亚热带北缘毛竹林群落生产力、有机碳及养分动态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys pubescens)是我国南方重要的森林资源,生长快,经营周期长,具有巨大的固碳能力。本文选取毛竹林为研究对象,通过样地调查与分析、野外定点观测、室内测定等研究亚热带北缘毛竹林群落生产力、有机碳和养分动态特征及其经营措施的影响,以揭示在全球变化背景下,亚热带北缘毛竹林生长、碳循环以及养分平衡关系。主要研究结果如下:
     (1)毛竹林立竹密度为2711~3956株·hm-2;立竹度为0.33-0.64;平均眉径10.12cm,径级结构尚不合理,集中在9~15cm;平均高13.8-21.6m;毛竹林立竹整齐度都大于7,竹林很整齐;立竹均匀度为5.51,达到均匀竹林的水平;叶面积指数在5.01-13.14之间,样地1和样地3已达到丰产林水平,但年龄结构不合理,Ⅰ度和Ⅳ度以上毛竹比例偏大。
     (2)毛竹单株生物量在6.99~56.89kg之间,地上部分占90%以上,随年龄增大先增加后减小(Ⅲ度以后),随径阶增大而增加。毛竹林分平均生物量为89.83t·hm-2,样地3的生物量最高,达到127.19t·hm-2;毛竹各器官生物量的大小排序为竹秆>竹枝>竹根>竹叶,各器官及单株生物量分别与眉径、株高间达到了极显著相关(p<0.01),并建立了相关方程。
     (3)毛竹各器官含碳率排序为竹根(50.76%)>竹秆(49.44%)>竹枝(46.07%)>竹叶(41.71%),幼年期较稳定,老竹(3度以上)间差异显著(p<0.05)。未经营毛竹林碳贮量45.84tC·hm-2,而经营后的毛竹林碳贮量在63.66~101.11tC.hm-2。竹秆碳贮量占毛竹林碳贮量的78.22%,竹枝10.57%,竹根6.35%和竹叶4.87%;毛竹不同部位的营养元素含量存在着明显差异,叶、枝、秆和根中的N和K较多,P和Ca较少,但叶中Ca较多,而N、P、Ca、Mg元素含量叶>秆>枝>根;随年龄增加,不同器官中的钾含量降低,氮、磷与镁含量上下波动,钙含量相对稳定,且不同器官中的N、P、K、Ca、Mg元素间达到了显著(p<0.05)或极显著水平(p<0.01)。
     (4)毛竹林年凋落物量为2.95~4.61t·hm-2·a-1,集中在4~5月份,呈单峰型,月份间凋落物量差异显著(p<0.05);凋落物含碳率为32.93%~48.75%,凋落物碳年输入量以对照样地(1.85t·hm-2·a-1)最高,在4~5月份形成单峰值;凋落物中养分含量排序均为N>Ca>K>P>Mg,存在明显的季节变化。
     (5)毛竹林土壤有机碳含量为21.61~42.30g·kg-1,上下层土壤DOC含量分别为0.15~0.17g·kg-1和0.11~0.15g·kg-1,均随土壤剖面深度增加而降低,变异系数分别为17.92%~26.10%和81.36%~150.26%,土层间有机碳含量均达到了显著差异水平(p<0.05),DOC均未达到显著差异(p>0.05);土壤有机碳和DOC含量的月变化均呈波浪形,变化趋势大致相同。
     毛竹林土壤呼吸日变化为较平缓的单峰曲线,峰值出现在14:00;存在明显的季节变化,月平均土壤呼吸变幅在0.5~5.12μmol CO2·m-2·s-1之间,不同月份间均差异显著(p<0.05);土壤呼吸速率与温度(t)成正相关,与湿度(w,0~20cm土壤)成负相关,土壤呼吸强度(Y)与二者的指数关系式为:Y1=0.0615×e0.2374t(R2=0.8324);Y0=9.8065×e-0.0449w(R2=0.8248)
     (6)毛竹林土壤pH为4.62~6.89,上层(0~20cm)小于下层(20~40cm),变异系数27.81%~62.02%,仅样地3显著差异(p<0.05);EC值为37~463μS·cm-1,上下层变异系数为4.04%~8.39%,差异均不显著(p>0.05);上下层土壤有机质含量分别为54.64~72.92g·kg-1和37.26~50.80g·kg-1,上层均高于下层,变异系数为17.92%~26.10%,均达到了极显著差异水平(p<0.01);上下层土壤全氮含量为0.74~4.64g·kg--和0.41~4.56g·kg-1,变异系数为22.17~46.22%,且在样地1、样地4中差异显著(p<0.05);上下层土壤铵态氮含量为3.27-4.00g·kg-1和2.33~3.71g·kg-1,硝态氮含量2.29~6.81g·kg-1和2.00~4.35g·kg-1,上层均高于下层,但差异不显著(p>0.05);上下层土壤全磷含量为0.05~2.68g·kg-1和0.02~2.39g·kg-1,上下层土壤速效磷含量为0.80~13.66mg·kg-1和(?)0.12~6.34mg·kg-1,上层土壤全磷和速效磷含量均高于下层,变异系数为49.53%~100.18%和40.80%~76.11%,上下层土壤全磷含量差异不显著(p>0.05);土壤钾、钙、镁含量分别为0.52~8.58g·kg-1、0.07~4.15g·kg-1和0.63~3.69g·kg-1,变异系数分别为41.17%~53.43%、28.49%~55.58%和44.36%~50.47%,但均无显著差异(p>0.05)。
     毛竹林上下层土壤pH、EC值随时间先升高后降低再升高;土壤有机质先降低后升高又降低;全氮含量在秋季(8、9、10月份)相对较低,其他时间相对较高;上层土壤铵态氮含量以春季后期最高,秋冬季最低,下层则以夏季最高,其他三季较低;上下层土壤硝态氮含量均是春季前期最高,秋季较高,其他月份较低;上下两层土壤全磷和速效磷含量均是秋季较高,冬季次之,春夏季较低;钾、钙和镁含量均是1、9、10月份含量较低,其他月份含量较高。
     毛竹根际土(取样时间为10月份)的pH值、全氮含量小于非根际土;EC值、全磷、速效磷、钾、钙、镁以及有机质含量均高于非根际土,且毛竹根际土养分含量有随毛竹年龄先增加后减小的趋势。
