, the ROP6gene promoter is used to drive the ex-pression of the GUS reporter in transgenic hairy roots. Histochemical staining showes that the gene expression is dramatically increased in root vascular bundles, root tips and root hairs after inoculation with M. loti. The activity is concentrated in the cortex of develop-ing nodules and is down-regulated drastically in mature and senescent nodules. These observations are consistent with the results of real-time PCR and confirm that the expres-sion of ROP6gene is indeed dependent on rhizobial infection. These results indicate that ROP6involves in the process of rhizobial infection and nodule development in L. ja-ponicus.
     5. Down-regulation of ROP6gene expression by RNA interference (RNAi) signifi-cantly impairs nodulation by inhibiting infection thread formation and nodule initiation. The two nodulation-related marker genes NIN and ENOD40-2transcripts decrease mark-edly in ROP6RNAi hairy roots. These results suggest that ROP6is required for the NF induced expression of early nodulin genes. Thus, ROP6may act as a positive regulator in the process of symbiosis in L. japonicus.
     6. Overexpression of ROP6, ROP6-CA and ROP6-DN in L. japonicus lead to differ-ent root hair deformation phenotypes after inoculation with M. loti. Overexpression of ROP6and ROP6-CA increase the root hair deformation, while overexpression of ROP6-DN significantly inhibits the root hair deformation. These results suggest that dif-ferent activation state of ROP6can affect the Nod factor perception of root hairs. Over-expression of ROP6and ROP6-CA can enhance the Nod factor perception, while overex-pression of ROP6-DN greatly reduces the Nod factor perception.
引文
1. Abbal P and Tesniere C. Putative Vitis vinifera Rop-and Rab-GAP-, GEF-, and GDI-interacting pro-teins uncovered with novel methods for public genomic and EST database analysis. J Exp Bot,2010, 61:65-74.
    2. Agrawal G K, Iwahashi H and Rakwal R. Small GTPase'Rop':molecular switch for plant defense responses. FEBS Lett,2003,546:173-180.
    3. Andriankaja A, Boisson-Dernier A, Frances L, Sauviac L, Jauneau A, Barker D G and de Car-valho-Niebel F. AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell,2007,19:2866-2885.
    4. Ane J M, Kiss G B, Riely B K, Penmetsa R V, Oldroyd G E, Ayax C, Levy J, Debelle F, Baek J M, Kalo P, Rosenberg C, Roe B A, Long S R, Denarie J, and Cook D R. Medicago truncatula DMI1 re-quired for bacterial and fungal symbioses in legumes. Science,2004,303:1364-1367.
    5. Arrighi J F, Barre A, Ben Amor B, Bersoult A, Soriano L C, Mirabella R, de Carvalho-Niebel F, Jour-net E P, Gherardi M, Huguet T, Geurts R, Denarie J, Rouge P, and Gough C. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol,2006,142:265-279.
    6. Arrighi J F, Godfroy O, de Billy F, Saurat O, Jauneau A and Gough C. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc Natl Acad Sci U S A,2008, 105:9817-9822.
    7. Assmann S M. Heterotrimerie and unconventional GTP binding proteins in plant cell signaling. Plant Cell,2002,14:S355-S373.
    8. Baluska F, Jasik J, Edelmann HG, Salajova T and Volkmann D. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent. Dev Biol,2001,231:113-124.
    9. Baluska F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, Chua NH, Barlow PW and Volkmann D. Root hair formation:F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol,2000,227:618-632.
    10. Basu D, El-Assal Sel-D, Le J, Mallery E L and Szymanski D B. Interchangeable functions of Arabi-dopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development,2004,131:4345-4355.
    11. Basu D, Le J, Zakharova T, Mallery E L and Szymanski D B. A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proc Natl Acad Sci USA,2008,105:4044-4049.
    12. Baxter-Burrell A, Yang Z, Springer P S and Bailey-Serres J. RopGAP4-dependent Rop GTPase rheo-stat control of Arabidopsis oxygen deprivation tolerance. Science,2002,296:2026-2028.
    13. Bensmihen S, de Billy F and Gough C. Contribution of NFP LysM domains to the recognition of Nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLoS One,2011,6:e26114.
    14. Berken A. ROPs in the spotlight of plant signal transduction. Cell Mol Life Sci,2006,63:2446-2459.
    15. Berken A, Thomas C and Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature,2005,436:1176-1180.
    16. Bischoff F, Molendijk A, Rajendrakumar C S and Palme K. GTP-binding proteins in plants. Cell Mol Life Sci,1999,55:233-256.
    17. Blanchoin L and Staiger C J. Plant formins:diverse isoforms and unique molecular mechanism. Bio-chim Biophys Acta,2010,1803:201-206.
    18. Blanco F A, Meschini E P, Zanetti M E and Aguilar O M. A small GTPase of the Rab family is re-quired for root hair formation and preinfection stages of the common bean-Rhizobium symbiotic asso-ciation. Plant Cell,2009,21:2797-2810.
    19. Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E and Yalovsky S. Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell,2005,16: 1913-1927.
    20. Bogdanove A J and Martin G B. AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. Proc Natl Acad Sci USA,2000,97:8836-8840.
