MAPK级联反应在共生信号传递中功能及作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
百脉根共生受体激酶基因SymRK是第一个被鉴定出来参与根瘤菌和菌根真菌信号转导的基因,是根瘤菌结瘤因子及菌根真菌菌根因子共生信号的交汇点,在共生信号传递过程中扮演重要的角色。本研究以SymRK为诱饵,从百脉根酵母双杂交的cDNA文库中分离到与之相互作用蛋白SIP2(SymRK-interacting protein2),SIP2是一个典型的有丝分裂原激活蛋白激酶激酶(MAPKK)。MAPK级联反应由MAPKKK、MAPKK和MAPK组成,该级联反应广泛存在于酵母、动物和植物等真核生物中,并参与各种生物或非生物的胁迫反应、激素反应、细胞分裂和发育过程的信号转导,MAPKK处于此级联的中间环节,通过磷酸化接收MAPKKK传来的信号,又通过磷酸化的方式将信号向下传递,这个级联将细胞外信号逐级放大并传导至细胞核,导致转录组的变化。本论文深入研究了MAPK级联反应在豆科植物共生信号传递过程中的作用机制和功能,其主要研究结果如下:
     1、共生受体激酶SymRK特异性地与MAPKK相互作用:利用酵母双杂交技术证实了百脉根MAPKK (SIP2)能与SymRK蛋白激酶结构域相互作用,不与其它的受体激酶NFR1及NFR5的蛋白激酶结构域相互作用,而百脉根MAPKK2和MAPKK10也不能与SymRK相互作用;同时,发现另一豆科植物苜蓿NORK (SymRK同系物)和SIMKK(SIP2同系物)也存在相互作用,并有交叉反应;体外pull-down进一步证实了SIP2不同区段与SymRK-PK间的互作;双分子荧光互补(BiFC)也验证了两个全长蛋白在烟草表皮细胞中的相互作用。这些结果表明SymRK与MAPKK特异性的相互作用在豆科植物中很保守,这两个蛋白在豆科植物中可能有着共同的作用机制。
     2、SIP2是一个有功能的蛋白激酶:SIP2编码一个丝/苏氨酸的蛋白激酶,它是否具有磷酸化和自磷酸化活性?在大肠杆菌中表达His-SIP2和GST-SIP2融合蛋白,体外磷酸化结果表明SIP2具有自磷酸化和底物水平磷酸化活性,表明SIP2是一个有功能的蛋白激酶,并且MPK6是其磷酸化底物,表明SIP2是一个典型的MAPKK;为了考察SymRK是否与SIP2互为磷酸化底物,首先将SymRK-PK和SIP2结合ATP位点进行点突变,得到SymRK-PK-KR和SIP2-KR两个磷酸化活性缺失的突变体,磷酸化结果表明SIP2不能磷酸化SymRK-PK,也不能被SymRK所磷酸化,即SymRK和SIP2不能互为磷酸化底物。
     3.SymRK抑制SIP2底物水平磷酸化的活性:为了进一步了解SymRK与SIP2间相互作用机制,我们在测定MPK6是SIP2磷酸化底物时,加入SymRK-PK或SymRK-PK-KR蛋白,考察SymRK对SIP2激酶活性的影响,结果表明随着SymRK-PK或SymRK-PK-KR浓度的增加,SIP2底物磷酸化活性受到抑制,并有很明显的剂量效应,在这个体系中加入NFR1-PK或BSA对SIP2磷酸化活性没有影响,表明SymRK特异性地抑制SIP2磷酸化MPK6的活性。
     4、SIP2在百脉根中的表达特征及亚细胞定位:鉴于SymRK在共生早期呈组成型表达,SIP2的表达是否呈现与SymRK一样的表达模式?分别收集接种和未接种根瘤菌的百脉根幼根、茎、叶、瘤等材料,利用实时荧光定量PCR检测了SIP2基因在百脉根不同组织中的表达特征,研究结果表明,在接种和未接种根瘤菌的百脉根幼根、茎、叶、瘤中,SIP2表达水平差别不大,呈组成型表达;通过发根农杆菌介导的毛根转化技术,将SIP2::GFP融合子导入百脉根根中,在激光共聚焦显微镜下观察到SIP2::GFP融合蛋白定位在细胞质和细胞膜,而单独的GFP蛋白在细胞质、膜与核中都有荧光信号;利用基因枪技术在洋葱表皮细胞中定位,通过质-壁分离处理后,SIP2::GFP融合蛋白的荧光信号主要集中在细胞膜和细胞质,而GFP对照的荧光遍布整个胞质,充分证明SIP2定位在细胞膜和细胞质。
     5、百脉根SIP2调控根瘤菌侵染及根瘤原基的形成:为了鉴定SIP2在共生过程中的生物学功能,我们构建了两个基因沉默载体,通过毛根转化导入百脉根根中,在根瘤菌存在条件下进行盆栽试验,4周后通过荧光定量PCR测定SIP2基因的表达水平并观察植株结瘤表型,结果显示,抑制SIP2基因表达导致植株结瘤能力显著下降,侵入线和根瘤原基形成的效率显著降低;进一步分析表明SIP2-RNAi毛根中与早期根瘤菌侵染相关的3个标记基因的表达都受到不同程度的抑制,而其它两种MAPKKs的表达不受影响,这表明豆科植物SIP2参与根瘤菌早期侵染和根瘤原基的形成,在豆科植物与根瘤菌共生体形成过程中起调控作用。
     6、SymRK-SIP2的相互作用不影响菌根真菌与植物的共生:利用SIP2-RNAi毛根检测AM真菌的感染,结果显示RNAi-1和RNAi-2植株的毛根与转化空载体毛根对照一样都能被AM真菌感染并在细胞内形成丛枝,表明SIP2基因与菌根共生体形成无关,而是特异地调控根瘤共生体的形成。
SymRK (symbiosis receptor-like kinase) is first cloned to recognition of both arbuscular mycorrhizal fungal and nitrogen-fixing rhizobial bacteria, likely active near the junction of fungal and rhizobial signaling cascades. SymRK is required for an early signal transduction pathway in the rhizobium-legume symbiosis. In our study, we used SymRK kinase domain as a bait to screen a yeast two-hybrid cDNA library prepared from early rhizobium-inoculated Lotus roots, one cDNA encoding a novel protein was designated as SIP2(SymRK-interacting protein2), which is a typical MAP kinase kinase (MAPKK). MAPK cascades are minimally composed of three kinase modules, which are involed in the regulation of development, growth, differentiation, programmed cell death, hormonal and stress response. Signaling through MAPK cascades is a fundamental and conserved process in