     (7)毛竹林原位土壤培养的净DOC转化速率在秋冬季多为负值,春夏季多为正值;两层土壤净DOC转化速率的峰值均出现在8~9月份,趋势相似,大小相近;净氨化速率在2009年的秋冬季和2010年的春夏季多为负值,2010年的秋冬季则多为正值,下层土壤要比上层土壤净氨化速率要大;净硝化速率与净氨化速率相反,峰值出现在5-8月份,上层土壤净硝化速率比下层大;上下层土壤净矿化速率的变化规律基本一致,多为正值,峰值出现在5-8月份,土壤矿化以硝化作用为主;各样地两层土壤的年平均氨化速率基本为负值,而年平均硝化速率和年平均矿化速率均为正值;土壤的净氨化速率与土壤的pH值呈极显著正相关(p<0.01),与温度、铵态氮含量呈极显著负相关(p<0.01);净硝化速率与铵态氮含量呈极显著正相关(p<0.01);净矿化速率与土壤物理因子呈显著相关性。
     (8)毛竹秆茎流率为3.99%~23.44%,穿透率为22.65%~105.71%。不同年龄毛竹的秆茎流量不存在显著差异(p>0.05);林外雨、秆茎流和穿透雨均呈酸性,秆茎流酸性最强,分别与林外雨和穿透雨呈极显著差异(p<0.01);电导率以穿透雨最高,林外雨最小,且穿透雨的电导率分别与秆茎流、林外雨的电导率达到极显著差异(p<0.01);林外雨中的养分元素浓度差异较大,Ca> K> N>Mg> P,钙年输入量为67.98kg·hm-2,磷年输入量仅为0.12kg·hm-2;秆茎流的营养元素浓度明显低于穿透雨,以K和Ca减少最明显;除秆茎流中Ca外,二者中的其他元素浓度均高于林外雨:秆茎流和穿透雨中营养元素浓度排序为K>Ca>NO3--N>NH4+-N>Mg>P;秆茎流养分年输入量很小,穿透雨养分年输入量除钙外均最高,而毛竹林降水的养分年净输入量以氮最高,13.03kg-hm-2,磷为0.06kg·hm-2,钙为负值,营养元素浓度存在明显的季节变化;不同年龄的毛竹秆茎流的年养分平均含量差异不显著(p>0.05);不同降雨时间的秆茎流、穿透雨和大气降雨中养分含量存在显著(p<0.05)或极显著差异(p<0.01),特别是秋季以后降水中输入的养分减少;降水中的养分元素与降水量存在着明显的相关性。
     (9)经营后,毛竹林的立竹密度、立竹度、平均眉径、平均高分别增加了32.9%~94.9%、34.5%~80.7%、20.4%~52.8%和23.1%~58.8%,经营措施明显提高了密度、立竹度、叶面积和上层土壤碳氮比,施肥和埋青增加了毛竹林生物量、碳贮量以及上层土壤硝态氮含量和5月份土壤全氮含量,且随抚育措施种类增多,叶面积指数和秆茎流量增大,碳贮量也达到了101.11tC·hm-2;经营措施降低了上层土壤有机质、全氮、铵态氮含量毛竹林年凋落物量、秆茎流量、毛竹林凋落物养分含量、年碳输入量和月碳输入量,且经营措施越多,上层土壤铵态氮含量越小,但对土壤pH值、EC值、全磷、速效磷、钾、钙、镁含量、土壤净DOC转化速率、净氨化速率、土壤净硝化速率、穿透雨量、秆茎流与穿透雨的养分含量等影响均不明显,因此,施肥、埋青等经营措施能够有效提高毛竹林群落生产力和碳贮量。
The Phyllostachys pubescens (Moso bamboo) that is a fast-growing plant is an important forest resource in southern China, which has a long management period and a huge fixing CO2ability from the atmosphere. The Phyllostachys pubescens forest was selected in this study. Based on plot investigation and analysis, fixed point measurement and in-lab determination, the productivity, organic carbon and nutrient dynamics of Phyllostachys pubescens communities after stand improvement and the effects of the different management measures were studied. The main results are as follows.
     (1) The density of Moso bamboo forest is2711~3956individuals@hm-2; the bamboo stocking density is0.33~0.64; the mean diameter at the eyebrow height is10.12cm, the size structue is unreasonable, most of them are9~15cm; the average height is13.8-21.6m; the bamboo uniformity is more than7, which is uniform; the bamboo eveness is5.51, and the leaf area index (LAI) is5.01~13.14, but the age structure is unreasonable, the proportion of two-year and more than six-year individuals is bigger.
     (2) The individual biomass of Moso bamboo is6.99~56.89kg, the aboveground part accounts for above90%, and increased and then decreased with the age increased (more than six years), and enhanced with the diameter grades increasing. The mean biomass of Moso bamboo forest is89.83t·hm-2, and the biomass of plot3is highest, which reaches127.19t·hm-2. The order of biomass for the different organs is ranked as culms> branches> roots> leaves, every organ and individual significantly related with the diameter at the eyebrow height and culm height (p<0.01), and the related equation was built.
