高速车辆减振技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速车辆区别于普通客运车辆的根本原因在于其所处的特殊动态环境,随着车辆运行速度的提高其动态环境急剧恶化,如轨道激扰频率增加、结构振动加剧、轮轨动力作用增加以及蛇行运动加剧等等。但是不管怎样乘客的要求永远不变,即安全、舒适、快捷和方便。为了达到这个目标,高速转向架在动力学性能上,应具备以下三个基本条件:高速运行条件下不允许出现蛇行失稳运动;高速运行条件下车辆应该有较好的旅客乘坐舒适性;能保证车辆高速通过曲线时不影响行车安全性,并且轮轨动作用力和磨耗要小。车辆蛇行运动稳定性和曲线通过性能之间是相互矛盾的,因此在进行稳定性设计时需要兼顾曲线通过性能。对于新建高速客运专线上运用的车辆来说,由于线路条件较好曲线半径通常较大,曲线通过的问题降为次要地位。本文以高速车辆的减振为研究对象,研究了直线蛇行运动稳定性和乘坐舒适性问题。
     针对高速车辆蛇行失稳问题,建立了车辆系统多刚体模型。模型包括抗蛇行减振器部件模型、空气弹簧部件模型、应急弹簧部件模型以及牵引电机部件模型。针对高速车辆乘坐舒适性下降问题,建立了考虑车体弹性振动的刚柔耦合垂向简化模型、刚柔耦合精确模型、车体约束阻尼处理模型以及车体压电结构模型。在模型的基础上,本文完成了以下主要工作。
     (1)在对车辆非线性模型进行线性化处理的基础上,进行了特征值分析。计算结果表明车辆系统存在两种不同的蛇行失稳形态,分别称为车体蛇行和转向架蛇行。接着,详细研究了二系横向刚度、二系横向阻尼、二系纵向刚度、二系纵向阻尼、一系纵向定位刚度、车轮踏面等效锥度、车体质量等参数对蛇行失稳形态的影响。研究结果表明,在不同的悬挂和轮轨参数下,车体蛇行和转向架蛇行都可能成为制约车辆高速运行的因素。
     (2)系统地研究了一系纵向定位刚度、一系横向定位线性和非线性刚度、踏面等效锥度大小以及形状、抗蛇行减振器线性和非线性参数、电机横移频率和阻尼比、电机摇头频率和阻尼比、应急弹簧水平刚度和摩擦系数、横向减振器阻尼以及蠕滑水平等参数对临界速度的影响。在此基础上,提出了基于稳定性的车辆参数设计原则。最后,通过滚振台试验验证了部分理论分析结果的正确性。
     (3)在研究了引起车体横向振动和垂向振动主要振源和传递路径的基础上,详细研究了二系横向减振器、车间减振器、横向半主动悬挂对横向振动的影响,以及-二系垂向阻尼、空气弹簧参数、抗蛇行减振器安装角度和牵引拉杆纵向刚度对车体垂向振动的影响。在此基础上,提出了基于平稳性的车辆参数设计原则。
     (4)对比研究了多刚体模型以及考虑车体的刚柔耦合模型在稳定性、平稳性、曲线通过方面的区别。随后,详细研究了车体弹性振动的特点,确定了车体弹性振动的主要减振措施。通过合理假设推导了含有约束阻尼层的车体模态损耗因子的计算公式,通过仿真手段研究了约束阻尼处理层的长度、厚度、弹性模量等参数对车体弹性振动减振效果的影响。最后,仿真分析了基于压电元件的被动控制和主动控制对车体弹性振动的控制效果。
     (5)基于稳定性部分的研究成果,实现了本理论在某高速车辆异常振动中的应用,给出了异常振动的产生原因和解决方案。
High speed vehicle is different from ordinary vehicle in its special dynamic environments. Higher speeds would increase excitation frequencies between wheels and rails, and therefore generate increased structure vibrations, wheel rail dynamic forces, and severe hunting oscilations. However, the requirements of safety, comfort, fast and convenience for passengers will never change. To achieve this goal, dynamic performance of high speed vehicles should have the following three basic qualifications. Hunting instability is not allowed in the high speed, good ride comfort should be assured in the high speed, low wheel/rail force and wear should be assured on the curve in the high speed. There is a fundamental design conflict between vehicle stability and curving performance. However, for the high speed railway, the curve radius on the main line is big enough that curving performance can be considered to be of minor status. Therefore, the problem of achieving high speed operation without hunting instability and with good ride comfort is investigated in this paper.
     To investigate the hunting instability of high speed railway vehicle, the vehicle is modeled as a rigid multi-body system composed of yaw damper components, air spring components, emergency spring components and traction motor components. In order to reduce the carbody vibration, simplified vertical model of the rigid-flexible coupling system, accurate three-dimensional model of the rigid-flexible coupling system, constrained carbody damping treatment model, and carbody piezoelectric structure model are established. Based on the proposed models, the following aspects are extensively studied.