animals, plants and yeast. MAPKK is in the middle part of MAPK cascades, needed to be activatied by upstream receptors MAPKKKs through phosphorylation, and phosphorylate MAPKs as downstream targets. Extracellular signal progressively amplified and transmitted to the cell nucleus through MAPK signaling cascades, led to changes in the transcriptone. This work studied the role and mechanism of MAPK signaling cascade during the rhizobium-legume symbiosis signaling pathway in Lotus japonicus. The main results are as follows:
     1. SymRK is specific interact with MAPKK. Using the yeast two-hybrid system, MAPKK (SIP2) interacted with the protein kinase domain of SymRK, but didn't interact with protein kinase domain of NFR1or NFR5. Other MAPKKs, such as MAPKK2and MAPKK10from L. japonicus didn't interact with SymRK neither. In addition, the interaction is conserved in medicago. NORK from alfalfa is the ortholog of SymRK interact with SIMKK, which is the ortholog of SIP2from alfalfa, the cross interactions among them. We further verified the interactions between SIP2constructs and SymRK-PK using an in vitro protein-protein pull-down assay. The technique of BiFC (bimolecular fluorescence complementation) confirms this interaction in Nicotiana benthamiana epidermis leaves. These results indicate that the interaction between SymRK and MAPKK is specific and conserved in the legume, the two proteins may have a common mechanism in the leguminous plants.
     2. SIP2is a functional protein kinase. SIP2is a MAPKK, did it has autophosphorylate or transphosphorylate a protein substrate activity? Purified GST-SIP2and His-SIP2proteins were subjected to in vitro kinase assays using casein as a substrate, after autoradiography, we detected that SIP2was able to autophosphorylate itself and phosphorylate casein. SIP2can use MPK6as a substrate for phosphorylation, so SIP2is a typical MAPKK. To test if SymRK could be phosphorylated by SIP2or SIP2could be phosphorylated by SymRK. The kinase activity of SymRK and SIP2had to be abolished, we created kinase negative forms by replacing the absolutely conserved K residue with R in the ATP-binding site. The results showed that SIP2could not phosphorylate SymRK-PK-KR and SymRK failed to phosphorylate the SIP2-KR, these suggesting that SymRK is neither a potential phosphorylation target nor a kinase source of S1P2.
     3. SymRK is an inhibitor of SIP2kinase. To learn more about the interaction mechanism between SymRK and SIP2, we added an increasing amount of either kinase-active (SymRK-PK) or kinase-negative SymRK (SymRK-PK-KR) as an effector to the kinase-active SIP2assays in the presence of MPK6-KR as a substrate. The results showed that the kinase activity of SIP2decreased as the increase of SymRK in a dose-dependent manner. When added an increasing amount of NFR1-PK or bovine serum albumin (BSA) to the SIP2kinase assays, we did not observe any inhibitory effect on the SIP2kinase activity, suggesting that SymRK is a specific inhibitory effect on the kinase activity of SIP2towards the MPK6substrate.
