黄瓜根系分区施肥与生长模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在提出基于最优营养吸收的根系分区施肥假设的基础上,借用现代先进的保护地设施与计算机模拟技术,通过黄瓜根系分区施肥、黄瓜种子萌发生物学起点温度理论值测定、智能人工气候室黄瓜幼苗生长模拟与低温诱导育苗以及模拟温室黄瓜节能组合加温等试验,研究了根系分区施肥对黄瓜生长发育与产量形成的影响,模拟研究了黄瓜种子萌发、幼苗生长、低温诱导、温室节能组合加温等生长特性与栽培措施效应。结果表明:
     1、在“津绿露优”黄瓜植株各1/2根区分别采用标准溶液与半倍标准溶液施肥时,施肥总量减少25%,植株总鲜重与果实产量并没有显著降低,植株总干重与果实干重分别显著减少8.7%与10.5%;在“中农203”黄瓜植株两倍标准溶液+清水与倍半标准溶液+半倍标准溶液施肥处理中,施肥总量不变,植株总鲜重、果实鲜重、植株总干重、果实干重分别显著增加23.2%和16.6%、34.2%与27.1%、10.4%和5.6%、22.9%与21.0%。除大量元素+微量元素处理外,其他各处理对植株叶片数与植株高度均没有显著影响。
     2、利用自主设计的智能人工气候室昼夜变温缓慢发芽法,测定黄瓜种子萌发基温操作简单,精确度高;试验测得中农203和驰誉401两个黄瓜品种种子萌发的平均基温分别为:10.48℃与10.57℃;萌发率达到70%时各自的有效积温分别为686.95℃*h和704.85℃*h;萌发率与有效积温之间的函数关系分别为y=99.130/(1+1.704*exp(1-5.653x))与y=95.460/(1+0.939*exp(1-4.267x))。
     3、幼苗生长模拟试验表明,降低温度能显著降低黄瓜幼苗植株的鲜重、干重、株高和叶片数;不同品种之间的株高和叶片数存在显著性差异;幼苗各生长时期植株干重的自然对数和相对生长率与苗期生长天数之间的关系可分别用一个二次三项式函数与直线函数来模拟。在此基础上,应用Powersim软件,建立了黄瓜苗期生长CUSSIM模型。
     4、苗期诱导试验表明,与对照相比,昼夜温度为22/19℃和25/19℃处理的叶片数显著降低,雌花总数显著增加,株高没有显著性差异;32/19℃处理的株高和叶片数都显著降低,雌花数没有显著影响。三个处理的果实产量分别比对照显著增加6.1%、13.9%、8.3%。
     5、低夜温处理可显著提早始花期并降低第一雌花节位;在相同的日总积温条件下,高的昼夜温差与低夜温双重作用能显著提高植株的总干物质积累与果实累计干物质分配率,从而显著提高果实产量。在总积温恒定的条件下,利用现代温室的先进性,通过采用不同的昼夜温度组合加温模式,可达到节能加温、降低温室能耗的目的。
The effects of root-divided fertilization on growth,development and yield in cucumber were investigated and the growth characters or cultivating effects on seed germination,seedling growth,low temperature inducement and heating integration for greenhouse saving energy in cucumber were simulated,by root-divided fertilization,measurement of theoretical value of base temperature of seed germination,simulation of seedling growth and low temperature inducement and heating integration for greenhouse saving energy in intellectualized growth cabin,with morden protected equipment and computer simulation technology,based on the hypothesis of optimal nutrient absorption in root-divided fertilization.The results of this study indicated as followings:
     1.In the treatment of standard solution +1/2 standard solution for each half of root zone in cucumber cultivar "Jinlvluyou" where total quantity of fertilizer was reduced by 25%,there was no significant reduction in total plant fresh weight and fruit yield,and there was significant reduction by 8.7%and 10.5%in total plant dry weight and fruit dry weight,respectively.In the treatment of 2 standard solution +water and that of 1.5 standard solution +0.5 standard solution in cucumber cultivar "Zhongnong 203" where the total quantity of fertilizer was constant,total plant fresh weight,fruit fresh weight,total plant dry weight and fruit dry weight were significantly increased by 23.2%and 16.6%,34.2%and 27.1%,10.4%and 5.6%,22.9% and 21.0%,respectively.Except in the treatment of massive element+trace element,there was no significant influence on leaf number and plant height in the other treatments.
