辣椒(Capsicum annuum L.)耐冷性鉴定与冷适应生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早春和秋冬季节的低温冷害常造成辣椒大面积落花落果,使产量和品质下降,经济效益降低,严重影响辣椒的周年生产。因此,开展辣椒耐低温品种鉴定和低温生理机制研究有非常重要的理论和现实意义。本文在研究不同辣椒品种耐低温性的基础上,从授粉受精角度对不同时期低温造成辣椒落花落果的原因进行了剖析,研究了碳水化合物、内源激素、细胞膜损伤及膜脂过氧化等的变化,探讨了通过施用外源物质减轻辣椒伤害的效应,克隆了低温诱导基因——辣椒肌醇半乳糖苷合成酶基因并研究了其在低温下的表达规律,以期为辣椒耐低温品种选育和栽培提供理论依据。主要研究结果如下:
     低温能显著抑制辣椒的营养生长和产量形成,10个辣椒品种的耐低温性存在显著差异,其中苏椒5号的耐低温性最强,苏长红最差;4℃处理4叶1心期幼苗的冷害指数和15℃时的发芽指数与产量形成耐低温指数间存在显著相关性,可以作为辣椒品种耐低温性的评价指标。
     现蕾期和开花期的花器官对低温的敏感性不同。现蕾期的雄蕊较雌蕊更容易受到低温伤害,开花期低温对雌蕊及受精过程的影响较大,对雄蕊影响较小。不同基因型辣椒的花器官对低温的敏感性不同,与苏椒5号相比,苏长红的花器官更容易受到低温的不利影响。
     随着果实发育成熟,叶肉、节间、果肉和根部的淀粉、总糖和蔗糖含量不断增加,叶肉、节间、果肉中的葡萄糖和果糖以果实膨大期含量最高,各器官酸性转化酶和中性转化酶活性呈先增强后减弱的趋势,与蔗糖水平的提高相关联,SPS活性也表现出逐渐增强趋势。低温抑制了各部位淀粉和蔗糖的合成,促进了总糖、葡萄糖和果糖的积累,低温也使植株各部位的酸性转化酶活性和中性转化酶活性增强,蔗糖磷酸合成酶活性降低。
     随着处理温度降低和低温时间延长,辣椒叶片中的脯氨酸(Pro)含量、过氧化物酶(POD)活性、丙二醛(MDA)含量和根系的不饱和脂肪酸含量不断增加,根系饱和脂肪酸含量不断下降;随着低温程度的加强,苏椒5号的Pro含量和POD活性的增加速度比苏长红快,而MDA含量的增加速度则相对较慢。辣椒植株抗低温能力的产生与低温诱导有关,低温胁迫后,辣椒可产生相对迁移率(Rf)为0.3145的POD同工酶电泳新谱带。
     低温处理后辣椒叶片中的腐胺(Put)、精胺(Spm)、亚精胺(Spd)和脱落酸(ABA)的含量有不同程度增加,而赤霉素(GA_3)和生长素(IAA)含量则有所降低。随着低温条件的解除,Put含量和ABA含量迅速下降至对照水平,表明二者含量变化是植株自身对低温作出的一种应激反应,而Spm和IAA含量在低温解除一段时间后才恢复至对照水平,说明Spm和IAA含量的变化可能是植株对低温的一种适应性反应。
     早春栽培中,在定植前后及低温发生时叶面喷施1 mmol·L~(-1) Put或150 mg·L~(-1)ABA,有助于提高辣椒产量;在秋延迟栽培中,低温来临时,可使用200 mg·L~(-1) Pro或100mg·L~(-1)ABA进行保花保果。喷施ABA可提高辣椒植株的净光合速率、气孔导度、胞间CO2浓度及根、茎、叶中的N、P、K含量,在一定程度上缓解了低温伤害。
     采用RT-PCR结合RACE技术从经低温处理的辣椒品种苏长红叶片中克隆得到肌醇半乳糖苷合成酶基因(GS)的cDNA序列,其全长1444bp,编码336个氨基酸,该基因与其他植物的GS具有较高的同源性。该基因常温下在辣椒各组织中均无表达,经4℃或10℃处理6 h后在叶片中开始表达,而茎和根系中不表达。Southern杂交结果表明辣椒基因组中可能还存在其他形式的GS。
Chilling stress during winter and early spring usually causes flower abscission and other injuries of pepper (Capsicum annuum L.), and then has a significant negative effect on year-round production of this crop. So it is important to study the physiology mechanism and cultivation techniques of pepper under low temperature conditions. In this paper, 10 varieties with different cold tolerance were selected, and the effect of low temperature on the pollination, fertilization, carbohydrate metabolization, membrane injury peroxidation and endogenous hormones of pepper were investigated, and the effect of exogenous regulators on the pepper production during cold season was studied. Furthermore, galactinol synthase, a cold induced gene, was cloned and the exprerssion pattern of this gene under chilling stress was studied. The results provided some beneficial clues for pepper cold tolerant breeding and cultivation. The main results showed as follows:
     The chilling stress inhibited the vegetation growth and field formation of pepper significantly. Among the ten varieties, SCH and SJ-5 has the lowest and highest cold tolerance, respectively. The correlation analysis among vegetative- chilling- tolerant index, yield- formation- chilling- tolerant index, germination index and seedling chilling injury index indicated that the seedling chilling injury index and the germination index at 15℃were feasible to identify the chilling tolerance of pepper varieties.