     4. Expression of SIP2gene and subcellular localization of SIP2protein. Lotus SymRK is constitutively expressed in early symbiosis signaling pathway, we asked if the SIP2expression patterns similar with SymRK. In this study, young roots, stem, leaves and nodules were harvested at different time points after inoculation with M. loti MAFF303099, the expression levels of SIP2were measured using real-time PCR. Our results showed that SIP2was expressed in all tissues tested, including roots, stem, leaves and nodules, did not observe significant changes in SIP2mRNA level, SIP2is constitutively expressed. Through Agrobacterium rhizogenes LBA1334-mediated transformation, GFP:SIP2expressed in Lotus hairy roots, the fluorescence was observed under a confocal laser scanning microscope, GFP::SIP2localized to the plasma membrane and cytoplasm, GFP alone was used as a control, which was distributed in the cytoplasm and nucleus. The plasmid GFP::SIP2was delivered to the onion epidermal cells via particle bombardment. After plasmolysis, the fluorescence signal was observed in the cytoplasm and plasma membrane, while the GFP control fluorescence throughout the cytoplasm. We conclude that the SIP2protein is localized to the plasma membrane and cytoplasm.
     5. Lotus SIP2regulate of Rhizobium infection and nodule primordia formation. To identify the SIP2biological functions in the symbiotic process, two RNAi constructs were used to generate L. japonicus hairy roots via A. rhizogenes LBA1334infection, the hairy roots were inoculated with M. loti MAFF303099to induce nodule formation and their nodulation phenotypes were analyzed4weeks post inoculation. The suppression of SIP2expression was confirmed using real-time PCR amplification of a region in the SIP2mRNA. The average nodule number per root of SIP2-RNAi were significantly lower than that of the control hairy roots, IT formation and nodule initiation appeared to be impaired by the knockdown expression of SIP2in RNAi hairy roots. The expression levels of SIP2and three marker genes for infection thread and nodule primordial formation were down-regulated drastically, while the expression of two other MAPKKs genes were not altered. These observations demonstrate an essential role of SIP2in the early symbiosis signaling and nodule organogenesis.
     6. SymRK-SIP2interaction is not required for arbuscular mycorrhizal colonization. We infected the SIP2-RNAi hairy roots with Glomus intraradices, a common arbuscular mycorrhizal fungus. There was no observable difference in the efficiency of hyphal and arbuscular colonization between SIP2-RNAi hairy roots and the control hairy roots expressing the empty vector. Therefore, we conclude that SymRK-SIP2interaction is specific for the root response to Rhizobium infection and is not required for arbuscular mycorrhizal colonization.
引文
1. Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Medigue C, Yamaura M, Kakoi K and Kucho K. The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact, 2010,23(5):593-607.
    2. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen N H, Zhu S, Qiu J L, Micheelsen P, Rocher A, Petersen M, Newman M A, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O and Mundy J. The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J,2005,24(14):2579-2589.
    3. Andriankaja A, Boisson-Dernier A, Frances L, Sauviac L, Jauneau A, Barker D G and de Carvalho-Niebel F. AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell,2007,19(9):2866-2885.
    4. Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M and Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature,2002, 415(6875):977-983.
    5. Bardwell L and Thorner J. A conserved motif at the amino termini of MEKs might mediate high-affinity interaction with the cognate MAPKs. Trends Biochem Sci,1996,21(10):373-374.
    6. Bastmeyer M, Deising H B and Bechinger C. Force exertion in fungal infection. Annu Rev Biophys Biomol Struct,2002,31:321-341.
    7. Beck M, Komis G, Ziemann A, Menzel D and Samaj J. Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol,2010,189(4):1069-1083.
    8. Becraft P W. Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol,2002,18: 163-192.
    9. Bogre L, Calderini O, Binarova P, Mattauch M, Till S, Kiegerl S, Jonak C, Pollaschek C, Barker P, Huskisson N S, Hirt H and Heberle-Bors E. A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell,1999,11(1):101-113.
    10. Borisov A Y, Madsen L H, Tsyganov V E, Umehara Y, Voroshilova V A, Batagov A O, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich I A and Stougaard J. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol,2003,131(3):1009-1017.
    11. Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman M A, Shokat K M, Rietz S, Parker J and Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J,2006,47(4):532-546.