    21. Borg S, Podenphant L, Jensen T J and Poulsen C. Plant cell growth and differentiation may involve GAP regulation of Rac activity. FEBS Lett,1999,453:341-345.
    22. Borisov A Y, Madsen L H, Tsyganov V E, Umehara Y, Voroshilova V A, Batagov A O, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich I A and Stougaard J. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol,2003,131: 1009-1017.
    23. Bourne H R Sanders D A and McCormick F. The GTPase superfamily:conserved structure and mo-lecular mechanism. Nature,1991,349:117-127.
    24. Boureux A, Vignal E, Faure S and Fort P. Evolution of the Rho family of ras-like GTPases in eu-karyotes. Mol Biol Evol,2007,24:203-216.
    25. Brembu T, Winge P and Bones A M. The small GTPase AtRAC2/ROP7 is specifically expressed dur- ing late stages of xylem differentiation in Arabidopsis. J Exp Bot,2005,56:2465-2476.
    26. Brembu T, Winge P, Bones A M and Yang Z. A RHOse by any other name:a comparative analysis of animal and plant Rho GTPases. Cell Res,2006,16:435-445.
    27. Caetano-Anolles G and Gresshoff P M. Plant genetic control of nodulation. Annu Rev Microbiol,1991, 45:345-382.
    28. Carroll B J, McNeil D L and Gresshoff P M. A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol,1985,78:34-40.
    29. Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E and Parniske M. Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root en-dosymbiosis. Plant Cell,2008,20:3467-3479.
    30. Chavrier P and Goud B. The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol,1999,11:466-475.
    31. Chen T, Zhu H, Ke D, Cai K, Wang C, Gou H, Hong Z, Zhang Z. A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus. Plant Cell,2012,24:823-838.
    32. Cheung A Y and Wu H M. Over-expression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell,2004,16:257-269.
    33. Cheung A Y and Wu H M. Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol,2008,59:547-572.
    34. Clarke H R, Leigh J A and Douglas C J. Molecular signals in the interaction between plants and mi-crobes. Cell,1992,71:191-199.
    35. Clarke P R and Zhang C. Ran GTPase:a master regulator of nuclear structure and function during the eukaryotic cell division cycle? Trends Cell Biol,2001,11:366-371.
    36. Clark S E, Williams R W and Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell,1997,89:575-585.
    37. Cooper J B and Long S R. Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell,1994,6:215-225.
    38. Crutzen P J and Ramanathan V. The parasol effect on climate. Science,2003,302:1679-81.
    39. Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science,1996,273:1239-1241.
    40. Dasso M. The Ran GTPase:theme and variations. Curr Biol,2002,12:R502-R508.
    41. Deeks M J, Cvrckova F, Machesky L M, Mikitova V, Ketelaar T, Zarsky'V, Davies B and Hussey P J. Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol,2005,168: 529-540.
    42. Deeks M J and Hussey P J. Arp2/3 and'the shape of things to come'. Curr Opin Plant Biol,2003,6: 561-567.
    43. Dorjgotov D, Jurca M E, Fodor-Dunai C, Szucs A, Otvos K, Klement E, Biro J and Feher A. Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Lett, 2009,583:1175-1182.
    44. Dunaine-Fodor C and Feher A. Investigation of the elements of Rho (Rop) GTPase-dependent signal-ing in Medicago sp.:identification of Rop guanine nucleotide exchange factors (ROPGEFs) in Medi-cago truncatula. Acta Biol Szeged,2008,52:123-125.
    45. Ehrhardt D W and Long S R. Calcium spiking in plant root hairs responding to rhizobium nodulation signals. Cell,1996,85:673-681.
    46. Eklund D M, Svensson E M and Kost B. Physcomitrella patens:a model to investigate the role of RAC/ROP GTPase signaling in tip growth. JExp Bot,2010,61:1917-1937.
    47. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P and Kiss G B. A receptor kinase gene regulating symbiotic nodule development. Nature,2002,417:962-966.
    48. Etienne-Manneville S and Hall A. Rho GTPases in cell biology. Nature,2002,420:629-635.
    49. Ferguson B J, Indrasumunar A, Hayashi S, Lin M H, Lin Y H, Reid D E and Gresshoff P M. Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol,2010,52:61-76.
    50. Ferguson B J, Ross J J and Reid J B. Nodulation phenotypes of gibberellin and brassinosteroid mu-tants of pea. Plant Physiol,2005,138:2396-2405.
    51. Fu Y, Gu Y, Zheng Z, Wasteneys G and Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell,2005,120:687-700.
    52. Fu Y, Li H and Yang Z. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell,2002,14:777-794.
    53. Fu Y, Wu G and Yang Z. Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol,2001,152:1019-1032.
    54. Fu Y, Xu T, Zhu L, Wen M and Yang Z. A ROP GTPase signaling pathway controls cortical micro-tubule ordering and cell expansion in Arabidopsis. Curr Biol,2009,19:1827-1832.
    55. Fujiwara M, Umemura K, Kawasaki T and Shimamoto K. Proteomics of Rac GTPase signaling re- veals its predominant role in elicitor-induced defense response of cultured rice cells. Plant Physiol, 2006,140:734-745.