     2.The operation to measure base temperature of cucumber seed germination was simple and the result was accurate by slow germination method designed independently under alternate temperature between day and night in an intellectualized growth cabin;the average measured base temperatures for cutivar 'zhongnong203' and 'chiyu401' were 10.48℃and 10.57℃;the effective accumulated temperatures at 70%germination rate were 686.95℃*h and 704.85℃*h; and the functions between germination rate and effective accumulated temperature were y=99.130/(1+1.704*exp(1-5.653x)) and y=95.460/(1+0.939*exp(1-4.267x)),respectively.
     3.The simulated experiment of seedling growth showed that the fresh plant weight,dry plant weight,plant height and leave number of cucumber seedling were significantly decreased by temperature reduction.;there was significant difference in plant height and leave number between different cultivars;the relations that LnDW(dry weight,DW) and relative growth rate (RGR) against days of seedling growth at different stages could be simulated by a quadratic function and liner function,respectively.Based on above,the CUSSIM model of cucumber seedling was established with POWERSIM software.
     4.The experiment of seedling inducement indicated that in comparison to control leaf numbers were significantly decreased,female flower numbers were significantly increased whereas there were no significant difference in plant height in the treatments 22/19℃and 25/19℃;both plant height and leaf number were significantly reduced while there was no significant influence in flower number in treatment 32/19℃;fruit yields were significantly increased by 6.1%,13.9%and 8.3%in treatments of 22/19℃,25/19℃and 32/19℃,respectively.
     5.In low night temperature treatment the blooming date of the first female flower was significantly advanced and the node of the first female flower was significantly lowered;the double effect of hign difference between day and night temperature and low night temperature significantly improved accumulation of total plant dry matter and fraction of dry matter allocated to the fruits,therefore increased the fruit yield with the constant daily sum temperature. The purpose of saving energy in greenhouse cultivation would be reached by optimal heating integration between day and night temperature with morden greenhouse when the sum temperature was constant.
引文
[1]孙玉河,李文琴,马德华.我国黄瓜生产的现状、问题和发展趋势[J].天津农业科学,2003,3:54-56.
    [2]中国蔬菜编辑部.21世纪初我国蔬菜业发展展望(二)[J].中国蔬菜,2000,(2):1-4.
    [3]李怀智.我国黄瓜栽培的现状及其发展趋势[J].蔬菜,2003,8:3-4
    [4]杨冬赓.黄瓜种质资源[EB/OL].www.cropchina.com.2006-2.
    [5]浙江农业大学主编.蔬菜栽培学各论(南方本)[M].中国农业出版社,2000
    [6]王激清.中国养分资源利用状况及调控途径[J].资源科学,2005,27(3):47-54.
    [7]樊小林,寥宗文.控释肥料与平衡施肥和提高肥料利用率[J].植物营养与肥料学报,1998,4(3):219-223.
    [8]Allerton,F.W.In:Tomato Growing[M].London:Faber and Faber.1954.87-96.
    [9]Sonneveld,C.Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture[D].Wageningen,The Netherlands;Wageningen Agricultural University.2000.
    [10]孙忠富,陈人杰.温室园艺作物生长发育模型研究现状与发展趋势[J].园艺学报,2001,28(增刊):700-704.
    [11]李军.作物生长模拟模型的开发应用进展[J].西北农业大学学报,1997,25(4):102-107.
    [12]廖桂平,官春云,黄璜.作物生长模拟模型研究概述[J].作物研究,1998(3):45-48.
    [13]杨宁,廖桂平.作物生长模拟研究进展[J].作物研究2002,(5):225-227.
    [14]Dayan E,et al.Development,calibration and validation of a greenhouse tomato growth model:Ⅱ.Field calibration and validation[J].Agricultural System,1993,43:165-183.
    [15]Dayan E,et al.Development,calibration and validation of a greenhouse tomato growth model:Ⅰ.Description of the model[J].Agricultural System,1993,43:165-183.