    12. Bucher M, Wegmuller S and Drissner D. Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol,2009,12(4):500-507.
    13. Caetano-Anolles G and Gresshoff P M. Plant genetic control of nodulation. Annu Rev Microbiol, 1991,45:345-382.
    14. Calderini O, Bogre L, Vicente O, Binarova P, Heberle-Bors E and Wilson C. A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci,1998,111 (Pt 20):3091-3100.
    15. Capoen W, Goormachtig S, De Rycke R, Schroeyers K and Holsters M. SrSymRK, a plant receptor essential for symbiosome formation. Proc Natl Acad Sci U S A,2005,102(29): 10369-10374.
    16. Cardenas L, Holdaway-Clarke T L, Sanchez F, Quinto C, Feijo J A, Kunkel J G and Hepler P K. Ion changes in legume root hairs responding to Nod factors. Plant Physiol,2000,123(2): 443-452.
    17. Cardinale F, Meskiene I, Ouaked F and Hirt H. Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell,2002,14(3):703-711.
    18. Carroll B J, McNeil D L and Gresshoff P M. A Supernodulation and Nitrate-Tolerant Symbiotic (nts) Soybean Mutant. Plant Physiol,1985,78(1):34-40.
    19. Catoira R, Galera C, de Billy F, Penmetsa R V, Journet E P, Maillet F, Rosenberg C, Cook D, Gough C and Denarie J. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell,2000,12(9):1647-1666.
    20. Ceremonie H, Cournoyer B, Maillet F, Normand P and Fernandez M P. Genetic complementation of rhizobial nod mutants with Frankia DNA:artifact or reality? Mol Gen Genet, 1998,260(1):115-119.
    21. Champion A, Picaud A and Henry Y. Reassessing the MAP3K and MAP4K relationships. Trends Plant Sci,2004,9(3):123-129.
    22. Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E and Parniske M. Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell,2008,20(12):3467-3479.
    23. Cho S K, Larue C T, Chevalier D, Wang H, Jinn T L, Zhang S and Walker J C. Regulation of floral organ abscission in Arabidopsis thaliana. Proc Natl Acad Sci U S A,2008,105(40): 15629-15634.
    24. Clark S E, Williams R W and Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell,1997,89(4): 575-585.
    25. Colcombet J and Hirt H. Arabidopsis MAPKs:a complex signalling network involved in multiple biological processes. Biochem J,2008,413(2):217-226.
    26. Cook C E, Whichard L P, Turner B, Wall M E and Egley G H. Germination of Witchweed (Striga lutea Lour.):Isolation and Properties of a Potent Stimulant. Science,1966,154(3753): 1189-1190.
    27. Cooper J B and Long S R. Morphogenetic Rescue of Rhizobium meliloti Nodulation Mutants by trans-Zeatin Secretion. Plant Cell,1994,6(2):215-225.
    28. Dangl J L and Jones J D. Plant pathogens and integrated defence responses to infection. Nature, 2001,411(6839):826-833.
    29. Deakin W J and Broughton W J. Symbiotic use of pathogenic strategies:rhizobial protein secretion systems. Nat Rev Microbiol,2009,7(4):312-320.
    30. Delis C, Krokida A, Georgiou S, Pena-Rodriguez L M, Kavroulakis N, Ioannou E, Roussis V, Osbourn A E and Papadopoulou K K. Role of lupeol synthase in Lotus japonicus nodule formation. New Phytol,2010,189(1):335-346.
    31. Den Herder G, Yoshida S, Antolin-Llovera M, Ried M K and Parniske M. Lotus japonicus E3 Ligase SEVEN IN ABSENTIA4 Destabilizes the Symbiosis Receptor-Like Kinase SYMRK and Negatively Regulates Rhizobial Infection. Plant Cell,2012.
    32. Denarie J and Cullimore J. Lipo-oligosaccharide nodulation factors:a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell,1993,74(6):951-954.
    33. Dievart A and Clark S E. Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. Curr Opin Plant Biol,2003,6(5):507-516.
    34. Doczi R, Brader G, Pettko-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M and Hirt H. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell,2007, 19(10):3266-3279.
    35. Droillard M J, Boudsocq M, Barbier-Brygoo H and Lauriere C. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett,2004, 574(1-3):42-48.
    36. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P and Kiss G B. A receptor kinase gene regulating symbiotic nodule development. Nature,2002,417(6892):962-966.
    37. Ferguson B J, Ross J J and Reid J B. Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol,2005,138(4):2396-2405.
    38. Friedman A and Perrimon N. High-throughput approaches to dissecting MAPK signaling pathways. Methods,2006,40(3):262-271.
    39. Frye C A, Tang D and Innes R W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A,2001,98(1):373-378.
    40. Fujiki K, Mizuno T, Hisamoto N and Matsumoto K. The Caenorhabditis elegans Ste20-related kinase and Rac-type small GTPase regulate the c-Jun N-terminal kinase signaling pathway mediating the stress response. Mol Cell Biol,2010,30(4):995-1003.