    56. Gage D J and Margolin W. Hanging by a thread:invasion of legume plants by rhizobia. Curr Opin Microbiol,2000,3:613-617.
    57. Geldner N, Friml J, Stierhof Y D, Jurgens G and Palme K. Auxin transport inhibitors block PIN1 cy-cling and vesicle trafficking. Nature,2001,413:425-428.
    58. Gleason C, Chaudhuri S, Yang T, Munoz A, Poovaiah B W and Oldroyd G E. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature,2006,441: 1149-1152.
    59. Goormachtig S, Capoen W, James E K and Holsters M. Switch from intracellular to intercellular inva-sion during water stress-tolerant legume nodulation. Proc Natl Acad Sci USA,2004,101:6303-6308.
    60. Gough C and Cullimore J. Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe inter-actions. Mol Plant Microbe Interact,2011,24:867-878.
    61. Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S and Yang Z. A Rho family GTPase controls actin dy-namics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol,2005, 169:127-138.
    62. Gu Y, Li S, Lord E M and Yang Z. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control RhoGTPase-dependent polar growth. Plant Cell,2006,18:366-381.
    63. Gu Y, Wang Z and Yang Z. ROP/RAC GTPases:an old master regulator for plant signaling. Curr Opin Plant Biol,2004,7:527-536.
    64. Hall A. Rho GTPases and the actin cytoskeleton. Science,1998,279:509-514.
    65. Hamel L P and Beaudoin N. Chitooligosaccharide sensing and downstream signaling:contrasted out-comes in pathogenic and beneficial plant-microbe interactions. Planta,2010,232:787-806.
    66. Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J and Yalovsky S. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol,2010,8: e1000282.
    67. Heidstra R, Yang W C, Yalcin Y, Peck S, Emons A M, van Kammen A, and Bisseling T. Ethylene pro-vides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development,1997,124:1781-1787.
    68. Hirsch A M, Bhuvaneswari T V, Torrey J G and Bisseling T. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA,1989,86:1244-1248.
    69. Hirsch S, Kim J, Munoz A, Heckmann A B, Downie J A and Oldroyd G E. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell,2009,21:545-557.
    70. Hong Z, Zhang Z, Olson J M and Verma D P. A novel UDP-glucose transferase is part of the eallose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell,2001,13: 769-779.
    71. Hsu S W, Cheng C L, Tzen T C and Wang C S. Rop GTPase and its target Cdc42/Rac-interac-tive-binding motif-containing protein genes respond to desiccation during pollen maturation. Plant Cell Physiol,2010,51:1197-1209.
    72. Hu Y, Zhong R, Morrison W H 3rd and Ye Z H. The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta,2003,217:912-921.
    73. Huse M and Kuriyan J. The conformational plasticity of protein kinases. Cell,2002,109:275-282.
    74. Hussey P J, Ketelaar T and Deeks M J. Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol,2006,57:109-125.
    75. Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie J A, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu G J, Kawaguchi M, et al. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature,2005,433:527-531.
    76. Indrasumunar A, Kereszt A, Searle I, Miyagi M, Li D, Nguyen C D, Men A, Carroll B J, Gresshoff P M. Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean(Glycine max L. Merr.). Plant Cell Physiol,2010,51: 201-214.
    77. Indrasumunar A, Searle I, Lin M H, Kereszt A, Men A, Carroll B J, Gresshoff P M. Nodulation factor receptor kinase 1 a controls nodule organ number in soybean (Glycine max L. Merr). Plant J,2011,65: 39-50.
    78. Ishikawa K, Yokota K, Li Y Y, Wang Y X, Liu C T, Suzuki S, et al. Isolation of a novel root-determined hypernodulation mutant rdhl of Lotus japonicus. Soil Sci Plant Nutr,2008,54: 259-263.
    79. Johansson T, Le Quere A, Ahren D, Soderstrom B, Erlandsson R, Lundeberg J, Uhlen M and Tunlid A. Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhi-zal root tissue. Mol Plant Microbe Interact,2004,17:202-215.
    80. Jones M A, Shen J J, Fu Y, Li H, Yang Z and Grierson C S. The Arabidopsis Rop2 GTPase is a posi-tive regulator of both root hair initiation and tip growth. Plant Cell,2002,14:763-776.
    81. Kalo P, Gleason C, Edwards A, Marsh J, Mitra R M, Hirsch S, Jakab J, Sims S, Long S R, Rogers J, Kiss G B, Downie J A and Oldroyd G E. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science,2005,308:1786-1789.
    82. Kanamori N, Madsen L H, Radutoiu S, Frantescu M, Quistgaard E M, Miwa H, Downie J A, James E K, Felle H H, Haaning L L, Jensen T H, Sato S, Nakamura Y, Tabata S, Sandal N and Stougaard J. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA,2006,103:359-364.
    83. Kang H, Zhu H, Chu X, Yang Z, Yuan S, Yu D, Wang C, Hong Z and Zhang Z. A novel interaction between CCaMK and a protein containing the Scythe_N ubiquitin-like domain in Lotus japonicus. Plant Physiol,2011,155:1312-1324.