     (3) The order of carban concentrations in the different organs of Moso bamboo is roots (50.76%)> culms (49.44%)> branches (46.07%)> leaves (41.71%). It is more stable in young stage for carban concentrations, but there is notable difference among older bamboos (more than6-year)(p<0.05). The carbon storage of Moso bamboo forest is63.66~101.11t C·hm-2for the intensive management, while is only45.84t C·hm-2for the extensive management. The carbon storage of culms, branches, roots and leaves account for78.22%,10.57%,6.35%and4.87%of the total carbon storage of the stand respectively. The difference of nutrient contents is obvious in different organs. The contents of N and K in leaves, branchs, culms and roots are higher, and the contents of P and Ca are lower, but the content of Ca in the leaves is higher. The order of N, P, Ca, Mg contents is leaves> culms> branches> roots. The content of potassium in different organs decreased, with age, the content of nitrogen, phosphorus and magnesium fluctuated, and the content of calcium is relatively stable. The content of N, P, K, Ca, Mg among different organs reached significant (p<0.05) or marked (p<0.01) correlation.
     (4) The annual amounts of litterfall were2.95~4.61t·ha-1·a-1, which mostly fell in April and May with a single-peak. The amounts of litterfall in the different months differed significantly (p<0.05). The carban concentrations of litterfall are32.93%~48.75%, the annual carbon input from litterfall in CK is highest (1.85t·hm-2·a-1), which peak occurred in April or May. The order of nutrient contents in litterfall is N> Ca> K> P> Mg. The nutrient content of litterfall in unimproved plot is largest, with obviously seasonal variation.
     (5)The soil organic carbon contents are21.61~42.30g·kg-1, and the dissolved organic carban (DOC) contents of upper (0~20cm) and lower (20-40cm) soils were, respectively,0.15~0.17g·kg-1and0.11~0.15g·kg-1, reduced with the increasing soil depth, the coefficient of variation is17.92%~26.10%and81.36%~150.26%. The organic carbon content between upper and lower layers have extremely difference (p <0.05), while DOC content has not significant difference (p>0.05). In the same soil layer, soil organic carbon content among different plots have reached notable or extremely notable difference, but DOC content has not significant difference (p>0.05). The change of soil organic carbon and DOC content fluctuated with month. The change trend is similar.