     The chilling sensitivity of stamen, pistil and fertilization of pepper at different stages was studied. According to the investigation of fruit-set, seeds number per fruit, at alabastrum stage the stamen were more sensitive than the pistil to chilling stress, while at anthesis, the pistil and fertilization were more susceptible than the stamen.
     With the development of pepper fruit, the content of starch, total soluble sugars and sucrose in mesophyll, internode, pulp and root were all improved, and the content of glucose and fructose of mesophyll, internode and pulp were highest in swelling time of fruit. AI and NI activity showed a low-high-low trend and SPS activity increased is similarly with sucrose. Because of chilling stress, the content of starch and sucrose in different organs were significantly decreased, while the content of total soluble sugars, glucose and fructose in leaf were increased. Low temperature enhanced AI and NI activity and reduced SPS activity.
     Pro content, POD activity and MDA content in leaves increased significantly under cold stress. The content of USFA was adding and that of SFA was decreasing continually with the falling of temperature. Under chilling stress, A new POD isozyme band (Rf =0.3145) in leaves of pepper just were the production of chilling stress.
     Chilling stress increased the level of Put, Spd, Spm and ABA and reduced the level of GA_3 and IAA in leaves. Changes of Put and ABA might be an emergency response of plant to low temperature because their contents would come back to the control level as soon as the chilling stress stopped. While the changes of Spm and IAA may be an adaptitude response because they can not restored to the normal level until days after normal temperature condition begin.
     1 mmol·L~(-1) Put and 150 mg·L~(-1)ABA applied at seedling stage with six or seven leaves were helpful to increase fruit-set and yield, while 200 mg·L~(-1)Pro and 100 mg·L~(-1)ABA had the best effect at anthesis. Exogenous ABA application can relievd the chilling injury of pepper remarkably by enhancing Pn, Gs and Ci in leaves and improving assimilation rate and N, P and K utilization.
     Full length cDNA sequence of a galactinol synthase gene (GS) (GenBank locus: EF566470) was cloned from cold-stressed pepper (Capsicum annuum L.‘SCH’) leaves using RT-PCR and rapid amplification of cDNA ends (RACE). The gene consists of 1444 bp encoding a protein of 336 amino acids. Phylogenetic analysis revealed that pepper GS is high homologous to reported GS of other plants. RT-PCR analysis showed that GS mRNA was induced in pepper leaves after 4℃or 10℃cold- stress for 6 h, but not accumulated in cold -stressed stems and roots, no GS mRNA can be detected in pepper tissues under normal temperature. Southern blot analysis indicated that there may be several GS copies in the pepper genome.
引文
1 Xu K Z, Shi Y L, Xu G M, et al. Studies on photosynthetic temperature characteristic of cucumber leaves in protective field. Acta Horticulturae Sinica, 1993, 20(1): 51-55
    2邹志荣,陆帼一.低温对辣椒幼苗膜脂过氧化和保护酶系统变化的影响.西北农业学报, 1994, 3 (3): 51-56
    3钱芝龙,丁犁平,曹寿椿.低温胁迫对辣(甜)椒幼苗膜脂过氧化水平及保护酶活性的影响.园艺学报, 1994, 21 (2): 203-204
    4任旭琴,缪旻珉,陈晓明,等.低温逆境下辣椒根系生长及生理特性的响应.中国蔬菜, 2007, 3: 12-14
    5 Smeets L and Garretsen F. Growth analysis of tomato genotypes grown under low night temperatures and low light intensity. Euphytica, 1986, 35: 701-715
    6 Nieuwhof M, Garretsen F, Van Oeveren J C. Growth analysis of tomato genotyes grown under low energy conditions. Netherland Journal of Agricultural Science, 1991, 39: 191-196