    41. Gage D J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev,2004,68(2):280-300.
    42. Genre A, Chabaud M, Faccio A, Barker D G and Bonfante P. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell,2008,20(5):1407-1420.
    43. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M and Bogusz D. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci U S A,2008,105(12):4928-4932.
    44. Gomez-Gomez L, Bauer Z and Boller T. Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell,2001,13(5):1155-1163.
    45. Gomez-Gomez L and Boller T. Flagellin perception:a paradigm for innate immunity. Trends Plant Sci,2002,7(6):251-256.
    46. Gough C and Cullimore J. Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Mol Plant Microbe Interact,2011,24(8):867-878.
    47. Graham P H and Vance C P. Legumes:importance and constraints to greater use. Plant Physiol, 2003,131(3):872-877.
    48. Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A and Ellis B E. Ancient signals:comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci,2006,11 (4):192-198.
    49. Hanks S K and Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily:kinase (catalytic) domain structure and classification. FASEB J,1995,9(8):576-596.
    50. He C, Fong S H, Yang D and Wang G L. BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Microbe Interact,1999,12(12): 1064-1073.
    51. Heckman D S, Geiser D M, Eidell B R, Stauffer R L, Kardos N L and Hedges S B. Molecular evidence for the early colonization of land by fungi and plants. Science,2001,293(5532): 1129-1133.
    52. Hirsch A M, Bhuvaneswari T V, Torrey J G and Bisseling T. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci U S A,1989, 86(4):1244-1248.
    53. Hirsch A M and Fang Y. Plant hormones and nodulation:what's the connection? Plant Mol Biol, 1994,26(1):5-9.
    54. Holsters M. SYMRK, an enigmatic receptor guarding and guiding microbial endosymbioses with plant roots. Proc Natl Acad Sci U S A,2008,105(12):4537-4538.
    55. Hu C D, Chinenov Y and Kerppola T K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell,2002, 9(4):789-798.
    56. Hu C D and Kerppola T K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol,2003,21(5): 539-545.
    57. Huang Y, Li H, Hutchison C E, Laskey J and Kieber J J. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J,2003, 33(2):221-233.
    58. Humphreys C P, Franks P J, Rees M, Bidartondo M I, Leake J R and Beerling D J. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun,2010,1:103.
    59. Ichimura K, Shinozaki, K., and Tena, G.. Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends Plant Sci,2002,7(7):301-308.
    60. Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie J A, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu G J, Kawaguchi M, et al. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature,2005,433(7025):527-531.
    61. Jacobs D, Glossip D, Xing H, Muslin A J and Kornfeld K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev, 1999,13(2):163-175.
    62. Johansson A C, Sundler M, Kjellen P, Johannesson M, Cook A, Lindqvist A K, Nakken B, Bolstad A I, Jonsson R, Alarcon-Riquelme M and Holmdahl R. Genetic control of collagen-induced arthritis in a cross with NOD and C57BL/10 mice is dependent on gene regions encoding complement factor 5 and FcgammaRIIb and is not associated with loci controlling diabetes. Eur J Immunol,2001,31(6):1847-1856.
    63. Jonak C, Okresz L, Bogre L and Hirt H. Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol,2002,5(5):415-424.
    64. Kalo P, Gleason C, Edwards A, Marsh J, Mitra R M, Hirsch S, Jakab J, Sims S, Long S R, Rogers J, Kiss G B, Downie J A and Oldroyd G E. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science,2005,308(5729): 1786-1789.
    65. Kanamori N, Madsen L H, Radutoiu S, Frantescu M, Quistgaard E M, Miwa H, Downie J A, James E K, Felle H H, Haaning L L, Jensen T H, Sato S, Nakamura Y, Tabata S, Sandal N and Stougaard J. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A,2006, 103(2):359-364.
    66. Kang H, Zhu H, Chu X, Yang Z, Yuan S, Yu D, Wang C, Hong Z and Zhang Z. A novel interaction between CCaMK and a protein containing the ScytheN ubiquitin-like domain in Lotus japonicus. Plant Physiol,2011,155(3):1312-1324.
    67. Ke D, Fang Q, Chen C, Zhu H, Chen T, Chang X, Yuan S, Ma L, Hong Z and Zhang Z. Small GTPase ROP6 Interacts with NFR5 and Is Involved in Nodule Formation in Lotus japonicus. Plant Physiol,2012.