     The diurnal change of soil respiration in Moso bamboo forest showed a single-peak which appeared in14:00. There is an obvious seasonal dynamics. The average monthly rates of soil respiration varied from0.5to5.12μmol CO2·m-2·s-1, with a significant difference among months (p<0.05). The correlation between soil respiration rate and temperature (t) is positive, and it is negative with humidity (w,0~20cm soil depth), the correlated equation among soil respiration intensity (Y), soil temperature and humidity is: Y1=0.0615×e0.2374t(R2=0.8324); Y2=9.8065×e-0.0449w (R2=0.8248)
     (6) In Moso bamboo forest, soil pH is4.62~6.89, the upper layer (0~20cm) is smaller than the lower layer (20~40cm), the coefficient of variation is27.81%~62.02%, there is a significant difference (p<0.05) only in plot3. EC values are37~463μS·cm-1with the coefficient of variation of4.04%~8.39%, there is not significant difference (p>0.05). The soil organic matter contents in two layers are54.64~72.92g·kg-1and37.26~50.80g·kg-1, the upper layer is larger than the lower layer, the coefficient of variation is17.92%~26.10%, and the difference have reached extremely notable level (p<0.01); the total nitrogen content in upper and lower soils is0.74~4.64g·kg-1and0.41~4.56g·kg-1, the coefficient of variation is22.17~46.22%, which has a significant difference between the upper and lower layers in plot1and4(p<0.05). The soil ammonium contents in upper and lower layers are3.27~4.00g·kg-1and2.33~3.71g·kg-1. The nitrate contents are2.29~6.81g·kg-1and2.00~4.35g·kg-1, the upper layer is higher than the lower layer, but it has not significant difference (p>0.05). The soil total phosphorus contents in upper and lower layer are0.05~2.68g·kg-1and0.02~2.39g·kg-1, and the soil available phosphorus contents are0.80~13.66m g·kg-1and0.12~6.34m g·kg-1, the coefficient of variation is49.53%~100.18%and40.80%~76.11%, the upper layer is higher than the lower layer, but it has not significant difference of total phosphorus content (p>0.05). The soil potassium, calcium, magnesium contents are, respectively,0.52~8.58g·kg-1,0.074.15g·kg-1and0.63~3.69g·kg-1, and the coefficient of variation are41.17%~55.58%53.43%,28.49%~and44.36%~50.47%, but there are not significant difference (p>0.05).
     The soil pH and EC value first rised, then decreased and rised again, while soil organic matter content is contrary. The total nitrogen contents are relatively lower in autumn (August, September and October), higher in others. The ammonium nitrogen content in the upper soils is highest in latter spring and lowest in autumn and winter; while for the lower soils it is highest in summer and lower in other season. The soil nitrate nitrogen content in two layers is highest in early spring, higher in autumn and lowest in summer and winter. The soil total and available phosphorus contents in two layers are highest in autumn, higher in winter and lowest in spring and summer. The soil contents of potassium, calcium and magnesium are lower in January, September and October, higher in other months.
     The rhizosphere soil (sampling time in October) pH and total nitrogen is smaller than non-rhizosphere soil; and the EC, total phosphorus, available phosphorus, potassium, calcium, magnesium in rhizosphere soil is higher than non-rhizosphere soil, the nutrient in rhizosphere soil first increased then decreased with the age.
     (7) The net rate of soil DOC in situ incubation in Moso bamboo forest is negative mostly in autumn and winter, while is positive in spring and summer. The peak value of the net DOC translation rate in two layer appears in August and September, the trend and the size is similar; The net rate of soil ammonification is negative in autumn and winter in2009and spring and summer in2010while it is positive in autumn and winter in2010, which is higher in the upper layer than in the lower layer. The net rate of soil nitrifieation is contrary to the ammonification, its peak value appears from May to August, with a greater value in the upper layer than in the lower layer.