    7 Dijk S J van de. Differences between tomato genotypes in stomatal resistance and specific leaf fresh weight in relation to differences in net photosynthesis under low light intensity and low night temperatures. Euphytica, 1985, 34: 717-723
    8 Rylski I. Capsicum. In: Halevy H A (Ed.), CRC Handbook of Flowering. CRC Press, Boca Raton, 1985
    9张国斌,郁继华.低温弱光对辣椒幼苗光合特性与光合作用启动时间的影响.西北植物学报, 2006, 26(9): 1770-1775
    10 Meza B L, Alberd M, Meza B L, et al. Changes in protein synthesis in rape seed (Brassica napus) seedlings during low temperature treatment. Plant Physiology, 1986, 82: 733-738
    11 Li X G, Meng Q W, Jiang G Q, et al. The susceptibity of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Photosynthetica, 2003, 41(2): 259-265
    12 Ai X Z, Guo Y K, Ma X Z, et al. Photosynthetic characteristics and ultra strcture of chloroplast of cucumber under low light intensity in solar greenhouse. Scientia griculturae Sinica, 2004, 37 (2): 268-273
    13 Yu J H, Shu Y J, Lu J F, et al. Influence of low temperature and poor light on photosynthetic characteristic in eggplant seedling. Acta Botany Boreal Occident Sinica, 2004, 24(5): 831-836
    14张国斌,郁继华.低温弱光对辣椒幼苗光合特性与光合作用启动时间的影响.西北植物学报, 2006, 26 (9): 1770-1775
    15刘慧英,王祯丽,王玉华.不同品种辣椒种子发芽和苗期耐冷性差异的研究.石河子大学学报(自然科学版), 2002, 6 (1): 23-26
    16任旭琴,张林青,孙敏.辣椒叶片对低温的生理响应研究.安徽农业科学. 2006, 34(24): 6439-6440
    17马艳青,戴雄泽.低温胁迫对辣椒抗寒性相关生理指标的影响.湖南农业大学学报(自然科学版), 2000, 26 (6): 461-462
    18杨广东,郭庆萍.低温对青椒幼苗过氧化物酶和超氧物歧化酶活性的影响.山西农业科学,1998, 26 (4): 44-47
    19杨广东,郭瑜敏.低温斜坡对青椒苗期和花期脱落酸含量的影响.山西农业科学, 1998, 26 (2): 45-48
    20刘鹏,李勃,刘庆忠,等.冷锻炼诱导甜椒抗冷力的生化机理研究.山东农业科学, 2003, 3: 11-14
    21 Benavides M A, Salazar T A, Ramirez G F, et al. Pepper seed treatment with salicylic and sulfosalicylic acid and response of seedling to cold stress. Terra, 2004, 22 (1): 41-47
    22邹志荣,陆帼一.外源ABA对辣椒幼苗抗冷性的影响.西北农业大学学报,1996, 24(6): 60-64
    23 Wang E W, Kim K A, Park S C, et al. Expression profiles of hot pepper (Capsicum annuum) genes under cold stress conditions. Journal of Biology science, 2005, 30(5): 657-667
    24 Liu J J, Krenz D C, Galvez A F, et al. Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Science, 1998, 134: 11-20
    25 Teruaki T, Chieko O, Satoshi I, et al. Important roles of drought-and cold- inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 2002, 29(4): 417-426
    26 Downie B, Gurusinghe S, Dahal P, et al. Expression of a galactinol synthase gene in tomato seeds is upregulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiology, 2003, 131: 1347-1359
    27 Takahashi R T, Joshee N, Kitagawa Y. Induction of chilling resistance by water stress and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Molecular Biology, 1994, 26: 339-352
    28王孝宣,李树德,东惠茹,等.低温胁迫对番茄苗期和开花期脂肪酸的影响.园艺学报, 1997, 24(2): 161-164
    29 Scott B J. Cold tolerance in tomato.II. Early seedling growth of Lycopersico spp. Physiologia Plantarum, 1986, 66 (4): 659-663
    30 Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought and salt stress. Plant Cell, 2002, 14: 165-183
    31吴晓雷,尚春明,张学东,等.番茄品种耐弱光性的综合评价.华北农学报, 1997, 12 (2): 97-101
    32王萍,郭晓冬,赵鹏.低温弱光对辣椒叶片光合色素含量的影响.北方园艺, 2007, 7: 15-17
    33王丽娟,李天来,齐红岩,等.长期夜间低温对番茄生长发育及光合产物分配的影响.沈阳农业大学学报, 2006, 6, 37(3): 300-303
    34 Neji T, Monique B, Abdelaziz M. Effect of low night temperature on flowering, fruit set, and parthenocarpic ability of hot and sweet pepper varieties, Capsicum annuum. Journal of the Korea society for Horticultural Science, 2003, 44(3): 271-276
    35别之龙,刘佩瑛,李家标,等.温度和光强对辣椒生殖器官脱落的影响.西南农业大学学报, 1995, 17(3): 228-232
    36沈善铜,钱桂琴,朱启泰.日光温室低温逆境下辣椒落花落果研究初报.江苏农业科学, 1995, 4: 60-62