    68. Kevei Z, Lougnon G, Mergaert P, Horvath G V, Kereszt A, Jayaraman D, Zaman N, Marcel F, Regulski K, Kiss G B, Kondorosi A, Endre G, Kondorosi E and Ane J M. 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 interacts with NORK and is crucial for nodulation in Medicago truncatula. Plant Cell,2007,19(12):3974-3989.
    69. Kieber J J, Rothenberg M, Roman G, Feldmann K A and Ecker J R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell,1993,72(3):427-441.
    70. Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Eklof S, Till S, Bogre L, Hirt H and Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell,2000,12(11):2247-2258.
    71. Kim M H, Roh H E, Lee M N and Hur M W. New fast BiFC plasmid assay system for in vivo protein-protein interactions. Cell Physiol Biochem,2007,20(6):703-714.
    72. Kosuta S, Hazledine S, Sun J, Miwa H, Morris R J, Downie J A and Oldroyd G E. Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci U S A,2008,105(28):9823-9828.
    73. Kosuta S, Held M, Hossain M S, Morieri G, Macgillivary A, Johansen C, Antolin-Llovera M, Parniske M, Oldroyd G E, Downie A J, Karas B and Szczyglowski K. Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program. Plant J,2011,67(5): 929-940.
    74. Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N and Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol,2010,51 (9):1381-1397.
    75. Kovtun Y, Chiu W L, Tena G and Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A,2000,97(6): 2940-2945.
    76. Krusell L, Madsen L H, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N and Stougaard J. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature,2002,420(6914):422-426.
    77. Kumagai H, Kinoshita E, Ridge R W and Kouchi H. RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus. Plant Cell Physiol,2006,47(8): 1102-1111.
    78. Lee H Y, Bae G U, Jung I D, Lee J S, Kim Y K, Noh S H, Stracke M L, Park C G, Lee H W and Han J W. Autotaxin promotes motility via G protein-coupled phosphoinositide 3-kinase gamma in human melanoma cells. FEBS Lett,2002,515(1-3):137-140.
    79. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome J C and Denarie J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature,1990,344(6268):781-784.
    80. Li J. Brassinosteroids signal through two receptor-like kinases. Curr Opin Plant Biol,2003,6(5): 494-499.
    81. Lohar D P, Schaff J E, Laskey J G, Kieber J J, Bilyeu K D and Bird D M. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J,2004, 38(2):203-214.
    82. Lopez-Gomez M, Sandal N, Stougaard J and Boller T. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. JExp Bot,2011.
    83. Madsen E B, Antolin-Llovera M, Grossmann C, Ye J, Vieweg S, Broghammer A, Krusell L, Radutoiu S, Jensen O N, Stougaard J and Parniske M. Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J,2011,65(3):404-417.
    84. Madsen E B, Madsen L H, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N and Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature,2003,425(6958):637-640.
    85. Magori S and Kawaguchi M. Long-distance control of nodulation:molecules and models. Mol Cells,2009,27(2):129-134.
    86. Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez E A, Driguez H, Becard G and Denarie J. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature,2011,469(7328): 58-63.
    87. Markmann K, Giczey G and Parniske M. Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol,2008,6(3): e68.
    88. Markmann K and Parniske M. Evolution of root endosymbiosis with bacteria:How novel are nodules? Trends Plant Sci,2009,14(2):77-86.
    89. Martin S, Jerome R N, Epelbaum M I, Williams A M and Walsh W. Addressing hemolysis in an infant due to mother-infant ABO blood incompatibility. J Med Libr Assoc,2008,96(3):183-188.
    90. Masson-Boivin C, Giraud E, Perret X and Batut J. Establishing nitrogen-fixing symbiosis with legumes:how many rhizobium recipes? Trends Microbiol,2009,17(10):458-466.
    91. Meszaros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardoczy V, Teige M, Koncz C, Peck S and Bogre L. The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J,2006,48(4):485-498.
    92. Miller F. Glycopeptides of human immunoglobulins.3. The use and preparation of specific glycosidases. Immunochemistry,1972,9(3):217-228.
    93. Mitra R M, Gleason C A, Edwards A, Hadfield J, Downie J A, Oldroyd G E and Long S R. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development:Gene identification by transcript-based cloning. Proc Natl Acad Sci U S A,2004,101(13):4701-4705.
    94. Miwa H, Kinoshita A, Fukuda H and Sawa S. Plant meristems:CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. J Plant Res,2009,122(1): 31-39.
    95. Miwa H, Sun J, Oldroyd G E and Downie J A. Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol Plant Microbe Interact, 2006,19(8):914-923.
    96. Miyazawa H, Oka-Kira E, Sato N, Takahashi H, Wu G J, Sato S, Hayashi M, Betsuyaku S, Nakazono M, Tabata S, Harada K, Sawa S, Fukuda H and Kawaguchi M. The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development,2010,137(24):4317-4325.