     It is not obvious among the net rate of soil DOC, ammonification, nitrifieation under different mamagement measures, but it is positive to ammonification and negative to nitrifieation. The soil net mineralization rates between the upper and the lower layers are similar, and are positive several times, the peak value appears from May to August, it is mainly from the nitrification in soil mineralization. The annual average soil ammonification rate is negative in all plots, but the annual average soil nitrifieation and mineralization rate is positive. The net ammonification rate in soil is extremely positive related with the soil pH (p<0.01), and negative extremely related with the soil temperature and the ammonium nitrogen content (p<0.01); the net nitrification rate is extremely positive related with ammonium nitrogen contents (p<0.01); the net mineralization rate is related with soil physical characteristics.
     (8) The rate of stemflow and throughfall in Moso bamboo forest is3.99%-23.44%and22.65%~105.71%, respectively. The stemflow from the different aged bamboo has not signifecant difference (p>0.05). The pH values of stemflow, throughfall and rainfall are all acidic. The acidity of stemflow is strongest, which has extremely notable difference with rainfall and throughfall (p<0.01). The electrical conductivity (EC) in throughfall is highest, the rainfall is lowest, and it has extremely significant difference with the EC in stemflow and rainfall (p<0.01. It has a high variance in nutrients in rainfall, the order of nutrient content is Ca> K> N> Mg> P; the annual calcium input is67.98kg·hm-2, and the annual phosphorus input is only0.12kg·hm-2. The nutrient elements in stemflow are lower than throughfall obviously, especialy the decrease of K and Ca is the most obvious. The order of nutrient input in stemflow and throughfall is K> Ca> NO3—N>NH4+-N> Mg> P, which is higher than rainfall except calcium. The annual nutrient input by stemflow of Moso bamboo forest is very small, while it is large by throughfall except for calcium. The annual nitrogen input by precipitation in Moso bamboo forest is highest with annual mean of13.03kg·hm-2. However, the phosphorus input is0.06kg·hm-2, and the calcium input is negative. There exists obviously seasonal variation in nutrient fluxes. The annual average nutrient contents of stemflow from different aged bamboo individuals has not significant difference (p>0.05), but the nutrinet content among stemflow, throughfall and precipitation in different raining time exist notable difference (p<0.05) or extremely notable difference (p<0.01), especialy the nutrient input from precipitation reduced after autumn. The nutrient element content in precipitation is related with the amount of precipitation.
     (9) The density, stocking density, average diameter at the eyebrow height and height of Moso bamboo after taking measurements has increased by32.9%~94.9%,34.5%~80.7%,20.4%~52.8%and23.1%~58.8%respectively, the measurements have obviously increased the density, stocking density, leaf area and upper soil carbon-nitrogen ratio. The fertilization and burying weeds and shrubs increased the biomass, carbon storage, the upper soil nitrate-N contents and the total nitrogen content in May. With the multiple measurements, the LAI and the stemflow amounts enhanced, and the carbon storage reached101.11t C· hm-2. While the measurements has reduced the upper soil organic content, the soil total nitrogen and ammonium nitrogen contents, annual littterfall, stemflow amounts, the nutrient in litterfall, annual and monthl carbon input amounts. The upper soil ammonium nitrogen contents reduced with the measure kinds increased. It is not obvious that the management measures affect the soil pH, EC value, total phosphorus, available phosphorus, potassium, calcium, magnesium, net rate of soil DOC in situ incubation, net rate of soil ammonification and nitrifieation, throughfall, nutrient in stemflow and throughfall. Therefore, fertilization and burying weeds and shrubs can raise the productivity and carbon storage of Moso bamboo forest.
引文
[1]万钢.积极应对全球气候变化[J].资源环境与发展,2008,1:1.
    [2]IPCC. Climate Change 2001:the Science of Climate Change. Summary for Policymakers, a Report of Working Group I of the Intergovernmental Panel on Climate Change [R]. Geneva, Switzerland,2001.1-98. Available from http://www. ipcc. ch/pub/spm 22-01.pdf.
    [3]Brown S. Present and potential roles of forests in the global climate change debate [J]. Una-sylva,1996,47:3-10.
    [4]Murthy I K, Tiwari R, Ravindranath N H. Climate change and forests in India: adaptation opportunities and challenges [J]. Mitig Adapt Strateg Glob Change,2011, 16:161-175.
    [5]杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报(自然科学版),2005,41(2):172-177.
    [6]刘爽.森林生态系统碳储量研究进展[J].武汉生物工程学院学报,2009,5(3):231-234.
    [7]Sedjo R. A. The carbon cycle and global forest ecosystem [J]. Water Air Soil Pollution. 1993, (70):295-307.
    [8]梁泰然.中国竹林类型与地理分布特征[J].竹子研究汇刊,1990,9(4):1-16.