    84. Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H and Shimamoto K. The small GTP-bindingprotein rac is a regulator of cell death in plants. Proc Natl Acad Sci U S A,1999,96: 10922-10926.
    85. Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H Umemura K, Umezawa T and Shimamoto K. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPases Rac in defense signaling in rice. Proc Natl Acad Sci U S A,2006,103: 230-235.
    86. Kevei Z, Lougnon G, Mergaert P, Horvath G V, Kereszt A, Jayaraman D, Zaman N, Marcel F, Regul-ski K, Kiss G B, Kondorosi A, Endre G, Kondorosi E and Ane J M.3-hydroxy-3-methylglutaryl coen-zyme a reductase 1 interacts with NORK and is crucial for nodulation in Medicago truncatula. Plant Cell,2007,19:3974-3989.
    87. Kiss E, Olah B, Kalo P, Morales M, Heckmann A B, Borbola A, Lozsa A, Kontar K, Middleton P, Downie J A, Oldroyd G E and Endre G. LIN, a novel type of U-box/WD40 protein, controls early in-fection by rhizobia in legumes. Plant Physiol,2009,151:1239-1249.
    88. Klahre U, Becker C, Schmitt A C and Kost B. Nt-RhoGD12 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J,2006,46:1018-1031.
    89. Klahre U and Kost B. Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell,2006,18:3033-3046.
    90. Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N and Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses under-ground. Plant Cell Physiol,2010,51:1381-1397.
    91. Kost B. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol,2008, 18:119-127.
    92. Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C and Chua N H. Rac homologoues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol,1999a,147:317-330.
    93. Kost B, Mathur J and Chua N H. Cytoskeleton in plant development. Curr Opin Plant Biol,1999b,2: 462-470.
    94. Krusell L, Madsen L H, Sato S, Aubert G, Genua A, Szczyglowski K, Due G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N and Stougaard J. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature,2002,420:422-426.
    95. Lammers M, Rose R, Scrima A and Wittinghofer A. The regulation of mDial by autoinhibition and its release by Rho*GTP. EMBO J,2005,24:4176-4187.
    96. Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H and Yalovsky S. A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol, 2007,17:947-952.
    97. Lee Y J, Szumlanski A, Nielsen E and Yang Z. Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol,2008,181:1155-1168.
    98. Lee Y R and Liu B. Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol,2004,136:3877-3883.
    99. Lemichez E, Wu Y, Sanchez J P, Mettouchi A, Mathur J and Chua N H. Inactivation of AtRacl by ab-scisic acid is essential for stomatal closure. Genes Dev,2001,15:1808-1816.
    100. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome J C and Denarie J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligo-saccharide signal. Nature,1990,344:781-784.
    101. Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G., Journet E P, Ane J M, Lauber E, Bisseling T, Denarie J, Rosenberg C and Debelle F. A putative Ca2'and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science,2004,303:1361-1364.
    102. Li H, Wu G, Ware D, Davis K R and Yang Z. Arabidopsis Rho-related GTPases:Diferential gene expression in pollen and polar localization in fission yeast. Plant Physiol,1998,118:407-417.
    103. Li H, Lin Y, Heath R M, Zhu M X and Yang Z. Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell, 1999, 11: 1731-1742.
    104. Li H, Shen J J, Zheng Z L, Lin Y and Yang Z. The Rop GTPase switch controls multiple developmen-tal processes in Arabidopsis. Plant Physiol, 2001, 126: 670-684.
    105. Li S, Gu Y, Yan A, Lord E and Yang Z B. RIP1 (ROP Interactive Partner 1)/ICR1 marks pollen germi-nation sites and may actin the ROP1 pathway in the control of polarized pollen growth. Mol Plant, 2008, 1: 1021-1035.
    106. Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis R, Hedden P and Holsters M. Gibberel-lins are involved in nodulation of Sesbania rostrata. Plant Physiol, 2005, 139: 1366-1379.
    107. Limpens E, Franken C, Smit P, Willemse J, Bisseling T and Geurts R. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 2003, 302: 630-633.
    108. Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T and Geurts R. Formation of organelle-like N2-fi xing symbiosomes in legume root nodules is controlled by DM12. Proc NatlAcad Sci U S A, 2005, 102: 10375-10380.
    109. Lin Y and Yang Z. Inhibition of pollen tube elongation by microinjected anti-RoplPs antibodies sug-gests a crucial role for Rho-type GTPases in the control of tip growth. Plant Cell, 1997, 9: 1647-1659.
    110. Liu W, Chen A, Luo L, Sun J, Cao L, Yu G, Zhu J and Wang Y. Characterization and expression analy-sis of Medicago truncatula ROP GTPase family during the early stage of symbiosis. J Integr Plant Biol, 2010, 52:639-652.
    111. Lohar D P, Schaff J E, Laskey J G, Kieber J J, Bilyeu K D and Bird D M. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J, 2004, 38: 203-214.