    [16]Gijzen H,Dayan D,Marcelis L FM,et al.HORTISIM:a model for greenhouse crops and greenhouse climate[J].Acta Horticulture,1998,456:441-450.
    [17]Heuvelink,E.Tomato growth and yield:qualitative analysis and synthesis[J].PhD Thesis,Wageningen Agricultural University,Wageningen,The Netherlands,1996,77,80-85.
    [18]Gary C,Jones,J.W,Tchamitchian,M.Crop models in horticulture:state of the art[J].Sci.Hortic.,1998,74,3-20.
    [19]Klapwijk,D.and Wubben,C.F.M.The effect of root pruning and additional root growth on production of tomato[M].Glasshouse Crops Research Station.Naaldwijk,The Netherlands,Annual Report 1988,19,1989.
    [20]Jager,A.de.Effects of localized supply of H_2PO_4,NO_3,Ca and K on the concentration of that nutrient in the plant and the rate of uptake by roots in oung maize plants in solution culture[J].Neth.J.Agric.Sci,1984,32:43-56.
    [21]Drew MC,Saker IR.Nutrient supply and the growth of the seminal root system in barleyⅢ.Compensatory increase in growth of lateral roots,and in rates of phosphate uptake,in response to localized supply of phosphate[J].J Exp Bot,1978,29:435-451
    [22]庞欣,李春俭,张福锁.部分根系供磷对小麦幼苗生长及同化物分配的影响[J].作物学报,2000,26(6):719-724.
    [23]王小兵,吴平,胡彬,等.硝态氮(NO_3)对水稻侧根生长及其氮吸收的影响[J].植物学报,2002,44(6):678-683.
    [24]王丽琴.苹果根系生物学研究及应用[EB/OL].http://www.sdau.edu.cn/sdauweekly/private/688/688-3htm,1998.
    [25]史正军,樊小林.水稻根系生长及根构型对氮素供应的适应性变化[J].西北农林科技大学,2002,30(6):1-5.
    [26]高明霞,王国栋,胡田田,等.不同灌溉方式下土娄土玉米根际硝态氮的分布[J].西北植物学报,2004,24(5):881-885.
    [27]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水,2001,20(2):5-7
    [28]胡田田,康绍忠,高明霞,等.玉米根系分区交替供应水、氮的效应与高效利用机理[J].作物学报,2004,30(9):866-871.
    [29]康绍忠,蔡焕杰主编2002.作物根系分区交替灌溉和调亏灌溉的理论及实践.北京:中国农业出版社.
    [30]Benjamin J G,Porter L K,Duke H R,et al.Nitrogen movement with furrow irrigation method and fertilizer band placement[J].Soil Sci Soc Am J,1998,62(4):1103-1108.
    [31]梁宗锁,康绍忠,张建华,等.控制性分根交替灌水对作物水分利用率的影响及节水效应[J].中国农业科学,1998,31(5):88-90.
    [32]Lehrsch G A,Sojka R E,W estermann D T.Nitrogen placement,row spacing,and furrow irrigation water positioning effects on corn yield[J].Agron J,2000,92(6):1266-1275.
    [33]李志军,张富仓,康绍忠.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报,2005,21(8):17-21.
    [34]武永军,刘红侠,梁宗锁,等.分根区干湿交替对玉米光合速率及蒸腾效率的影响[J]..西北植物学报,1999,19(4):605-611
    [35]曹让,梁宗锁,武永军,等.分根交替渗透胁迫下玉米幼苗叶片中游离氨基酸的变化[J].干旱地区农业研究,2004,22(1):49-53.
    [36]Skinner R H,Hanson J D,Benjamin J G.Nitrogen uptakes and partitioning under alternate-and every-furrow irrigation LJ].Plant Soil,1999,210:11-20.
    [37]Skinner R H,Hanson J D,Benjamin J G.Root distribution following spatial of water and nitrogen supply in furrow irrigated corn[J].Plant and Soil,1998,199:187-194.
    [38]Marcelis L F M.Fruit growth and dry matter partitioning in cucumberED].Dissertation Wageningen Agricultural University,Wageninger,the Netherlands,1994.
    [39]谢祝捷,陈春宏,余纪柱,等.上海自控温室黄瓜干物质生产和分配模拟模型研究[J].上海农业学报,2004,20(1):75-79.