     (1) With all nonlinearities in the model linearised or eliminated, eigenvalues and eigenvectors of the linearised equations are calculated with root locus analysis. It shows that two modes of hunting instability exist in the railway vehicle systems, one called carbody hunting and the other one called bogie hunting. Then, the effect of the secondary lateral suspension stiffness, secondary lateral suspension damping, secondary longitudinal stiffness, secondary longitudinal damping, primary longitudinal stiffness, wheel tread equivalent conicity, and carbody weight on hunting stability is investigated. Investigation results show that two modes of hunting instability may emerge in the railway vehicles due to different suspension parameters and wheel/rail conditions, which may be the mian factor to restrict high speed speed operation.
     (2) The influence of the primary longitudinal stiffness, primary lateral linear and nonlinear stiffness, value of equivalent conicity, shape of wheel profile, linear and nonlinear parameters of yaw damper, frequency and damping ratio of traction motor lateral motion, frequency and damping ratio of traction motor yaw motion, stiffness and friction coefficient of emergency spring, secondary lateral damping, and Kalker weighting coefficient on the critical speed is investigated extensively. Based on the simulation results, design principles of vehicle parameters in respect of hunting stability are proposed. At last, some of the theoretical analysis results are validated by the roller rig test.
     (3) Based on the study of vibration sources and transmission paths of the carbody lateral and vertical oscillations, the influence of the secondary lateral damper, the inter-car damper, and the secondary lateral semi-active suspension on the carbody lateral vibration, and the influence of the primary and secondary vertical damping, the air spring parameters, the mounting angle of yaw damper and the traction rod longitudinal stiffness on the carbody vertical vibration are investigated. Based on these researches, design principles of vehicle parameters in respect of ride comfort are proposed.
     (4) Differences between the rigid multi-body vehicle model and the rigid-flexible coupling vehicle model in hunting stability, ride comfort, and curving performance are presented. Then, the characteristic of carbody elastic vibration is revealed, and the vibration suppression mearsures are determined. Through reasonable assumptions, the formula of the loss factor for the carbody with constrained damping layers is derived. The influence of length, thickness, and elastic modulus of the constrained damping layers on the carbody elastic vibration is investigated by numerical simulation. At last, the piezoelectric shunt damping treatment on the outside sheathing of car body and the concept of an active vibration reduction system of a railway vehicle car body with offset piezoceramic stack actuators are simulated.
     (5) The application of the theoretical hunting stability analysis to a high speed passenger car with offensive vehicle hunting problem in the filed tests is presented. Causes and solutions for this problem is proposed based on the simulation results and test results.
引文
[1]张曙光.高速列车设计方法研究.北京:中国铁道出版社出版,2008.
    [2]刘宏友.高速列车中的关键动力学问题研究.西南交通大学博士论文.2003.
    [3]王福天.车辆系统动力学.北京:中国铁道出版社,1994.
    [4]Matsudaira, T. Safety and Ride Comfort of High-Speed Railway Cars. Quarterly Report of RTRI, Special Issue:Researches for Super High-Speed Railway,1960, 13-19.
    [5]Matsudaira, T. Dynamics of High Speed Rolling Stock. Quartely Reports of RTRI, Special Issue,1960,57-65; 1961,20-26; 1962,13-22; 1963,21-27; 1964,21-26.
    [6]Kohler, G., Scheunemann, E., Kolbe, T. Die sicherheitstechnische Bedeutung des UICMerkblattes 518. Eisenbahn-Revue International,2003,5:236-239.
    [7]Oldrich Polach. Influence of wheel/rail contact geometry on the behaviour of a railway vehicle at stability limit. ENOC-2005, Eindhoven, Netherlands,2005.
    [8]SCHEUNEMANN Eckhard, KOLBE T. The geometry of wheel/rail is a common subject of rail vehicles and track. ZEV rail Glasers Annalen,2005,129:168-189
    [9]Carter, F.W. The electric locomotive. Proc. Instn Civil Engrs,1916,201,221-252.
    [10]Carter, F.W. Railway electric traction.1922.
    [11]Carter, F.W. On the stability of running of locomotives. Proc. R. Soc. Ser. A,1928, 121,585-611.
    [12]Carter, F.W. The running of locomotives with reference to their tendency to derail. Selected Engineering Papers 91, Institution of Civil Engineers,1930.
    [13]Davies, R.D. Some experiments on the lateral oscillation of railway vehicles. J. Instn Civil Engrs,1939,11,224-261.
    [14]Matsudaira, T. Shimmy of axle with pair of wheels. J. Railway Engng Res., Japan, 1952,16-26.
    [15]Matsudeira, T. The stability of complete vehicle with coned wheels. Papers awarded prizes in the competition sponsored by office of Research and Experiment of the International Union of Railways, Utrecht,1960.