    37 Ghandour M E, Fald M S, Wally Y A. Effect of winter chilling on flowering, fruit setting, shedding, yield, and endogenous growth promoters and inhibitors in sweet pepper. Research Bulletin, Faculty of Agriculture, Ain Shams University. 1971, 583: 24
    38 Polowick P L, Sawhney V K. Temperature effects on male fertility and flower and fruit development in Capsicum annuum L. Horticultural Science, 1985, 25: 117-127
    39 Tarchoun N, Bodson M, Mougou A. Low night temperature effect on pepper ovaries characteristics. Capsicum and Eggplant Newsletter, 2003, 22: 29-32
    40 Jemmali A, Tarchoun N, Mezghani N. Polymorphism and low night temperature induced abnormalities in pepper flowering. Capsicum and Eggplant Newsletter, 2001, 20: 23-26
    41 Pressman E, Tomer E, Cohen M, et al. Histological examination of low temperatures or TIBA-induced swelling of pepper ovaries. Plant Growth Regulation, 1998, 25(3):171-175
    42沈漫.不同抗寒性的杜鹃品种叶片磷脂和脂肪酸组成差异性比较分析.南京林业大学学报, 1997, 21(2): 66-69
    43邓令毅,王洪春.葡萄的膜脂和脂肪酸组分与抗寒性关系的研究.植物生理学报, 1982, 8(3): 273-281
    44杨广东,张战备,郭瑜敏,等.脂肪酸与青椒苗期和花期抗冷性关系.北方园艺,1999, 127 (4): 1-2
    45 Elstner E F. Oxygen activation and oxygen toxicity. Plant Physiology, 1982, 33: 73-96
    46王以柔,李平,刘鸿先,等.低温对不同耐寒力的黄瓜幼苗子叶的各细胞器中NAD+-苹果酸脱氢酶的影响.植物生理与分子生物学学报, 1985, 11(2):147-154
    47刘鸿先,曾韶西,王以柔,等.低温对不同耐冷力的黄瓜幼苗子叶各细胞器中超氧物歧化酶的影响.植物生理与分子生物学学报, 1985, 11: 48-57
    48曾韶西,王以柔.低温对黄瓜幼苗子叶光合强度和叶绿素荧光的影响.植物生理学通讯,1989, 4: 12-15
    49杨广东,张战备,郭瑜敏,等.脂肪酸与青椒苗期和花期抗冷性关系.北方园艺, 1999, 127 ( 4): 1-2
    50宋述尧,刘晓明,任锡仑.黄瓜不同品种耐冷力的初步研究.吉林农业大学学报, 1992, 14 (1): 27-32
    51樊治成,贾洪玉,郭洪芸,等.西葫芦耐冷性生理指标研究.园艺学报, 1999, 26(5): 309-313
    52 Dhindsa R S, Matowe W. Drought tolerance in two mossers: Correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany, 1981, 32: 79-91
    53张明科,孙艳,史继华.黄瓜耐冷性鉴定指标的初步探讨.陕西农业科学, 1998, 6: 20-22
    54许勇,张海英,康国斌,等.西瓜野生种质幼苗耐冷性的生理生化特性与遗传研究.华北农学报, 2000, 15 (2): 67-71
    55孙艳,周存田,王飞.低温胁迫对黄瓜耐冷性相关生理指标的影响.陕西农业科学, 1997, 2: 22-23
    56沈文云,候锋.低温对杂交一代黄瓜幼苗生理特性的影响.华北农学报, 1995, 10 (1): 56-59
    57李明玉,曹辰兴,于喜艳.低温锻炼对冷胁迫下黄瓜幼苗保护性酶的影响.西北农业学报, 2006, 15(1): 160-164
    58冯炘,于贤昌,郭恒俊,等.低温胁迫对黄瓜嫁接苗和自根苗保护酶活性的影响.山东农业大学学报(自然科学版), 2002, 33 (3): 302-304
    59郑东虎,葛晓光,张宪政,等.冷胁迫对番茄膜脂过氧化与抗氧化酶系统的影响,北方园艺, 2003, 4: 46-47
    60薛大煜,马艳青,黄炎武.低温胁迫对辣椒幼苗抗坏血酸含量的影响.湖南农业大学学报, 1996, 22(2) :143-146
    61朱世东.茄果类幼苗低温伤害与膜脂过氧化作用.安徽农学院学报, 1991, 18(2): 141-146
    62 Eheringer J, Bjorkman O. Quantum yield for CO2 uptake in C3 and C4 plants. Plant Physiology, 1977, 59: 86
    63 Kurets V K, Drozdov S N, Popov E G, et al. Effect and after effect of temperature on respiration of intact plants. Russian Journal of Plant Physiology, 2003, 50: 308-312
    64 Munro K D, Hodges D M, Delong J M, et al. Low temperature effects on ubiquinone content respiration rates and lipid peroxidation levels of etiolated seedlings of two differentially chilling-sensitive species. Physiologia Plantarm, 2004, 121: 488-497
    65 Kurimoto K, Millar A H, Lambers H, et al. Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associatedwith a high efficiency of respiratory ATP production. Plant and Cell Physiology, 2004, 45: 1015-1022
    66 M?ller Ian M. Plant mitochondria and oxidative stress: electron transport, NADPH turnover and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 561-591
    67胡文海,师恺,曹玉林.低温弱光对黄瓜幼苗地上部和根系生长与呼吸作用的影响.江西农业大学学报, 2008, 30 (1): 15-19
    68樊怀福,蒋卫杰,郭世荣.低温对番茄幼苗植株生长和叶片光合作用的影响.江苏农业科学, 2005, 3 :89-91
    69 Luxova M, Gasparikova O. The effect of low temperature on root respiration in maize. Biologia, 1999, 54: 453-458
    70 Tachibana S J. Comparison of effect of root temperature on the growth and mineral nutrition of cucumber cultivars and figleaf gourd. Journal of the Japanese Society for Horticultural Science, 1982, 51 (3): 299-308