    112. Lohmann G V, Shimoda Y, Nielsen M W, J0rgensen F G, Grossmann C, Sandal N, S0rensen K, Thirup S, Madsen L H, Tabata S, Sato S, Stougaard J and Radutoiu S. Evolution and regulation of the Lotus japonicus LysM receptor gene family. Mol Plant Microbe Interact, 2010, 23: 510-521.
    113. Lu L, Lee Y R, Pan R, Maloof J N and Liu B. An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell, 2005, 16: 811-823.
    114. Madsen E B, Antolin-Llovera M, Grossmann C, Ye J, Vieweg S, Broghammer A, Krusell L, Radutoiu S, Jensen O N, Stougaard J, and Parniske M. Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J,2011,65,404-417.
    115. Madsen E B, Madsen L H, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N and Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature,2003,425:637-640.
    116. Magori S and Kawaguchi M. Long-distance control of nodulation:molecules and models. Mol Cells, 2009,27:129-134.
    117. Magori S, Oka-Kira E, Shibata S, Umehara Y, Kouchi H, Hase Y, Tanaka'A, Sato S, Tabata S and Ka-waguchi M. TOO MUCH LOVE, a root regulator associated with the long-distance control of nodula-tion in Lotus japonicus. Mol Plant Microbe Interact,2009,22:259-268.
    118. Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez E A, Driguez H, Becard G and Denarie J. Fungal lipochito-oligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature,2011,469:58-63.
    119. Markmann K, Giczey G and Parniske M. Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol,2008,6:e68.
    120. Marsh J F, Rakocevic A, Mitra R M, Brocard L, Sun J, Eschstruth A, Long S R, Schultze M, Ratet P and Oldroyd G E. Medicago truncatula NIN is essential for rhizobial-independent nodule organo-genesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol,2007,144: 324-335.
    121. Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Herve C, Cullimore J and Lefebvre B. The Medicago truncatula E3 ubiquitin li-gase PUB 1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodula-tion. Plant Cell,2010,22:3474-3488.
    122. Meier I and Brkljacic J. The nuclear pore and plant development. Curr Opin Plant Biol,2009,12: 87-95.
    123. Memon A R. The role of ADP-ribosylation factor and SARI in vesicular trafficking in plants. Biochim Biophys Acta,2004,664:9-30.
    124. Messinese E, Mun J H, Yeun L H, Jayaraman D, Rouge P, Barre A, Lougnon G, Schornack S, Bono J J, Cook D R and Ane J M. A novel nuclear protein interacts with the symbiotic DM 13 calcium-and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant Microbe Interact,2007,20: 912-921.
    125. Michelot A, Guerin C, Huang S, Ingouff M, Richard S, Rodiuc N, Staiger C J and Blanchoin L. The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell,2005,17:2296-2313.
    126. Middleton P H, Jakab J, Penmetsa R V, Starker C G, Doll J, Kalo P, Prabhu R, Marsh J F, Mitra R M, Kereszt A, Dudas B, VandenBosch K, Long S R, Cook D R, Kiss G B and Oldroyd G E. An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell,2007,19:1221-1234.
    127. Miller D, deRuijter N, Bisseling T and Emons A M. The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J,1999,17:141-154.
    128. Miwa H, Kinoshita A, Fukuda H and Sawa S. Plant meristems:CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. J Plant Res,2009,122:31-39.
    129. Miwa H, Sun J, Oldroyd G E and Downie J A. Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol Plant Microbe Interact,2006,19: 914-923.
    130. Miyazawa H, Oka-Kira E, Sato N, Takahashi H, Wu G J, Sato S, Hayashi M, Betsuyaku S, Nakazono M, Tabata S, Harada K, Sawa S, Fukuda H and Kawaguchi M. The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development,2010,137:4317-4325.
    131. Moeder W, Yoshioka K and Klessig D F. Involvement of the small GTPase Rac in defense responses of tobacco to pathogens. Mol Plant Microbe Interact,2005,18:116-124.
    132. Molendijk A J, Bischoff F, Rajendrakumar C S, Friml J, Braun M, Gilroy S and Palme K. Arabidopsis thaliana Rop GTPases are localized to the tips of root hairs and control polar growth. EMBO J,2001, 20:2779-2788.
    133. Molendijk A J, Ruperti B and Palme K. Small GTPases in vesicle trafficking. Curr Opin Plant Biol, 2004,7:694-700.
    134. Molendijk A J, Ruperti B, Singh M K, Dovzhenko A, Ditengou F A, Milia M, Westphal L, Rosahl S, Soellick T R, Uhrig J, Weingarten L, Huber M and Palme K. Acysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J,2008,53: 909-923.
    135. Moores C A and Milligan R A. Lucky 13-microtubule depolymerisation by kinesin-13 motors. J Cell Sci,2006,119:3905-3913.
    136. Moss J and Vaughan M. Molecules in the ARF orbit. JBiol Chem,1998,273:21431-21434.
    137. Mucha E, Hoefle C, Hiickelhoven R and Berken A. RIP3 and AtKinesin-13A-a novel interaction linking Rho proteins of plants to microtubules. Eur J Cell Biol,2010,89:906-916.
    138. Nagawa S, Xu T and Yang Z. RHO GTPase in plants:Conservation and invention of regulators and effectors. Small Gtpases,2010,1:78-88.