    [16]Dipl.-Ing. Herbert SCHEFFEL. The influence of the suspension on the hunting stability of railway vehicles. Rail International,1979:662-696.
    [17]A. H. Wichens. The dynamics of railway vehicles on the straight track:fundamental considerations of lateral stability. Proc Instn Mech Engrs,1965,180(1):29-44.
    [18]Takehiko FUJIOKA, Yoshihiro SUDA, Masakazu IGUCHI. Representation of primary suspensions of rail vehicles and performance of radial trucks. Bulletion of JSME,1984,27(232):2249-2257.
    [19]池本宪三.车辆在试验台与实际线路上蛇行运动特性的比较.国外铁道车辆, 1994,1(3):40-45.
    [20]Shen Z Y, Zhang X F, Dai H Y, Shen L R. Curving behaviour and lateral stability of a three-axle forced-steering freight bogie for heavy haul railway transportation. Proceedings of the 11th IAVSD Symposium, Canada,1989.
    [21]沈利人,严隽耄.迫导向转向架低锥度失稳问题的研究.西南交通大学学报,1991,1(1):74-81.
    [22]M. No, J. K. Hedrick. High speed stability for rail vehicles considering varying conicity and creep coefficients. Vehicle System Dynamics,1984,13(6):299-313.
    [23]Shiro KOYANAGI.设计柔性转向架运行特性的方法.国外铁道车辆,1993,1(6):40-45.
    [24]RICHARD, James A. Stability of railway-car running at high speed. Vehicle System Dynamics,1987,16(1):37-49.
    [25]True, H., Kaas-Petersen. C. A bifurcation analysis of nonlinear oscillations in railway vehicles. Proceeding of 8th IAVSD Symposium,1984:438-444.
    [26]True. H. A method to investigate the nonlinear oscillations of a railway vehicle. Applied Mechanics Rail Transportation Symposium, Chicago, USA.1988:101-106.
    [27]True. H. Chaotic motion of railway vehicles. Proceeding of 11th IAVSD symposium. Kingston, Ontario, Canada.1989:578-587.
    [28]True. H. Dynamics of a rolling wheelset. Applied Mechanics Reviews,1993,46(7): 438-444.
    [29]True, H. Does a critical speed for railroad vehicle exist? In Proceedings of the 1994 ASME/IEEE Joint Railroad Conference, Chicago, Illinois,1994:125-131.
    [30]True, H. On the theory of nonlinear dynamics and its application in vehicle systems dynamics. Vehicle System Dynamics,1999,31:393-421.
    [31]Schupp, G. Computational bifurcation analysis of mechanical systems with applications to railway vehicles. Vehicle System Dynamics,2004,41 (S):458-467.
    [32]Schupp, G. Bifurcation analysis of railway vehicles. Multibody System Dynamics, 2006,15:25-50.
    [33]Kaiser, I., Popp, K. The running behaviour of an elastic wheelset. XXI ICTAM, ICTAM04 abstracts book and CD-ROM proceedings, Warsaw, Poland,2004.
    [34]Stichel, S. Limit cycle behaviour and chaotic motions of two-axle freight wagons with friction damping. Multibody System Dynamics,2002,8(3):243-255.
    [35]Zboinski, K., Dusza, M. Analysis and method of the analysis of non-linear lateral stability of railway vehicles in curved track. Vehicle System Dynamics,2004,41(S): 202-231.
    [36]O. Polach. On nonlinear methods of bogie stability assessment using computer simulations. Proc. IMeehE Part F:J Rail and RaPid Transit.IMeehE,2006,220: 13-27.
    [37]O. Polach. Comparability of the nonlinear and linearized stability assessment during railway vehicle design. Vehicle System Dynamics,2006,44(S):129-138.
    [38]O. Polach, A. Vetter. Methods for running stability prediction and their sensitivity to wheel rail contact geometry.6th International Conference Railway Bogies and Running Gears,2004:62-64.
    [39]O. Polach. Influence of wheel/rail contact geometry on the behaviour of a railway vehicle at stability limit. Proceedings ENOC-2005, Eindhoven University of Technology, The Netherlands,2005:2203-2210.
    [40]O. Polach. Characteristic parameters of nonlinear wheel/rail contact geometry. Proceedings of the 21st IAVSD Symposium, Stockholm,2009.
    [41]O. Polach. Application of nonlinear stability analysis in railway vehicle industry. EUROMECH Colloquium 500:Non-smooth Problems in Vehicle System Dynamics, Denmark,2008.
    [42]D. Moelle, R.Gasch. Nonlinear bogie hunting. Proc.7th IAVSD Symposium on the Dynamics of Vehicles on Roads and Trucks, Cambridge, U. K.,1981.