    71 Choi K J, Chung G C, Ahn S J. Effect of root zone temperature on the mineral composition of xylem sap and plasma membrane K+- Mg2+-ATPase activity of grafted-cucumber and figleaf gourd root systems. Plant and Cell Physiology, 1995, 36(4): 639-643
    72任志雨,王秀峰,魏珉.不同根区温度对黄瓜幼苗矿质元素含量及根系吸收功能的影响.山东农业大学学报(自然科学版), 2003, 34(3): 351-355
    73郭确,潘瑞炽. ABA对水稻抗冷性的影响.植物生理学报, 1984, 10 (4): 295-303
    74 Rikin A, Atsmon D, Gitter C. Chilling injury in cotton. prevention of abscisic acid. Plant Phsiology, 1979, 20: 1537-1546
    75 Kacperska A. Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: Do they depend on stress intensity. Physiologia Plantarum, 2004, 122: 159-168
    76 Dail J, Campbell W F. Chilling resistance as affected by stressing environments and abscisic acid. Plant Physiology, 1991, 67 (1): 24-26
    77刘祖祺、张连华,朱培仁.用放射免疫法分析柑桔抗寒锻炼中游离和结合态脱落酸的变化.园艺学报, 1991, 17 (3): 197-202
    78任志雨,卢兴霞,李静,等.根区温度对开花座果期黄瓜和番茄内源激素含量的影响.华北农学报, 2007, 22 ( 2 ): 64-66
    79 Irring R M, Lampher F O. ABA Levels and effects in chilled and hardened phaseolus rulgaris. Plant Physiology, 1989, 43 (1): 7-9
    80张羽航,鲍时翔,郑学勤,等.脂肪酸饱和酶的研究进展.生物技术通报, 1998,18(4): 1-8
    81 Ma J, Liu D, Tang P. Cloning of spinach SAD gene, its construction and transformation to tobacco. Supplement to Plant Physiology, 1996, 111(2): 814
    82王关林,李铁松,方宏筠,等.番茄转果聚糖合酶基因获得抗寒植株.中国农业科学, 2004, 37(8): 1193-1197
    83王桂玲,黄永芬.胆碱磷酸转移酶基因转化大豆的初步研究.大豆科学, 2005, 24(2): 150-153
    84李跃强,宣维健,盛承发.植物的低温蛋白.生态学报, 2004, 24(5):1034-1039
    85 Griffith M, Ala P, Yang D S C, et al. Antifreeze protein produced endogenously in winter rye leaves. Plant Physiology, 1992, 100 (2): 593-596
    86邵强,闫清华,徐存拴.植物抗冻蛋白研究新进展.河南农业科学, 2005, 9: 12-15
    87 Hightwoer R, Baden C, Penzes E, et al. Expression of antifreeze proteins in transgenetic plants. Plant Molecular Biology. 1991, 17(5): 1013-1021
    88韦善君,孙振元,巨关升,等.冷诱导基因转录因子CBF1的组成型表达对植物的抗寒性及生长发育的影响.核农学报, 2005, 19(6): 465-468
    89邓小燕,孙兴国,井鑫,等.冷诱导转录因子基因CBF3转化黄瓜的研究.西南农业大学学报, 2004, 26(5): 603-605
    90 Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain seperate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406
    91王孝宣,李树德,东惠茹,等.低温胁迫对番茄苗期和花期若干性状的影响.园艺学报, 1996, 23(4): 349-354
    92纪颖彪,蔡洙湖,朱其杰.黄瓜种子低温发芽能力的配合力和遗传力分析.中国农业大学学报, 1997, 2(5): 109-114
    93许勇,王永健,张峰,等.西瓜幼苗耐低温研究初报.华北农学报, 1997, 12 (2):93-96
    94邬树桐,孙小镭,王冰.黄瓜不同品种苗期耐低温弱光特性测定初报.中国蔬菜, 1994, (1): 26-28
    95邹志荣,陆帼一.辣椒种子萌发期耐冷性鉴定.西北农业大学学报, 1995, 23(1): 30-34
    96张建华,廖新华,戴陆国,等.稻种资源芽期和苗期的耐冷性评价.中国农学通报, 1996, 12 (5): 10-13
    97姚明华,徐跃进,李晓丽,等.茄子耐冷性生理生化指标的研究.园艺学报, 2001, 28 (6): 527-531
    98顾增辉,徐本美,郑光华.测定种子活力方法之探讨Ⅱ—发芽的生理测定性.种子, 1982, (3): 11-17
    99 Abdallah I M, Abed T A, Shafshak N S. The response of winter sweet pepper to some seed-cold treatments. Annals of Agricultural Science, 1984, 20 (3): 49-61
    100周玉萍,刘华伟,冯永新,等.过氧化氢与氯化钙对香蕉幼苗抗寒性的影响.广州大学学报(自然科学版), 2002, 1(2): 33-36
    101Rodriguez R J, Romero E R, Vidal J L, et al. Effectiveness of the foliar application of three chemical treatments on the recovery of the productivity of sweet pepper grown in the greenhouse and affected by low temperatures. Revista Industrial agricolade Tucuman, 2001, 77 (2): 7-11
    102刘慧英,朱祝军,吕国华,等.低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究.中国农业科学, 2003, 36 (11): 1325-1329
    103王荣富.植物抗寒指标的种类及其应用.植物生理学通讯, 1987, (3): 49-55
    104宋洪元,雷建军,李成琼.植物热胁迫反应及抗热性鉴定与评价.中国蔬菜, 1996, (5): 49-51
    105钱芝龙,赵华仑.苏椒5号耐低温耐弱光的早熟高产性能.江苏农业科学, 1997, 2: 51-53
    106缪旻珉.黄瓜热伤害与热适应生理机制及耐热栽培技术研究.博士学位论文.南京:南京农业大学, 2000
    107吴凤芝,刘德,李连华.温度对蕃茄幼苗内部解剖结构影响的研究. 1993, 6: 31-32