    [9]董文渊,郑进垣,陈冲.海子坪天然毛竹无性系种群分布格局研究[J].西北林学院学报,2010,25(1):30-34.
    [10]丁雨龙.竹类植物资源利用与定向选育[J].林业科技开发,2002,16(1):6-8.
    [11]时培建,郭世权,杨清培,等.毛竹的异质性空间点格局分析[J].生态学报,2010,30(16):4401-4407.
    [12]黄衍串,曾宪玮.毛竹天然混交林的经营及效益[J].竹了研究汇刊,1995,12(4):16-23.
    [13]萧江华.竹林分类经营与定向培育[J].林业科技开发,1997,1:8-10.
    [14]萧江华.我国竹业发展现状与对策[J].竹子研究汇刊,2000(1):1-5,8.
    [15]许传德.面向21世纪的中国竹业[J].竹子研究汇刊,2000,19(3):8-12.
    [16]Ueda M U, Tokuchi N, Ogawa R. High nitrate reductase activity in sprouts of Phyllostachys pubescens[J]. Journal of Forestry Research,2009,14:55-57.
    [17]陈建华,毛丹,马宗艳,等.毛竹叶片的生理特性[J].中南林学院学报,2006,26(6):76-80.
    [18]陈建华,毛丹,朱凡,等.9个笋用竹种的光合特性[J].中南林业科技大学学报,2008,28(6):9-14.
    [19]桂仁意,刘亚迪,郭小勤,等.不同剂量CS-Y辐射对毛竹幼苗叶片叶绿素荧光参数的影响[J].植物学报,2010,45(1):66-72.
    [20]]黄业伟,吴妙丹,杨丽,等.毛竹实生苗对不同浓度NaCl溶液的生理响应[J].西北林学院学报,2010,25(1):35-38.
    [21]应叶青,郭璟,魏建芬,等.干旱胁迫对毛竹幼苗生理特性的影响[J].生态学杂志,2011,30(2):262-266.
    [22]何东进,洪伟,吴承帧,等.毛竹种群光能利用率的研究[J].福建林学院学报,1999,19(4):324-326.
    [23]宋艳冬,金爱武,金晓春,等.施肥对毛竹叶片光合生理的影响[J].浙江林学院学报,2010,27(3):334-339.
    [24]金晓春,金爱武,宋艳冬,等.施肥对毛竹林换叶期冠层形成及光合能力的影响[J].浙江林学院学报,2010,27(1):57-62.
    [25]宋艳冬,金爱武,金晓春,等.毛竹叶片光合色素的光谱估算模型[J].北京林业大学学报,2010,32(1):31-34.
    [26]Lin Y M, Peng Z Q, Lin P. Dynamics of Leaf Mass, Leaf Area and Element Retranslocation Efficiency During Leaf Senescence in Phyllostachys pubescens[J]. Acta Botanica Sinica,2004,46(11):1316-1323.
    [27]詹乐昌.毛竹造林技术应用研究[J].福建林业科技,1997,24(3):20-23.
    [28]苏文会,范少辉,张文元,等.冰冻雪灾对黄山区毛竹林的损害及影响因子[J].林业科学,2008,44(11):42-49.
    [29]苏文会,范少辉,张文元,等.灾后补救措施对雪压毛竹林恢复效果研究[J].林业科学研究,2010,23(1):89-92.
    [30]王立龙,陆林.雪灾对九华山风景区毛竹林的影响[J].植物生态学报,2010,34(2):233-239.
    [31]肖立平.毛竹低改丰产栽培技术的研究[J].竹子研究汇刊,2002,21(2):37-47.
    [32]李展,宋丁全,王福.立地条件对毛竹枝下高的影响研究[J].世界竹藤通讯,2010,8(3):16-19.
    [33]楼一平.毛竹人工林持续立地生产力的研究[D].北京:中国林业科学研究院,2001.
    [34]程晓阳,方乐金,詹鸿章,等.立地条件对毛竹实生林生长发育影响的研究[J].世界竹藤通讯,2004,2(4):26-27.
    [35]陈双林,郭子武,杨清平.毛竹林土壤酶活性变化的海拔效应[J].生态学杂志,2010,29(3):529-533.
    [36]陈双林,萧江华.现代竹业栽培的土壤生态管理[J].林业科学研究,2005,18(3):351-355.
    [37]陈双林,杨清平,郭子武,等.海拔对毛竹林土壤物理性质和水分特性的影响[J].林业科技开发,2009,24(1):60-64.