    [43]Dsouza A. F., Caravavatua P.转向架蛇行振动的非线性分析.国外铁道车辆,1986.
    [44]张雪锋,汪宏峰,杨绍普.车辆转向架Hopf分岔分析.石家庄铁道学院学报,2003,16(4):13-17.
    [45]You-Min Huang, Tsung-Shou Wang. Running stability simulation and field testing of two-axle bogie design. Int. J. of Vehicle Design,2001,26(2):131-145.
    [46]M. G. POLLARD. The development of cross-braced freight bogies. Rail International,1979:736-758.
    [47]Cooperrider, N.K. The hunting behavior of conventional railway trucks. ASME Journal of Engineering and Industry,1972,94:752-762.
    [48]Law, E. H., CooPeerider, N. K. A survey of railway vehicle dynamics researeh. Journal of Dynamic Systems,1974,96(2):132-146.
    [49]Lohe, M. A, Huilgol, R. R. Flange force effects on the motion of a train wheelset. Vehicle System Dynamics,1982,11(5/6):283-303.
    [50]Petzold, L. Automatic selection of methods for solving stiff and no stiff systems of ordinary differential equations. SIAM Journal of Scientific and Statistical Computing, 1983,4(1):136-148.
    [51]Arnold, J. The influence of elastic wheelset on the simulation results of railway vehicle's performance. Vehicle System Dynamics,2004,41:242-251.
    [52]H Molatefi, M Hecht, M H Kadivar. Critical speed and limit cycles in the empty Y25-freight wagon. Proc. IMechE Part F:J. Rail and Rapid Transit,2006,220: 347-359.
    [53]陆冠东.高速列车稳定性分析方法.铁道车辆,2008,46(1):6-10.
    [54]弘津哲二等.铁道车辆蛇行运动的模拟分析.国外铁道车辆,1985:19-27.
    [55]Ahmadian, Mehdi, Yang, Shaopu. Effect of system nonlinearities on locomotive bogie hunting stability. Vehicle System Dynamics,1998,29(6):365-384.
    [56]横濑景司等.日本TR41型转向架的走行稳定性和防止蛇行运动的措施.国外铁道车辆,1986:28-32.
    [57]R V Dukkipati. A parametric study of the lateral stability of a rail bogie on a roller rig. Proc Instn Mech Engrs Part F:J. Rail and Rapid Transit,1999,213:39-47.
    [58]Sen-Yung Lee, Yung-Chang Cheng. Influences of the vertical and the roll motions of frames on the hunting stability of trucks moving on curved tracks. Journal of Sound and Vibration,2006,294:441-453.
    [59]朴明伟,樊令举,梁树林,兆文忠.基于轮轨匹配的车辆横向稳定性分析.机械工程学报,2008,44(3):22-28.
    [60]曾京.车辆系统的蛇行运动分岔及极限环的数值计算.铁道学报,1996,18(3):13-19.
    [61]曾京,徐涛.客车系统非线性横向稳定性的分叉方法研究.西南交大学报,1994,29(3):316-322.
    [62]罗仁,曾京.列车系统蛇行运动稳定性分析及其与单车模型的比较.机械工程学报,2008,44(4):184-188.
    [63]邬平波,曾京.确定车辆系统线性和非线性临界速度的新方法.铁道车辆,2000,38(5):1-4.
    [64]赵洪伦,周劲松,王福天.高速客车蛇行运动稳定性最优化研究.上海铁道学院学报,1995,16(4):27-34.
    [65]林建辉,陈建政,高燕.高速车辆系统非线性运动稳定性的理论与试验研究.机械科学与技术,2003,22(3):490-494.
    [66]苏本才.机车蛇行运动的分叉特性.振动与冲击,1992,1(2):69-76.
    [67]Roger Goodall, Hong Li. Solid axle and independently-rotating railway wheelsets-a control engineering assessment of stability. Vehicle System Dynamics,2000,33(1): 57-67.
    [68]John T Pearson, Roger Goodall. An active stability system for a high speed railway vehicle. Electronic system and control division research, Loughborough University, UK,2003:11-14
    [69]S. Bruni, F. Resta. Active control of railway vehicles to avoid hunting instability. IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, Como, Italy,2001.
    [70]Shen, G., Goodall, R. M., Active yaw relaxation for improved bogie performance, Vehicle System Dynamics,1997,28:273-289.
    [71]藤本裕,丁肃秋.新干线电动车组的横向振动及其减振措施.电力牵引快报,1995.7:21-27.
    [72]利光隆志,蔡千华.利用车体间横向减振器改善高速列车的舒适性.国外铁道车辆,2009,46(1):8-15.
    [73]王福天,朱昶基,陈健凡.客车转向架横向振动的理论计算和试验分析.铁道学报,1981,3(1):14-26.