    97. Mockaitis K and Howell S H. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J,2000,24(6):785-796.
    98. Mody N, Campbell D G, Morrice N, Peggie M and Cohen P. An analysis of the phosphorylation and activation of extracellular-signal-regulated protein kinase 5 (ERK5) by mitogen-activated protein kinase kinase 5 (MKK5) in vitro. Biochem J,2003,372(Pt 2):567-575.
    99. Murphy H M, Nadzam G R, Schneider E, Smiley K and Wideman C H. Dominance of nonphotic cues in the circadian rhythm of body temperature in vasopressin-deficient rats. Ann N Y Acad Sci,1999,897:436-439.
    100. Murray J D, Karas B J, Sato S, Tabata S, Amyot L and Szczyglowski K. A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science,2007, 315(5808):101-104.
    101. Nakagami H, Pitzschke A and Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci,2005,10(7):339-346.
    102. Nishimura R, Hayashi M, Wu G J, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K and Kawaguchi M. HAR1 mediates systemic regulation of symbiotic organ development. Nature,2002,420(6914):426-429.
    103. Normand P, Lapierre P, Tisa L S, Gogarten J P, Alloisio N, Bagnarol E, Bassi C A, Berry A M, Bickhart D M, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino M P, Goltsman E, Huang Y, Kopp O R, Labarre L, et al. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res,2007,17(1):7-15.
    104. Oka-Kira E and Kawaguchi M. Long-distance signaling to control root nodule number. Curr Opin Plant Biol,2006,9(5):496-502.
    105. Oka-Kira E, Tateno K, Miura K, Haga T, Hayashi M, Harada K, Sato S, Tabata S, Shikazono N, Tanaka A, Watanabe Y, Fukuhara I, Nagata T and Kawaguchi M. klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J,2005,44(3):505-515.
    106. Oldroyd G E and Downie J A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol,2008,59:519-546.
    107. Oldroyd G E, Engstrom E M and Long S R. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell,2001,13(8):1835-1849.
    108. Oldroyd G E, Murray J D, Poole P S and Downie J A. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet,2011,45:119-144.
    109. Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju J S,Kudrna D, Wing R, Untergasser A, Bisseling T and Geurts R. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science,2011,331(6019):909-912.
    110. Parniske M. Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol, 2004,7(4):414-421.
    111. Parniske M. Arbuscular mycorrhiza:the mother of plant root endosymbioses. Nat Rev Microbiol, 2008,6(10):763-775.
    112. Pawlowski K and Bisseling T. Rhizobial and Actinorhizal Symbioses:What Are the Shared Features? Plant Cell,1996,8(10):1899-1913.
    113. Pedley K F and Martin G B. Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol,2005,8(5):541-547.
    114. Penmetsa R V, Frugoli J A, Smith L S, Long S R and Cook D R. Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol,2003,131(3):998-1008.
    115. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen H B, Lacy M, Austin M J, Parker J E, Sharma S B, Klessig D F, Martienssen R, Mattsson O, Jensen A B and Mundy J. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 2000,103(7):1111-1120.
    116. Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M and Dinesh-Kumar S P. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev,2009,23(1):80-92.
    117. Qiu J L, Fiil B K, Petersen K, Nielsen H B, Botanga C J, Thorgrimsen S, Palma K, Suarez-Rodriguez M C, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser K D, Mattsson O, Glazebrook J, Mundy J and Petersen M. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J,2008a,27(16):2214-2221.
    118. Qiu J L, Zhou L, Yun B W, Nielsen H B, Fiil B K, Petersen K, Mackinlay J, Loake G J, Mundy J and Morris P C. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol,2008b,148(1):212-222.
    119. Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N and Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature,2003,425(6958):585-592.
    120. Remy W, Taylor T N, Hass H and Kerp H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A,1994,91(25):11841-11843.
    121. Rodriguez M C, Petersen M and Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol,2010,61:621-649.
    122. Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie J A, Parniske M, Hayashi M and Kawaguchi M. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell,2007,19(2): 610-624.
    123. Santner A and Estelle M. Recent advances and emerging trends in plant hormone signalling. Nature,2009,459(7250):1071-1078.
    124. Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M and Wisman E. Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell,2001,13(1):113-123.
    125. Schauser L, Roussis A, Stiller J and Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature,1999,402(6758):191-195.
    126. Schnabel E, Journet E P, de Carvalho-Niebel F, Duc G and Frugoli J. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol,2005,58(6):809-822.
    127. Schoenbeck M A, Samac D A, Fedorova M, Gregerson R G, Gantt J S and Vance C P. The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. Mol Plant Microbe Interact,1999,12(10):882-893.