    108王富,李景富,许向阳,等.不同叶龄期低温处理对番茄花粉发育影响.北方园艺, 1999, 125 (2): 1-2
    109王育启.水稻减数分裂的低温伤害.上海农业科技, 1980, 4: 5-7
    110申家恒,李伟,杨虹,等.辣椒大、小孢子发生与雌、雄配子体发育的研究.园艺学报, 2007, 34 (6): 1443-1452
    111董伟.不同花龄及贮藏条件对辣椒花粉萌发与授粉的影响.中国蔬菜, 1990, (2): 11-12
    112胡洽,张博,俞世敏.甜椒贮藏花粉活力比较试验: 1.甜椒贮藏花粉活力的体外测定.蔬菜, 1986, 2: 12-16
    113王少先.高温与生长调节物质对辣椒花粉生活力的影响.河南农业科学, 1997, 12: 23-25
    114Mercado J A, Vinegla B. Effects of hand-pollination, paclobutrazol treatments, root temperature and genotype on pollen viability and seed fruit content of winter-grown pepper. Journal of Horticultural Science, 1997, 72(6): 893-900
    115刘永庆,田雨南.三种茄果类蔬菜花粉萌发的研究.湖南农学院学报, 1992, 18(3): 556-564
    116宁正祥.食品成分分析手册.北京:中国轻工业出版社, 1998
    117张志良,瞿伟菁.植物生理学实验指导(第三版).北京:高等教育出版社, 2003
    118Lowell C A, Kuo T M. Oligosaccharide metabolism and accumulation in developing soybean seeds. Crop Science, 1989, 29: 459-465
    119赵越,魏自民,马凤鸣.铵态氮对甜菜蔗糖合成酶和蔗糖磷酸合成酶的影响.中国糖料, 2003, 3: 1-5
    120王丽娟,李天来,崔娜.夜间不同时段低温对番茄光合产物积累与分配的影响.沈阳农业大学学报, 2006, 37(6): 811-815
    121齐红岩,李天来,刘海涛,等.番茄不同部位中糖含量和相关酶活性的研究.园艺学报, 2005, 32(2): 239-243
    122陈攀栋,沈火林,杨学妍,等.不同辣椒品系果实发育过程中糖含量和蔗糖代谢酶活性的变化.华北农学报, 2007, 22(增刊): 82-85
    123张明方,李志凌.高等植物中与蔗糖代谢相关的酶.植物生理学通讯, 2002, 38(3): 289-295
    124Estruch J J, Beltran J P. Changes in invertase activities precede ovary growth induced by gibberellic acid in pisum sativum. Plant Physiolgy, 1991, 81: 319-326
    125陈俊伟,张良诚,张上隆.果实中的糖分积累机理.植物生理学通讯, 2000, 36 (6): 497-503
    126Gao Z, Petreikov M, Zamski E, et al. Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo). Plant Physiology, 1999, 106: 1-8
    127Ranwala A P, Lwanami S S, Masuda H. Acid and neutral invertase in the mesocarp of developing muskmelon(Cucumis melo L.vc Prince) fruit. Plant Physiology, 1991, 96: 881-886
    128Lester G E, Arias L S, Lim M G.. Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptid profiles during growth and maturation. Journal of American Society for Horticular Science, 2001, 126: 33-36
    129Yelle S, Hewitt J D, Robinson N L, et al. Sink metabolism in tomato fruit III. Analysis of carbobydrate assimilation in a wild species. Plant Physiology, 1998, 87: 737-740
    130Vizzotto G, Pinton R, Varanini Z, et al. Sucrose accumulation in developing peach fruit. Plant Physiology, 1996, 96: 225-230
    131Darnel R L, Cano M R, Koch K E, et al. Differences in sucrose metabolism relative to accumulation of bird-deteterrent sucrose levels in fruit of wild and domestic Vaccinium species. Plant Physiology, 1994, 92: 336-342
    132Huhhard N L, Pharr D M,Huber S C. Sucrose phosphate svnthase and other sucrosemetabolizming enzymes in fruits of various species. Plant Physiology, 1991, 82: 191-196
    133Fieuw S, Willenbrind J. Surose synthase and sucrose phosphate synthase in sugar beet plants (Betavulgaris L. ssp. altissima). Plant Physiology, 1987, 131: 153-162
    134Komatsu A, Takanokura Y, Moriguchi T, et al. Differential expression of three sucrose phosphate synthaseis of orms during accumulation in citrusfruit (Citrusunshiu Marc). Plant Science, 1999, 140: 169-178
    135Mac R E, Puick W P, Benker C. Carbohydrate metabolism during post harvest ripening in kiwi fruit. Planta, 1992, 188: 314-323
    136Dali N, Michaud D, Yelle S. Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose accumulating tomato fruits. Plant Physiology, 1992, 99: 434-438
    137Lingle S E. Sugar metabolism during growth and development in sugar cane internodes. Crop Science, 1999, 39: 480-486
    138Sun J D, Loboda T, Sung S S, et al. Sucrose synthase in wild tomato Lycopersicon chrnieleeosk; and tomato fruit sink strength. Plant Physiology, 1992, 98: 1163-1169