    [40]张云鹤,乔晓军,王成.日光温室内作物干物质积累预测新方法[J].研究林业机械与木工设备,2005,33(6):23-26.
    [41]李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报,2003,19(4):241-244.
    [42]孙忠富,陈晴,王迎春.不同光照条件下温室黄瓜干物质生产模拟与试验研究[J].农业工程学报,2005,(21):50-52.
    [43]Heuvelink E.Dry matter partitioning in tomato crop:validation of a dynamic simulation model[J].ANN.BOT,1996,77:71-80.
    [44]Marcelis L F M.Simulation of biomass allocation to the fruits in greenhouse crops-a review[J].Acta Hortic,1993,54:107-121.
    [45]Marcelis L F M.A simulation model for dry matter partitioning in cucumber [J].ANN.BOT,1994,74:43-52.
    [46]Marcelis L F M.The dynamics of growth and dry matter distribution in cucumber [J].ANN.BOT,1992,69:487-492.
    [47]Marcelis L F M.Sink strength as a determinant of dry matter partitioning in the whole plant[J].Jourmal of Experimental Botany,1996,47:1281-1291.
    [48]Marcelis L F M,Heuvelink and De Koning.Dynamic simulation o f dry matter distribution in greenhouse in crops[J].Acta Horticulture,1989,(248):9-18.
    [49]Marcelis L F M.A simulation model for dry matter partitioning in the whole plant[J].J.Exp.BOT,1994,47:1281-1291.
    [50]Marcelis L F M.Fruit growth and biomass allocation to the fruits in cucumber:Ⅰ Effect of fruit load and temperature[J].Sci.Hortic.1993,54.
    [51]Ho L.C.,Grange,R.I.,Picken,A.J.An analysis of the accumulation of water and dry matter in tomato fruit[J].Plant Cell Environ.,1987,(10):157-162.
    [52]李化龙,陈端生,杨合法.日光温室黄瓜叶片和果实相关参数的模拟[J].中国农业大学学报,2003,(8):76-79.
    [53]甄占萱,李云祥,那淑芝等.野罂粟种子萌发温度的研究[J].种子,2005,7:32-34
    [54]董丽芬,王利宝,马建华.油松、侧柏种子萌发时间预测[J].西北林学院学报,2004,19(2):56-57
    [55]曹林奎,唐洪妹,陆小毛.四棱豆种子萌发和出苗温度[J].上海农业学报,1996,12(3):60-63
    [56]孟令波,秦智伟,刘宏宇.高温对黄瓜不同品种产量及形态指标的影响[J].北方园艺,2004(3):52-53
    [57]陈青君,林成,秦勇,等.温光条件对冬茬黄瓜地上部生长发育及产量形成的影响[J].石河子农学院学报,1995,35(3):49-52.
    [58]马德华,庞金安,李淑菊.高温对黄瓜幼苗光合与呼吸作用的影响[J].天津农业科学,1997,3(专集):38-40.
    [59]孟令波.高温对黄瓜产量的影响[J].西北园艺,2005,(3):53.
    [60]庞金安,马德华,张延军.高温处理对黄瓜幼苗蛋白质含量德影响[J].天津农业科学,2001,7(1):10-13.