    139. Nakagawa T and Kawaguchi M. Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol,2006,47:176-180.
    140. Nie Z, Hirsch D S, Randazzo P A. Arf and its many interactors. Curr Opin Cell Biol,2003,15: 396-404.
    141.Nimchuk Z, Eulgem T, Holt B F 3rd and Dangl J L. Recognition and response in the plant immune system. Annu Rev Genet,2003,37:579-609.
    142. Nishimura R, Ohmori M, Fujita H and Kawaguchi M. A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proc Natl Acad Sci US A,2002,99:15206-15210.
    143. Nobes C D and Hall A. Rho GTPases control polarity, protrusion and adhesion during cell movement. J Cell Biol,1999,144:1235-1244.
    144. Oka-Kira E and Kawaguchi M. Long-distance signaling to control root nodule number. Curr Opin Plant Biol,2006,9:496-502.
    145. Oka-Kira E, Tateno K, Miura K, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Ta-naka A, Watanabe Y, Fukuhara I, Nagata T and Kawaguchi M. klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J,2005, 44:505-515.
    146. Oldroyd G E and Downie J A. Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol,2004,5:566-576.
    147. Oldroyd G E and Downie J A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol,2008,59:519-546.
    148. Oldroyd G E, Mitra R M, Wais R J and Long S R. Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway. Plant J,2001,28:191-199.
    149. Ono E, Wong H L, Kawasaki T, Hasegawa M, Kodama O and Shimamoto K. Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA,2001,98:759-764.
    150. Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju J S, Kudrna D, Wing R, Untergasser A, Bisseling T and Geurts R. LysM-type mycorrhizal receptor recruited for Rhizobium symbiosis in nonlegume parasponia. Science,2011,331:909-912.
    151. Padrick S B and Rosen M K. Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem,2010,79:707-735.
    152. Paduch M, Jelen F and Otlewski J. Structure of small G proteins and their regulators. Acta Biochim Pol,2001,48:829-850.
    153. Park J, Choi H J, Lee S, Lee T, Yang Z and Lee Y. Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol,2000,124:725-732.
    154. Park J, Gu Y, Lee Y, Yang Z and Lee Y. Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen generation. Plant Physiol,2004,134:129-136.
    155. Pei Z M, Ghassemian M, Kwak C M, McCourt P, Schroeder J I. Role of farnesyhransferase in ABA regulation of guard cell anion channels and plant water loss. Science,1998,282:287-290.
    156. Penmetsa R V and Cook D R. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science,1997,275:527-530.
    157. Penmetsa R V, Frugoli J A, Smith L S, Long S R and Cook D R. Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol,2003,131:998-1008.
    158. Postma J G, Jacobsen E and Feenstra W. Three pea mutants with an altered nodulation studied by ge-netic analysis and grafting. J. Plant Physiol,1988,132:424-430.
    159. Pysh L D, Wysocka-Diller J W, Camilleri C, Bouchez D and Benfey P N. The GRAS gene family in Arabidopsis:sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J,1999,18:111-119.
    160. Pueppke S G. The genetic and biochemical basis for nodulation of legumes by rhizobia. Crit Rev Bio-technol,1996,16:1-51.
    161. Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Gronlund M, Sato S, Nakamura Y, Ta-bata S, Sandal N and Stougaard J. Plant recognition of symbiotic bacteria requires two LysM recep-tor-like kinases. Nature,2003,425:585-592.
    162. Radutoiu S, Madsen L H, Madsen E B, Jurkiewicz A, Fukai E, Quistgaard E M, Albrektsen A S, James E K, Thirup S and Stougaard J. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J,2007,26:3923-3935.
    163. Repasky G A, Chenette E J, Der C J. Renewing the conspiracy theory debate:does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol,2004,14:639-647.
    164. Riely B K, Mun J H and Ane J M. Unravelling the molecular basis for symbiotic signal transduction in legumes. Mol. Plant Pathol,2006,7:197-207.
    165. Roberts K and McCann M C. Xylogenesis:the birth of a corpse. Curr Opin Plant Biol,2000,3: 517-522.
    166. Roche P, Lerouge P, Ponthus C and Prome J C. Structural determination of bacterial nodulation factors involved in the Rhizobium meliloti-alfalfa symbiosis. J Biol Chem,1991,266:10933-10940.
    167. Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian M R and Wittinghofer A. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature,2005,435: 513-518.
    168. Sagan M and Duc G. Sym28 and Sym29, two new genes involved in autoregulation of nodulation in pea (Pisum sativum L.). Symbiosis,1996,20:229-245.
    169. Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie J A, Parniske M, Hayashi M and Kawaguchi M. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell,2007,19:610-624.
    170. Schauser L, Roussis A, Stiller J and Stougaard J. A plant regulator controlling development of symbi-otic root nodules. Nature,1999,402:191-195.
    171. Schiene K, Puhler A and Niehaus K. Transgenic tobacco plants that express an antisense construct de-rived from a Medicago sativa cDNA encoding a Rac-related small GTP binding protein fail to develop necrotic lesions upon elicitor infiltration. Mol Gen Genet,2000,263:761-770.