    [74]刘建新,王开云,封全保,赵怀耘.横向减振器对机车平稳性能的影响.交通运输工程学报,2006,6(3):1-4.
    [75]刘建新,王开云,封全保.机车车辆二系横向止档动力学模型.交通运输工程学报,2007,7(5):12-14.
    [76]刘建新,王开云,封全保.机车车辆二系横向止档结构参数.西南交通大学学报,2008,43(4):469-472.
    [77]吴国梁.轨道的几何状况与车辆的横向振动.铁道学报,1985,7(4):11-17.
    [78]B Diedrichs, M Berg, S Stichel, S Krajnovic. Vehicle dynamics of a high-speed passenger car due to aerodynamics inside tunnels. Proc. IMeehE Part F:J Rail and RaPid Transit.IMeehE,2007,221:527-545.
    [79]Katsuya Tanifuji, Kei Sakanoue, Satoshi Kikko. Modelling of aerodynamic force acting on high speed train in tunnel and a measure to improve the riding comfort utilizing restriction between cars. Vehicle System Dynamics,2008,46:1065-1075.
    [80]Satoshi Kikko, Katsuya Tanifuji, Kei Sakanoue. Modelling of aerodynamic force acting in tunnel for analysis of riding comfort in a train. Journal of Mechanical Systems for Transportation and Logistics,2008,1(1):31-42.
    [81]Sarma G N, Kozin F. An active suspension system design for the lateral dynamics of a high-speed wheel-rail system. Transactions of the ASME Journal of Dynamic systems, Measurement, and control,1971,9:233-241.
    [82]Sinha P K, Wormley D N, Hedrick J K. Rail passenger vehicle lateral dynamic performance improvement through active control. Transactions of the ASME Journal of Dynamic systems, Measurement, and control,1978,100(12):270-283.
    [83]Hedrick J K. Railway vehicle active suspension. Vehicle System Dynamics,1981,10: 267-283.
    [84]Pratt I, Goodall R M. Controlling the ride quality of the cenlral portion of a high speed railway vehicle. Proceedings of the American Control Conference,1997:4-9.
    [85]Hong Li, Goodall R M. Linear and nonlinear skyhook damping control laws for active railway suspensions. Control Engineering Practice,1999,7(7):843-850.
    [86]Gautier PE, Quetin F, Vincent J. Global active suspension system for railway caoches. Proceedings of WCRR'99,1990.
    [87]小泉智志.日本住友金属主动控制技术.国外铁道车辆,2004,41(1):34-37.
    [88]戴焕云,张汉全.车辆主动悬挂的鲁棒稳定性及鲁棒性能研究.铁道车辆,1998,20(4):50-55.
    [89]张开林,金鼎昌.车辆横向主动悬挂试验对比研究.铁道学报,1998,20(5): 35-39.
    [90]张开林,金鼎昌.采用主动控制技术提高铁路车辆横向平稳性.西南交通大学学报,1997,32(4):413-418.
    [91]D. Karnopp, M. J. Crosby, R. A. Harwood. Vibration control using semi-active force generators. ASME Journal of Engineering for Industry,1974,96(2):619-626.
    [92]D. Karnopp, R. Allen. Semi-active control of multi-mode vibratory systems using the ILSM concept. ASME Journal of Engineering for Industry,1975,98(3):914-918.
    [93]D. Karnopp. Design principles for vibration control systems using semi-active dampers. ASME Journal of Dynamic Systems, Measurement and Control,1988,112: 448-455.
    [94]D. Karnopp. Active and semi-active vehicle suspension. The Automotive Technology for Safety and Environment, Proc. Kia Academic Seminar,1992:123-147.
    [95]D. Karnopp. Active and semi-active vibration isolation. Transactions of the ASME, 1995,117:177-185.
    [96]D. Karnopp, G. Heess. Electronically controllable vehicle suspensions. Vehicle System Dynamics,1991,20(3):207-217.
    [97]R. C. Redfield, D. Karnopp. Performance sensitivity of an actively damped vehicle suspension to feedback variation. ASME Journal of Dynamic Systems, Measurement and Control,1989,111:51-60.
    [98]D. L. Margolis. Semi-active control of wheel hop in ground. Vehicle System Dynamics,1983,28:317-330.
    [99]D. L. Margolis. The response of active and semi-active suspension of realistic feedback signals. Vehicle System Dynamics,1982,11(4):267-282.
    [100]Valasek M, Novak M, Sika Z. Extended ground hook-new concept of semi-active control of truck's suspension. Vehicle System Dynamics,1997,27(6):5-6.
    [101]佐佐木君章.改善高速列车的横向乘坐舒适度-半主动悬挂减振装置的应用.铁道学报,2004,26(1):105-115.
    [102]王月明.车辆半主动悬挂开关控制特性的研究.机械工程学报,2002,38(6):148-151.