    139Ranney T G, Bassuk N L, Whitlow T M. Osmotic adjustment: and solute constituents in leaves and roots of water-stressed cherry (Prunus) trees. Journal of American Society for Horticultural Science, 1991, 116 (4): 684-688
    140Castrillo M, Kazandjian A, Murata N. Some aspect of carbohydrate metabolism in bean plants under water deficit. Research in photosynthesis. Proceeding of the Ixth International Congresson Photosynthesis. Nagoya, Japan, 1992, (4): 279-282
    141齐红岩,李天来,张洁,等.亏缺灌溉对番茄蔗糖代谢和干物质分配及果实品质的影响.中国农业科学, 2004, 37(7): 1045-1049
    142Kilili A W, Behdoudian M H, Mills T M. Composition and quality of' Braehurn apples under reduced irrigation. Horticulture Society, 1996, 67 (1-2): 1-11
    143王有年,杜方,于同泉,等.水分胁迫对桃叶片碳水化合物及其相关酶活性的影响.北京农学院学报, 2001, 16 (4): 11-16
    144邹琦.植物生理学实验指导.北京:中国农业出版社, 2000
    145李合生.植物生理生化实验原理和技术.北京:高等教育出版社, 2000
    146Yoshida Y, Kiyosue T, Nakashima K, et al. Regulation of levels of Proline as an osmolyte in plant under water stress. Plant and Cell Physiology, 1997, 38: 1095-1102
    147Xin Z G, Li P H. Relationship between Proline and ABA in the induction of chilling tolerance in maize suspension - cultured cells. Plant Physiology, 1993, 103: 607-613
    148陈杰中,徐春香.植物冷害及抗冷机理.福建果树, 1998, (2): 21-23
    149Cao X Q. The effect of membrane-lipid proxidation on cell and body. Progress in Biochemistry and Biophysics, 1986, 2: 17-23
    150刘秀茹,葛晓光.地温及营养面积对番茄秧苗生长发育及素质的影响.沈阳农业大学学报, 1988, 19(3): 29-36
    151Tachibana S J. Comparison of effect of root temperature on the growth and mineral nutrition of cucumber cultivar sand figleaf gourd. Journal of the Japanese Society for Horticultural Science, 1982, 51(3): 299-308
    152梁建生,张建华,曹显祖.根系环境温度变化对根系吸水和叶片蒸腾的影响.植物学报, 1998, 40(12): 1152-1158
    153Prigogine J. Introduction to thermodynamics of irreversible processes. New York: Interscience Published, 1967
    154王洪春,汤章城,苏维埃,等.水稻干胚膜脂脂肪酸组分差异性分析.植物生理学报, 1980, 6 (3): 227-236
    155余泽宁.龙眼叶片膜脂脂肪酸组分与龙眼耐寒性的关系.亚热带植物科学,2003, 32(2): 15-17
    156Mohapatra S S, Poole R J, Dhindsa R S. Changes in protein patterns and translatable mRNA populations during cold acclimation of alfalfa. Plant Physiology, 1987, 84: 1172-1176
    157王孝宣,李树德,东惠茹,等.低温对番茄苗期和开花期几种同工酶的影响.中国蔬菜, 1997, 3: 1-3
    158王振英,张秀云,刘桂琴,等.低温处理对西葫芦、茄子幼苗生长及同工酶的影响.天津师大学报(自然科学版), 1998, 18 (1): 52-56
    159刘存德,沈全光,张国铮,等.小麦种子萌发时乙醇酸脱氢酶的变化及同工酶的诱导形成.植物生理学报, 1980, 6 (4): 361-367
    160Wang S Y, Van T T. Abscisic acid induces anaerobiotic tolerance in corn. Plant Physiology, 1991, 97: 593-597
    161周玉萍,王正询,田长恩.多胺与香蕉抗寒性的关系的研究.广西植物, 2003, 23 (4): 352-356
    162刘俊,吉晓佳,刘友良.检测植物组织中多胺含量的高效液相色谱法.植物生理学通讯, 2002, 38 (6): 596-598
    163陈远平,杨文钰.卵叶韭休眠芽中GA3, IAA, ABA和ZT的高效液相色谱法测定.四川农业大学学报, 2005, 23 (4): 498-500
    164Pedrol N, Ramos P, Keigosa M J. Phenotypic plasticity and acclimation to water deficits in velvet-grass: A long-term green-house experiment: Change in leaf morphology, photosynthesis and stress-induced metabolites. Plant Physiology, 2000, 157(4): 383-393
    165Van D M, De R J, Van D M, et al. Changes in free praline concentrations and polyamine levels in potato leaves during draught stress. South African Journal ofr Science, 1998, 94 (7): 347-350
    166Chen K M,Zhang C L. Polyamine contents in the spring wheat leaves and their relations to draught-resistance. Acta Phytophysiology Sinica, 2000, 26(5): 381- 386
    167Xing G S, Zhao G K, Cai K R, et al. Studies of polyamine metabolism and P -N-oxalyl-L-α,β-diaminopropionic acid accumulation in grass pea (Grulvyrus sruivus L.) under water stress. Acta Botany Sinica, 2000, 42 (10): 1039-1044