    172. Schnabel E, Journet E P, de Carvalho-Niebel F, Duc G and Frugoli J. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol,2005,58:809-822.
    173. Schnabel E L, Kassaw T K, Smith L S, Marsh J F, Oldroyd G E, Long S R and Frugoli J A. The ROOT DETERMINED NODULATION 1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol,2011,157:328-340.
    174. Schultheiss H, Hensel G, Imani J, Broeders S, Sonnewald U, Kogel K H, Kumlehn J and Hiickelhoven R. Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol,2005,139:353-362.
    175. Schultheiss H, Preuss J, Pircher T, Eichmann R and Huckelhoven R. Barley RIC171 interacts with RACB in planta and supports entry of the powdery mildew fungus. Cell Microbiol,2008,10: 1815-1826.
    176. Shin D H, Cho M H, Kim T L, Yoo J, Kim J I, Han Y J, Song P S, Jeon J S, Bhoo S H and Hahn T R. A small GTPase activator protein interacts with cytoplasmic phytochromes in regulating root devel-opment. J Biol Chem,2010,285:32151-32159.
    177. Shin D H, Kim T L, Kwon Y K, Cho M H, Yoo J, Jeon J S, Hahn T R and Bhoo S H. Characterization of Arabidopsis RopGEF family genes in response to abiotic stresses. Plant Biotechnol Rep,2009,3: 183-190.
    178. Sidorova K K and Shumnyi V K. A collection of symbiotic mutants in pea Pisum sativum L.:creation and genetic study. Russian J Genet,2003,39:406-413.
    179. Smalle J and Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004,55,555-590.
    180. Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E, Gough C and Bisseling T. Medicago LYK3, an Entry Receptor in Rhizobial Nodulation Factor Signaling. Plant Physiol,2007,145:183-191.
    181. Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T and Geurts R. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science,2005,308: 1789-1791.
    182. Sprent J I. Evolving ideas of legume evolution and diversity:a taxonomic perspective on the occur-rence of nodulation. New Phytol,2007,174:11-25.
    183. Stacey G, Libault M, Brechenmacher L, Wan J and May G. D. Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol,2006,9:110-121.
    184. Stenmark H and Olkkonen V M. The Rab GTPase family. Genome Biol,2001,2:re-views3007.1-3007.7.
    185. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczy-glowski K and Parniske M. A plant receptor-like kinase required for both bacterial and fungal symbio-sis. Nature,2002,417:959-962.
    186. Stradal T E and Scita G. Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol,2006,18:4-10.
    187. Sun J, Cardoza V, Mitchell D M, Bright L, Oldroyd G and Harris J M. Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodula-tion. Plant J,2006,46:961-970.
    188. Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y and Hirano H Y. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development,2004,131:5649-5657.
    189. Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, Higashi S, Han S Y, Yoshida S, Asami T and Abe M. Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol,2004,45:914-922.
    190. Szucs A, Dorjgotov D, Otvos K, Fodor C, Domoki M, Gyorgyey J, Kalo P, Kiss G B, Dudits D and Feher A. Characterization of three Rop GTPase genes from alfalfa (Medicago sativa, L.). Biochim Biophys Acta,2006,1759:1080-1115.
    191. Takai Y, Sasaki T and Matozaki T. Small GTP-binding proteins. Physiol Rev,2001,81:153-208.
    192. Tansengco M L, Hayashi M, Kawaguchi M, Imaizumi-Anraku H and Murooka Y. crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus. Plant Physiol,2003,131:1054-1063.
    193. Tansengco M L, Imaizumi-Anraku H, Yoshikawa M, Takagi S, Kawaguchi M, Hayashi M and Murooka Y. Pollen development and tube growth are affected in the symbiotic mutant of Lotus ja-ponicus, crinkle. Plant Cell Physiol,2004,45:511-520.
    194. Tao L Z, Cheung A Y and Wu H M. Plant Rac-like GTPases are activated by auxin and mediate auxin-reponsive gene expression. Plant Cell,2002,14,2745-2760.
    195. Tao L Z, Cheung A Y, Nibau C and Wu H M. RAC GTPases in tobacco and Arabidopsis mediate aux-ininduced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell,2005,17,2369-2383.
    196. Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen L H, Miwa H, Nakagawa T, Sandal N, Albrektsen A S, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S and Stougaard J. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature,2006,441:1153-1156.
    197. Tirichine L, Sandal N, Madsen L H, Radutoiu S, Albrektsen A S, Sato S, Asamizu E, Tabata S and Stougaard J. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule or-ganogenesis. Science,2007,315:104-107.
    198. Trotochaud A E, Hao T, Wu G, Yang Z and Clark S E. The CAVATA1 receptor-kinase requires CAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell,1999,11:393-406.
    199. Uhrig J F, Mutondo M, Zimmermann I, Deeks M J, Machesky L M, Thomas P, Uhrig S, Rambke C, Hussey P J and Hiilskamp M. The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development,2007,134:967-977.