    [103]曾京,戴焕云,邬平波.基于开关阻尼控制的铁道客车系统的动力学性能研究.中国铁道科学,2004,25(6):27-31.
    [104]丁问司,卜继玲.铁道车辆横向开关半主动悬架系统研究.机械工程学报,2004,40(9):161-170.
    [105]姚建伟,孙琼,张润鸿等.铁路机车车辆半主动控制减振器的理论研究和产品研制.铁道机车车辆,2004,24(S):6-9.
    [106]董孝卿.高速车辆横向半主动悬挂系统的研究.北方交通大学硕士论文,2003.
    [107]刘宏友,李亨利,李莉等.半主动悬挂系统动力学性能仿真分析.中国铁道科学,2010,31(2):61-66.
    [108]吕凤梅,谭继文,刘宏友等.反比例溢流阀式高速列车横向半主动悬挂系统研究.液压与气动,2008:24-26.
    [109]吕凤梅,谭继文,刘宏友等.高速列车反比例溢流阀式横向半主动悬挂系统研究.机床与液压,2008,36(17):102-104.
    [110]SUZUKI Y, CHONAN S. Theoretical analysis for flexural vibration damping method of rolling stock carbody. Transactions of the Japan Society of Mechanical Engineers(C),1996,62(598):2132-2139.
    [111]周劲松,张伟,孙文静等.铁道车辆弹性车体动力吸振器减振分析.中国铁道科学,2009,30(3):86-90.
    [112]SUGAHARA Y, TAKIGAMI T, SAMPEI M. Suppressing vertical vibration in railway vehicles through primary suspension damping force control. Journal of System Design and Dynamics,2007,1(2):224-235.
    [113]TOMIOKA T, SUZUKI Y, UENO T. Investigation on riding comfort of railway vehicle by changing the specifications of carbody, trucks and their connecting elements. Transactions of the Japan Society of Mechanical Engineers(C),2000, 66(645):1636-1644.
    [114]TOMIOKA T, TAKIGAMI T. Suppression of bending vibration of railway vehicle carbody by using carbody-truck interaction. Transactions of the Japan Society of Mechanical Engineers,2004,70(696):2419-2426.
    [115]FOO E, GOODALL R M. Active suspension control of flexible-bodied railway vehicles using electro-hydraulic and electro-magnetic actuators. Control Engineering Practice,2000,8:507-518.
    [116]FOO E, GOODALL R M. Active suspension control strategies for flexible-bodied railway vehicles. UKACC International Conference on Control,1998,8:507-518.
    [117]Tamai, E.H. Sotelo, J. LQG control of active suspension considering vehicle body flexibility. Proceedings of the 4th IEEE Conference on Control Applications,1995: 143-147.
    [118]Yoshiki SUGAHARA, Tadao TAKIGAMI, Akihito KAZATO. Suppression vertical vibration in railway vehicles through air spring damping control. Journal of System Design and Dynamics,2007,1(2):213-223.
    [119]Yoshiki SUGAHARA, Tadao TAKIGAMI, Mitsuji SAMPEI. Suppression vertical vibration in railway vehicles through primary suspension damping force control. Journal of System Design and Dynamics,2007,1(2):224-235.
    [120]Yoshiki SUGAHARA, Akihito KAZATO, Tadao TAKIGAMI, Reiko KOGANEI. Suppression of vertical vibration in railway vehicles by controlling the damping force of primary and secondary suspensions. QR of RTRI,2008,49(1):7-15.
    [121]Yoshiki SUGAHARA, Tadao TAKIGAMI, Akihito KAZATO, Reiko KOGANEI, Mitsuji SAMPEI. Suppression vertical vibration in railway vehicles by damping force control of primary suspension using an LQG controller. Journal of System Design and Dynamics,2008,2(1):251-262.
    [122]朱浩,刘少军,邬平波,王建斌.基于柔性车体的铁道车辆主动悬挂的模糊控制研究.中国机械工程,2006,17(18):1883-1887.
    [123]陆正刚,郭慧明.柔性车辆振动和运行平稳性控制研究.中国机械工程,2005,17(10):1026-1030.
    [124]陆正刚,胡用生.高速车辆结构振动的独立模态空间控制.控制理论与应用,2007,24(6):879-885.
    [125]陆正刚,胡用生.基于磁流变阻尼器的铁道车辆结构振动半主动控制.机械工程学报,2006,8.
    [126]周劲松,宫岛,任利惠.铁道车辆弹性车体被动减振仿真分析.同济大学学报,2009,37(8):1085-1089.
    [127]周劲松,张伟,孙文静,任利惠.铁道车辆弹性车体动力吸振器减振分析.中国铁道科学,2009,30(3):86-90.
    [128]曾京,罗仁.考虑车体弹性效应的铁道客车系统振动分析.铁道学报,2007,29(6):19-25.