    [38]潘怡.不同经营毛竹林土壤生化性质及其变化动态[D].北京:中国林业科学研究院,2000.
    [39]刘广路,范少辉,官凤英,等.闽西北不同类型集约经营毛竹林土壤环境特征[J].南京林业大学学报(自然科学版),2010,43(5):17-22.
    [40]严晨.不同抚育方式对毛竹林土壤化学性质的影响[J].世界竹藤通讯,2009,7(2):32-34.
    [41]黄承标,尹华田,王凌晖,等.毛竹林不同经营管理措施对土壤理化性质的影响[J].竹子研究汇刊,2010,29(3):36-41.
    [42]郑郁善,陈礼光,洪伟.毛竹杉木混交林生产力和土壤性状研究[J].林业科学,1998,34(专刊1):16-25.
    [43]李燕华,白尚斌,周国模,等.自然保护区内毛竹竹鞭的动态生长研究[J].安徽农业科学,2010,38(18):9834-9835,9837.
    [44]Suzuki S, Nakagoshi N. Expansion of bamboo forests fcaused by reduced bamboo-shoot harvest under different natural and artificial conditions[J]. Ecological Research,2008,23:641-647.
    [45]Lin X C, Ruan X S, Lou Y F, et al. Genetic similarity among cultivars of Phyllostachys pubescens[J]. Plant Systematics Evolution,2009,277:67-73.
    [46]Gratani L, Crescente M F, Varone L, et al. Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome[J]. Flora,2008, 203:77-84.
    [47]陈新安.毛竹林大小年生长规律探讨[J].中南林业调查规划,2010,29(1):21-23.
    [48]郑郁普,洪伟.毛竹林丰产年龄结构模型与应用研究[J].林业科学,1998a,34(5):32-39.
    [49]郑郁善,洪伟,邱尔发.营养液对毛竹叶片效应的研究Ⅰ.营养液对叶片解剖构造影响比较[J].林业科学,1998b,34(专刊1):87-94.
    [50]周芳纯.毛竹林叶面积指数与产量的关系[J].竹类研究,1982,2:38-60.
    [51]邱尔发,陈存及,范辉华,等.毛竹种源竹鞭生长进程研究[J].江西农业大学学报(自然科学版),2002,24(2):245-250.
    [52]张国防,缪碧华.毛竹经营管理的研究进展[J].福建林学院学报,2000,20(4):375-379.
    [53]周芳纯著.竹林培育和利用.南京林业人学竹类研究编委会.1998.
    [54]袁亚平,萧江华,陈双林,等.毛竹林新型经营模式[J].浙江林学院学报.1999,16(3):270-273.
    [55]郑郁善,李仁昌.毛竹杉木混交林经营模式决策分析[J].福建林学院学报,2000,20(2):105-109.
    [56]郑郁善,王舒凤.杉木毛竹混交林的毛竹地下鞭根结构特征的研究[J].林业科学,2000,36(6):69-72.
    [57]郑郁善.21世纪毛竹林生态经营战略[J].竹子研究汇刊,2001,20(3):15-19.
    [58]陈存及.竹木混交林的科学经营[J].竹子研究汇刊,2001,20(1):5-9.
    [59]陈存及,邱尔发,梁一池,等.毛竹种源地理变异规律及选择的研究[J].竹子研究汇刊,2001,20(3):20-28.
    [60]陈存及.福建毛竹林生态培育与生态系统管理[J].竹子研究汇刊,2004,23(2):1-4.
    [61]程后秀,韩宇.毛竹林丰产培育技术[J].陕西林业,2010,6:35.
    [62]曹流清,李晓凤.毛竹大径材培育技术研究[J].竹子研究汇刊,2003,22(4):34-41.
    [63]周文伟.垦复对毛竹林鞭系生长影响的研究[J].竹子研究汇刊,1995,14(3):30-35.
    [64]李正才,傅懋毅,谢锦忠,等.毛竹竹阔混交林群落地力保持研究[J].竹子研究汇刊,2003a,22(1):32-37.
    [65]楼一平,盛炜彤,萧江华.我国毛竹林长期立地生产力研究问题的评述[J].林业科学研究,1997,10(1):35-41.
    [66]楼一平,吴良如,李瑞成,等.竹木混交林改为毛竹纯林经营后的林分生长动态[J].林业科学研究,1999,12(1):47-52.
    [67]林振清.竹阔混交林毛竹生产力与经营效益的研究.竹子研究汇刊,2000,19(4):42-45.