    128. Seo S, Katou S, Seto H, Gomi K and Ohashi Y. The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant J, 2007,49(5):899-909.
    129. Shaw S L and Long S R. Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol,2003,131 (3):976-984.
    130. Shiu S H, Karlowski W M, Pan R, Tzeng Y H, Mayer K F and Li W H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell,2004,16(5):1220-1234.
    131. Sinha A K, Jaggi M, Raghuram B and Tuteja N. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav,2011,6(2):196-203.
    132. Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T and Geurts R. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science,2005, 308(5729):1789-1791.
    133. Soltis D E, Soltis P S, Morgan D R, Swensen S M, Mullin B C, Dowd J M and Martin P G. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci U S A,1995,92(7):2647-2651.
    134. Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C and Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science,1995,270(5243):1804-1806.
    135. Sprent J I. Evolving ideas of legume evolution and diversity:a taxonomic perspective on the occurrence of nodulation. New Phytol,2007,174(1):11-25.
    136. Stacey G, McAlvin C B, Kim S Y, Olivares J and Soto M J. Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol, 2006,141(4):1473-1481.
    137. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K and Parniske M. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature,2002,417(6892):959-962.
    138. Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y and Hirano H Y. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development,2004,131(22): 5649-5657.
    139. Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, Higashi S, Han S Y, Yoshida S, Asami T and Abe M. Control of nodule number by the phytohormone abscisic Acid in the roots of two leguminous species. Plant Cell Physiol,2004,45(7):914-922.
    140. Taj G, Agarwal P, Grant M and Kumar A. MAPK machinery in plants:recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav,2010, 5(11):1370-1378.
    141. Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K and Shinozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell,2007,19(3):805-818.
    142. Takahashi Y, Soyano T, Kosetsu K, Sasabe M and Machida Y. HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol, 2010,51(10):1766-1776.
    143. Tansengco M L, Hayashi M, Kawaguchi M, Imaizumi-Anraku H and Murooka Y. crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus. Plant Physiol,2003,131(3):1054-1063.
    144. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl J L and Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell,2004,15(1): 141-152.
    145.Tena G, Asai T, Chiu W L and Sheen J. Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol,2001,4(5):392-400.
    146. Tena G, Boudsocq M and Sheen J. Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol,2011,14(5):519-529.
    147. Tichtinsky G, Vanoosthuyse V, Cock J M and Gaude T. Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci,2003,8(5):231-237.
    148. Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen L H, Miwa H, Nakagawa T, Sandal N, Albrektsen A S, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S and Stougaard J. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature,2006,441(7097):1153-1156.
    149. Tirichine L, Sandal N, Madsen L H, Radutoiu S, Albrektsen A S, Sato S, Asamizu E, Tabata S and Stougaard J. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science,2007,315(5808):104-107.
    150. Torii K U. Receptor kinase activation and signal transduction in plants:an emerging picture. Curr Opin Plant Biol,2000,3(5):361-367.
    151. Waadt R, Schmidt L K, Lohse M, Hashimoto K, Bock R and Kudla J. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J,2008,56(3):505-516.
    152. Walker J C and Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature,1990,345(6277):743-746.
    153. Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K and Kudla J. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J,2004,40(3):428-438.
    154. Wang H, Ngwenyama N, Liu Y, Walker J C and Zhang S. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell,2007,19(1):63-73.
    155. Wopereis J, Pajuelo E, Dazzo F B, Jiang Q, Gresshoff P M, De Bruijn F J, Stougaard J and Szczyglowski K. Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J,2000,23(1):97-114.
    156. Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G and Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem,2008,283(40):26996-27006.
    157. Yang K Y, Liu Y and Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A,2001,98(2):741-746.
    158. Yoo S D, Cho Y H, Tena G, Xiong Y and Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature,2008,451(7180):789-795.
    159. Yoshida S and Parniske M. Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation. JBiol Chem,2005,280(10):9203-9209.
    160. Zhang S and Klessig D F. Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell, 1997,9(5):809-824.
    161. Zhang S and Klessig D F. MAPK cascades in plant defense signaling. Trends Plant Sci,2001, 6(11):520-527.
    162. Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X and Mou Z. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J, 2007,52(6):1066-1079.
    163. Zhou C, Cai Z, Guo Y and Gan S. An arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiol,2009,150(1):167-177.
    164. Zhu H, Chen T, Zhu M, Fang Q, Kang H, Hong Z and Zhang Z. A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus. Plant Physiol,2008,148(1):337-347.
    165.Zohrabian V M, Forzani B, Chau Z, Murali R and Jhanwar-Uniyal M. Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res, 2009,29(1):119-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700