    [129]黄彩虹,曾京,邬平波,罗仁.铁道客车车体弹性振动减振研究.工程力学,2010,27(12):250-256.
    [130]Huang Cai-hong, Zeng Jing, LUO Ren. Bending vibration suppression of high speed railway passenger car body. International Conference of Chinese Transportation Professionals, Harbin, China,2009.
    [131]黄彩虹,曾京,罗仁,吴会超.牵引拉杆纵向刚度对高速客车车体弹性振动的影响.交通运输工程学报,2010,10(3):46-51.
    [132]SUZUKI Y, CHONAN S. Theoretical analysis for flexural vibration damping method of rolling stock carbody. Transactions of the Japan Society of Mechanical Engineers(C),1996,62(598):2132-2139.
    [133]黄彩虹,曾京.基于约束阻尼层的高速客车车体弯曲振动的抑制.交通运输工程学报,2010,10(1):36-42.
    [134]TAKIGAMI T, TOMIOKA T. Bending vibration suppression of railway vehicle carbody with piezoelectric elements. Journal of Mechanical Systems for Transportation and Logistics,2008,1(1):111-121.
    [135]TAKIGAMI T, TOMIOKA T. Passive vibration suppression of railway carbody with piezoelectric elements. Transactions of the Japan Society of Mechanical Engineers(C),2002,68(674):3029-3036.
    [136]TAKIGAMI T, TOMIOKA T, HANSSON, J. Vibration suppression of railway vehicle carbody with piezoelectric elements. Journal of Advanced Mechanical Design, Systems and Manufacturing,2007,1(5):649-660.
    [137]C. Benatzky, M. Kozek. An identification procedure for a scaled metro vehicle flexible structure experiment. European Control Conference(ECC), Kos, Greece 2007.
    [138]S. Popprath, C. Benatzky, C. Bilik, M. Kozek, A. Stribersky, J. Wassermann. Experimental modal analysis of a scaled car body for metro vehicles. Proceedings of the 13th International Congress on Sound and Vibration(ICSV13), Vienna, Austria, 2006.
    [139]C. Bilik, C. Benatzky, M. Kozek. A PC-based multipurpose test bed environment for structural testing and control. Proceedings of the 3rd International Symposium on Remote Engineering and Virtual Instrumentation, Maribor, Slovenia,2006.
    [140]M. Kozek, C. Benatzky, A. Schirrer, A. Stribersky. Vibration damping of a flexible car body structure using piezo-stack actuators. Proceedings of the 17th International Fedration of Automatic Control, Seoul, Korea,2008.
    [141]M. Kozek, C. Benatzky, A. Schirrer, A. Stribersky. Vibration damping of a flexible car body structure using piezo-stack actuators. Control Engineering Practice,2009: 1-13.
    [142]杨国桢,王福天.机车车辆液压减振器.北京:中国铁道出版社出版,2002.
    [143]BS EN 13802, Railway applications suspension components hydraulic dampers, 2004.
    [144]张立军,曾庆东,梁海林.减振器联接弹性对阻尼特性的影响及其确定.机械设计与制造,1999,19(6):40-41.
    [145]赵云生.油压减振器的安装刚度对车辆动力学性能的影响.铁道车辆,1997,35(5):5-9.
    [146]陆冠东.串联刚度对液压减振器特性的影响.铁道车辆,2007,45(2):1-4.
    [147]Reybrouck K. A non-linear parametric model of an automotive shock absorber. SAE paper,1994:79-86.
    [148]Su, H., Rakheja, S., Sankar, T. S. Vibration and shock isolation performance of a pressure-limited hydraulic damper. Mechanical System and Signal Processing,1989, 3:71-86.
    [149]Hall, B.B., Gill, K.F. Performance of a telescopic dual-tube automotive damper and the implications for vehicle ride prediction. Proceedings I. Mech. E.,1986,200(D2): 115-123.
    [150]W. L. Wang, Y. Huang, X. J. Yang, G. X. Xu. Non-linear parametric modelling of a high-speed rail hydraulic yaw damper with series clearance and stiffness. Nonlinear Dynamics,2011,65(1-2):13-34.
    [151]A. Conde, E. Gomez, J. Vinolas. Advances on railway yaw damper characterisation exposed to small displacements. Int. J. Heavy Veh. Syst.,2006,13:263-280.
    [152]Besinger, F. H., Cebon, D., Cole, D. J. Damper models for heavy vehicle ride dynamics. Vehicle System Dynamics,1995,24(1):35-64.
    [153]Kasteel R,王成国,钱立新等.液压减振器动态数学模型的研究.中国铁道科学,2003,25(3):1-5.
    [154]Kasteel R,钱立新,王成国等.铁道车辆液压减振器的工作原理和数值模型.铁道学报,2005,27(2):27-34.
    [155]刘增华.铁道车辆空气弹簧动力学特性及其主动控制研究.西南交通大学博士学位论文,2007.