    [61]范双喜,谷建田,宋学锋,等.蔬菜植物性别调控与应用[J].北京农学院学报,1996,11(1):135-140
    [62]王艳,任吉君,崔成日,等.论促进黄瓜早熟、丰产的性别调控[J].北方园艺,1994,6:12-13
    [63]缪曼珉,李式军.苗期高温处理对黄瓜衰老和性别分化及激素含量的影响[J].植物生理学通讯,2001,373(3):195-198
    [64]寿森炎,楼惠宁,董伟敏.不同氮素形态及配比对黄瓜生长和性别分化的影响[J].浙江农业学报,1995,7(3):226-229
    [65]李清明,邹志荣,郭晓冬,等.不同灌溉上限对温室黄瓜初花期生长动态、产量及品质的影响[J].西北农林科技大学学报(自然科学版),2005,33(4):47-52
    [66]张华峰,孟庆忠,杨品玲.植物生长物质在园艺作物性别分化中的生理效应[J].辽宁农业科学,2000(2):37-38
    [67]陈学好,曾广文,曹碚生.黄瓜花性别分化和内源激素的关系[J].植物生理学通讯,2002,38(4):317-320
    [68]赵德刚,韩玉珍.玉米雌、雄穗叶片内几种激素含量的比较[J].植物生理学报,1999,25(1):57-65
    [69]曹齐卫,孙小镭,王志峰,等.乙烯利对秋季黄瓜雌花分化的影响[J].山东农业科学,2004,1:34-35
    [70]吴叶青.乙烯利在夏黄瓜上的应用效果[J].长江蔬菜,2000m12:37-39
    [71]曹毅,任吉君,李春梅,等.乙烯利和赤霉素对黄瓜性别表现的影响[J].西南农业大学学报,2004,1:42-44
    [72]汪社英,吴龙生.不同浓度乙烯利在黄瓜上的应用效果[J].安徽农学通报,2004,10(6):55
    [73]宋立峰,关慧明,崔泽仁.黄瓜无土育苗及苗期喷施乙烯利技术[J].内蒙古农业科技.1999,12增刊:155-156
    [74]张元国,王冰林,刁家连,等.乙烯利处理对黄瓜叶片生理活性及品质的影响[J].中国蔬菜,2004(4):34-35
    [75]王烨,顾兴芳,张圣平.乙烯利对夏秋茬黄瓜生长发育的影响[J].长江蔬菜2006,9:40-41
    [76]马辉.多效唑对黄瓜生长发育及产量的影响[J].西北园艺,1999,4:9
    [77]艾辛,何长征,彭振春,等.硝酸银诱导雌性黄瓜产生两性花的效应及其应用研究[J].湖南农业大学学报,2000,(26)2:93-96
    [78]李加旺,张文珠.植物生长调节剂与黄瓜化控栽培[J].北方园艺,2000,5:5-6
    [79]陈学好,曾广文.黄瓜花性别分化与内源多胺的关系[J].植物生理与分子生物学学报.2002,28(1):17-22
    [80]崔秀敏,王秀峰.黄瓜有机基质育苗效果的研究[J].山东农业科学,2001,(1):10-12.
    [81]戴金平,沈征言,简令成.低温锻炼对黄瓜幼苗几种酶活性德影响[J].植物学报,1991,33(8):627-632.
    [82]高福钊,霍建勇.低温逆境对黄瓜生长发育的影响[J].吉林蔬菜,2004,(1):27-28.
    [83]马德华,卢育华,庞金安.低温对黄瓜幼苗膜脂过氧化德影响[J].园艺学报,1998,25(1):61-64.
    [84]马德华,庞金安,霍振荣,等.黄瓜对不同温度逆境的抗性研究[J].中国农业科学,1999,32(5):28-35.
    [85]马德华,庞金安,李淑菊,等.短期强低温处理对黄瓜幼苗光合作用的影响[J].河北农业大学学报,1998,21(2):39-42.
    [86]马国成,张福墁.日光温室不同温度环境对黄瓜光合产物运输及分配的影响[J].北京农业大学报,1995,21(1):34-38.
    [87]齐维强,贺超兴,张志斌,等.温室番茄繁殖器官消长动态与有效积温的关系研究[J].陕西农业科学,2004,(2):20-22.
    [88]任志雨,卢兴霞,周富林.根区温度对黄瓜生长和生理代谢的影响[J].天津农业科学,2006,12(4):35-37.
    [89]王永健,张海英,张峰,等.低温弱光对不同黄瓜品种幼苗光合作用的影响[J].园艺学报,2001,28(3):230-234.
    [90]徐克章,史跃林,许贵民,等.保护地黄瓜叶片的光合作用温度特性的研究[J].园艺学报,1993,20(1):51-55.
    [91]杨秋珍,李军,李育民.自控温室黄瓜果长与果周径增长与气象因子关系的研究[J].生态农业研究,2000,8(4):7-10.
    [92]张红梅,余纪柱,金海军.低温弱光对黄瓜植株生长、光合特性的影响[J].沈阳农业大学学报,2006,37(3):339-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700