    168Zhang M Q, Chcn R K, Ya B L. The change of polyamine metabolism in sugarcaneleaves and the relation between polyamine and the anti-draught ability of them underwater stress. Acta Phytophysiology Sinica, 1991, 22 (3): 327-332
    169Goicoechea N, Szalai G, Antolin M C, et al. Influence of arbuscular mycorrhizae and rhizobium on free polyamines and praline levels in water-stressed alfalfa. Plant Physiology, 1998, 153 (5-6): 706-711
    170Mcjia E G, Martinez R V, Castano T E, et al. Effect of drought on polyamine metabolism, yield, protein content and protein digestibility in teoary (Phaseolus acutifolius L.) and common (Phaseolus vulgaris L.) bean seeds. Journal of Science for Food Agriculture, 2003, 83: 1022-1030
    171牛明功,陈龙,王贤,等.水分胁迫对小麦幼苗叶片多胺含量的影响.热带亚热带植物学报, 2004, 12 (6): 501-505
    172Ali I A, Kafkafi U, Yamaguchi I, et al. Effects of low temperature on sap flowrate, soluble carbohydrates, nitrate contents and on cytokinin and gibberellin levels in root xylem exudates of sand grown tomato. Journal of Plant Nutrition, 1996, 19: 619-634
    173Ali I A, Kafkafi U, Yamaguchi I, et al. Growth, transpiration, root born cytokinins and gibberellins, and nutrient compositional changes in sesame exposed to low root zone temperature under different ratios of nitrate: ammonium supply. Journal of Plant Nutrition, 2000, 23(1): 123-140
    174Atkin R K. Effect of root growing temperature on growth substances in xylem exdation of zea mays. Journal of Experimental Botany, 1973, 24: 475-487
    175梁建生,张建华.根系逆境信号ABA产生和运输及其生理作用.植物生理学通讯, 1998, 34 (5) : 329-338
    176于贤昌,邢禹贤,马红,等.低温胁迫下黄瓜嫁接苗和自根苗内源激素的变化.园艺学报, 1999, 26 (6): 406-407
    177罗正荣,章文才. PP333对柑桔抗抗冻力以及叶片内源ABA和GA3含量的影响.植物生理学通讯, 1992, 28 (3): 182-182
    178陈发河,张维一.低温胁迫对甜椒果实游离脯氨酸的影响.植物生理学通讯, 1991, 27(5) : 365-368
    179Irving R M, Lanphear F O. Regulation of cold hardiness in Acer negundo. Plant Physiology, 1968, 43: 9-13
    180罗正荣.植物激素与抗寒力的关系.植物生理通讯, 1989, 3: 1-51 181万正林,罗庆熙.水杨酸与蔬菜作物抗性关系的研究进展.西南园艺, 2006, 34 (3): 30-32
    182吴能表.外源水杨酸对萝卜低温胁迫的缓解作用.西南农业大学学报, 2006, 28 (5): 782-785
    183舒英杰,周玉丽,张子学,等.外源水杨酸对提高黄瓜萌发种子抗冷性的效应.中国农学通报, 2006, 22(10): 285-287
    184李艳军,王丽丽,蒋欣梅,等.外源水杨酸诱导对番茄幼苗抗冷性的影响.东北农业大学学报, 2006, 37(4): 463-467
    185鲍士旦.土壤农化分析(第三版).北京:中国农业出版社, 2005
    186Brüggemann W, Dauborn B. Long term chilling of young tomato plants under low light.Ⅲ.Leaf development as reflected by photosynthesis parameters. Plant and Cell Physiology, 1993, 34 (8): 1251-1257
    187Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1982, 33: 317-345
    188胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响.园艺学报, 2001, 28(1): 41-46
    189Eamus D, Wilson J M. A model for the interaction of low temperature, ABA, IAA, and CO2 in the control of stomatal behaviour. Journal of Experimental Botany, 1984, 35: 91-98
    190周碧燕,李宇彬,陈杰忠,等.低温胁迫和喷施ABA对荔枝内源激素和成花的影响.园艺学报, 2002, 29 (6): 577-578
    191郭凤领,卢育华,李宝光.外源ABA对番茄苗期和开花期抗冷特性的影响.山东农业大学学报(自然科学版), 2000, 31(4): 357-362
    192郁继华,张国斌,冯致,等.低温弱光对辣椒幼苗抗氧化酶活性与质膜透性的影响.西北植物学报, 2005, 25 (12): 2478-2483
    193Cunningham S M, Nadeau P, Castonguay Y, et al. Raffinose and stachyose accumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms. Crop Science, 2003, 43: 562-570
    194Bachmann M, Matile P, Keller F. Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. cold acclimation, translocation, sink to source transition: discovery of chain elongation enzyme. Plant Physiology, 1994, 105: 1335-1345
    195Wang Z L, Li P H, Fredricksen M, et al. Expressed sequence tags from Thellungiella halophila,a new model to study plant salt-tolerance. Plant Science, 2004, 166: 609-616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700