    [156]罗仁,曾京,邬平波.空气弹簧对车辆曲线通过性能的影响.交通运输工程学报,2007,5(7):15-18.
    [157]方凯.高速客车空气弹簧力学参数的非线性有限元分析.铁道部科学研究院硕士学位论文,2001.
    [158]张广世,沈刚.带有连接管路的空气弹簧动力学模型研究.铁道学报,2005,4(27):36-41.
    [159]金鼎昌,罗赟,黄志辉.牵引电机悬挂方式对机车或动车动力学性能的影响.铁道学报,1994,16(S):43-47.
    [160]马卫华,罗世辉.牵引电动机吊挂方式对机车运行稳定性的影响.内燃机车,2005,8:13-18.
    [161]翟婉明.车辆-轨道耦合动力学.第三版.北京:中国科学出版社,2007.
    [162]曾京,邬平波,郝建华.铁道客车系统的垂向减振分析.中国铁道科学,2006,27(3):62-67.
    [163]戴德沛.阻尼减振降噪技术.西安:西安交通大学出版社,1986.
    [164]RAO D K. Frequency and loss factor of sandwish beams under various boundary conditions. Journal of Mechanical Engineering Science,1978,20(5):271-282.
    [165]GAO J X, LIAO W H. Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments. Journal of Sound and Vibration,2005,280(1-2):329-357.
    [166]LALL A, ASNANI N, NAKRA B. Damping analysis of partially covered sandwich beams. Journal of Sound and Vibration,1998,123(2):247-259.
    [167]陶宝祺.智能材料结构.北京:国防工业出版社,1997.
    [168]姜德生.智能材料器件结构与应用.武汉:武汉工业大学出版社,2000.
    [169]王建军,姚建尧,李其汉.分支电路压电阻尼系统的分析模型和基本特性.工程力学,2005,22(6).
    [170]孙浩.压电分流电路特性及在结构振动控制中的应用研究.西北工业大学硕士学位论文,2005.
    [171]Preumont, A. Vibration control of active structures:An introduction. Dordrecht: Kluwer Academic Publishers,1997.
    [172]顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1997.
    [173]欧进萍.结构振动控制.北京:科学出版社,2003.
    [174]Meirovitch L, Baruh H. Robustness of the independent modal space control method. Journal of Guidance,1982,6:20-25.
    [175]Charles C N. Implementation of actuators for the independent modal space control scheme. Computer Elect. Engg,1991,17:75-90.
    [176]陈泽深,王成国.铁道车辆动力学与控制.北京:中国铁道出版社,2004.
    [177]张卫华,沈志云.车辆系统非线性运动稳定性研究.铁道学报,1996,18(1).
    [178]曾京.非线性车辆系统的稳定性、临界速度及分叉.学术动态报道,1998.
    [179]刘泽九.滚动轴承应用手册.北京:机械工业出版社,1996.
    [180]唐国良.机车轮对横动量对若干问题的影响.内燃机车,2002,(1):11-16.
    [181]王坤全.3轴转向架轴向横动量配置初探.铁道机车车辆,2004,(2):26-29.
    [182]张莉,李景贤.国外高速动力车轴箱轴承关键技术及研究.内燃机车,1997,5:17-24.
    [183]孙渝麟.控制209T型转向架轴箱定位间隙的建议.铁道车辆,2001,39(4):38-39.
    [184]刘志恒,张红军.轴箱轴承轴向自由间隙对机车动力学影响分析.铁道学报,2006,28(2):48-52.
    [185]A. Alonso. Yaw damper modelling and its influence on the railway dynamic stability. Vehicle System Dynamics,2011,49(9):1367-1387.
    [186]丁文镜.减振理论.北京:清华大学出版社,1988.
    [187]杨吉忠.考虑空气动力效应时高速列车运行安全平稳性研究.西南交通大学博士学位论文,2009.
    [188]王悦明,王新锐.客车舒适度的评定.铁道机车车辆,2000,3,1-5.
    [189]N. J. Mansfield. Low frequency vibration comfort. Literature review, Loughborough University,2006.
    [190]刘宏友,戴焕云.单牵引拉杆装置横向刚度对客车动力学性能的影响.铁道车辆,2003,41(8):1-4.
    [191]张曙光.CRH2型动车组.北京:中国铁道出版社,2008.
    [192]TOMIOKA T, TAKIGAMI T. Suppression of bending vibration of railway vehicle carbody by using carbody-truck interaction. Transactions of the Japan Society of Mechanical Engineers,2004,70(696):2419-2426.
    [193]申鑫.车轮偏心引起转向架振动性能分析.大连交通大学硕士学位论文,2008.
    [194]谭敦枝.高速铁路动车横向加速度报警自停原因及整治.铁路运营技术,2011,17(4):44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700