    200. Valster A H, Hepler P K and Chernoff J. Plant GTPases:the Rhos in bloom. Trends Cell Biol,2000,10: 141-146.
    201. Vernoud V, Horton A C, Yang Z and Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol,2003,131:1191-1208.
    202. Vijn I, das Nevas L, van Kammen A, Franssen H and Bisseling T. Nod factors and nodulation in plants. Science,1993,260:1764-1765.
    203. Vitousek P M, Aber J D, Howarth R W, Likens G E, Matson P A, W. D, H. S W, Schlesinger and Til-man D G. Human alteration of the global nitrogen cycle:causes and consequences. Ecological Appli-cations,1997,7:737-750.
    204. Vitousek P M, Hattenschwiler S, Olander L and Allison S. Nitrogen and nature. Ambio,2002,31: 97-101.
    205. Wennerberg K, Rossman K L and Der C J. The Ras superfamily at a glance. J Cell Sci,2005,118: 843-846.
    206. Winge P, Brembu T and Bones A M. Cloning and characterization of rac-like cDNAs from Arabidop-sis thaliana. Plant Mol Biol,1997,35:483-495.
    207. Winge P, Brembu T, Kristensen R and Bones A M. Genetic structure and evolution of RAC GTPases in Arabidopsis thaliana. Genetics,2000,156:1959-1971.
    208. Won S K, Lee Y J, Lee H Y, Heo Y K, Cho M and Cho H T. Cis-element-and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiol,2009,150:1459-1473.
    209. Wopereis J, Pajuelo E, Dazzo F B, Jiang Q, Gresshoff P M, De Bruijn F J, Stougaard J and Szczy-glowski K. Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. PPhant J,2000,23:97-114.
    210. Wu G, Gu Y, Li S and Yang Z. A genome-wide analysis of Arabidopsis Rop-interactive CRIB mo-tif-containing proteins that act as Rop GTPase targets. Plant Cell,2001,13:2841-2856.
    211. Xin Z, Zhao Y and Zheng Z L. Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP 10 small GTPases in Arabidopsis. Plant Physiol,2005,139:1350-1365.
    212. Yalovsky S, Bloch D, Sorek N and Kost B. Regulation of membrane trafficking, cytoskeleton dynam- ics, and cell polarity by ROP/RAC GTPases. Plant Physiol, 2008, 147: 1527-1543.
    213. Yang G, Gao P, Zhang H, Huang S and Zheng Z L. A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS One, 2007, 2: el074.
    214. Yang Z and Watson J C. Molecular cloning and characterization of rho, a ras-related small GTP-binding protein from the garden pea. Proc Natl Aead Sci U S A, 1993, 90: 8732-8736.
    215. Yang Z. Small GTPase: Versatile signaling switches in plants. Plant Cell, 2002, 14: S375-S388.
    216. Yano K, Shibata S, Chen W L, Sato S, Kaneko T, Jurkiewicz A, Sandal N, Banba M, Imai-zumi-Anraku H, Kojima T, Ohtomo R, Szczyglowski K, Stougaard J, Tabata S, Hayashi M, Kouchi H, and Umehara Y. CERBERUS, a novel U-box protein containing WD-40 repeats, is required for forma-tion of the infection thread and nodule development in the legume-Rhizobium symbiosis. Plant J, 2009,60: 168-180.
    217. Yano K, Yoshida S, Muller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang T L, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, and Parniske M. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A, 2008, 105: 20540-20545.
    218. Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S and Yang Z. Arabidopsis Formin3 directs the forma-tion of actin cables and polarized growth in pollen tubes. Plant Cell, 2009, 21: 3868-3884.
    219. Yendrek C R, Lee Y C, Morris V, Liang Y, Pislariu C I, Burkart G, Meckfessel M H, Salehin M, Kessler H, Wessler H, Lloyd M, Lutton H, Teillet A, Sherrier D J, Journet E P, Harris J M and Dick-stein R. A putative transporter is essential for integr ating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. Plant J, 2010, 62: 100-112.
    220. Yuksel B and Memon A R. Comparative phylogenetic analysis of small GTP-binding genes of model legume plants and assessment of their roles in root nodules. J Exp Bot, 2008, 59: 3831-3844.
    221. Yuksel B and Memon A R. Legume small GTPases and their role in the establishment of symbiotic associations with Rhizobium spp. Plant Signal Behav, 2009, 4: 257-260.
    222. Zhang X C, Wu X, Findley S, Wan J, Libault M, Nguyen H T, Cannon S B and Stacey G. Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiol, 2007, 144: 623-636.
    223. Zheng Z L, Nafisi M, Tarn A, Li H, Crowell D N, Chary S N, Schroeder J I, Shen J and Yang Z. Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell, 2002, 14, 2787-2797.
    224. Zheng Z L and Yang Z. The Rop GTPase:an emerging signaling switch in plants. Plant Molecular Biology,2000,44:1-9.
    225. Zhu H, Chen T, Zhu M, Fang Q, Kang H, Hong Z, and Zhang Z. A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus. Plant Physiol,2008,148:337-347.
    226. Zhukov V, Radutoiu S, Madsen L H, Rychagova T, Ovchinnikova E, Borisov A, Tikhonovich I and Stougaard J. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule de-velopment. Mol Plant Microbe Interact,2008,21:1600-1608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700