    [68]向梓昌,张运文,杨圣芳.杉竹混交林分毛竹生长特性数值分析[J].湖北林业科技,1999,1:14-17.
    [69]罗发潘,林汉洲,周东雄,等.竹阔混交林分毛竹生产力的研究[J].福建林学院学报,1997,17(1):35-38.
    [70]陈礼光,连进能,洪伟,等.杉木毛竹混交林造林效果评价[J].福建林学院学报,2000,20(4):309-312.
    [71]廖军,张卫栋,薛建辉,等.竹阔混交林混交类型的综合评价[J].江西农业大学学报(自然科学版),2002,24(3):346-349.
    [72]李正才,傅懋毅,姜景民,等.毛竹天然林表型特征的地理变异研究[J].林业科学 究,2002,15(6):654-659.
    [73]李正才,傅懋毅,徐德应.竹林生态系统与大气二氧化碳减量[J].竹子研究汇刊,2003,22(4):1-6.
    [74]徐秋芳,姜培坤,董敦义,等.毛竹林地土壤养分动态研究[J].竹子研究汇刊,2000,19(4):46-49,71.
    [75]傅懋毅,曹群根,方敏瑜,等.竹林养分循环Ⅱ、毛竹林内降水的养分输入及其林地径流的养分输出[J].林业科学研究,1992,5(5):497-505.
    [76]顾小平.竹林肥培理论与技术研究(D).北京:中国林业科学研究院,2000.
    [77]郭志坚,邹秀红,刘建斌,等.毛竹林施肥效果研究[J].林业科技开发,2005,19(6):756-763.
    [78]沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173.
    [79]徐秋芳,姜培坤,王奇赞,等.绿肥对集约经营毛竹林土壤微生物特性的影响[J].北京林业大学学报,2009,31(6):43-48.
    [80]邱晓东.施肥种类对毛竹林地土壤性质及出笋成竹的影响[J].世界竹藤通讯,2010,8(3):32-34.
    [81]张昌顺,范少辉,谢高地.闽北典型毛竹林土壤酶活性及其与土壤肥力的关系[J].自然资源学报,2010,25(2):236-248.
    [82]黄伯惠.毛竹矿质营养元素动态的研究[J].竹子研究汇刊,1983,2(1):87-111.
    [83]罗朝光.施肥方式对毛竹林出笋成竹的影响[J].世界竹藤通讯,2010,8(6):22-23.
    [84]裘福庚,马利林,孙受素.用示踪原子法研究毛竹伐桩内腔施肥的初步结果[J].竹子研究汇刊,1986,5(2):53-58
    [85]王海霞,程平,曾庆南,等.竹腔施肥对毛竹笋中重金属及微量元素的影响研究[J].湖北林业科技,2009,1:14-15,17.
    [86]彭九生,程平,曾庆南,黎美莲.毛竹增产剂配方筛选及竹腔施肥效果分析[J].林业科技开发,2005,19(5):27-30.
    [87]江泽慧.世界竹藤[M].沈阳:辽宁科学技术出版社,2002.
    [88]郭晓敏,牛德奎,范方礼,等.平衡施肥毛竹林叶片营养与土壤肥力及产量的回归分析[J].林业科学,2007,43(增刊1):53-57
    [89]洪顺山,胡炳堂,江业根.毛竹营养诊断的研究[J].林业科学研究,1989,2(1):15-24.
    [90]陈卫文,罗治建,陈防,等.鄂南毛竹林的养分状况与营养诊断标准[J].东北林业大学学报,2004,32(2):41-44.
    [91]张献义,陈金林,叶长青,等.毛竹林养分动态与产量关系的研究[J].林业科学研 究,1995,8(5):477-482.
    [92]郭晓敏,陈广生,牛德奎,等.平衡施肥对毛竹笋产量的影响效应研究[J].江西农业大学学报(自然科学版),2003,25(1):48-52.
    [93]陈金林,张献义,叶长青,等.毛竹林高产施肥技术探讨[J].林业科学研究,1996,9(3):323-327.
    [94]洪顺山,胡炳堂,江业根.毛竹林施肥效应研究[J].林业科学研究,1992,5(4):371-378.
    [95]洪伟.毛竹营养液开发与应用效果研究[J].林业科学,1998,34(1):82-86.
    [96]吴中能,周根土,张均,等.不同埋青配方对毛竹生长的影响[J].林业科技开发,2006,20(5):69-71.
    [97]陈存及,邱尔发,梁一池,等.毛竹不同种源光合特性研究[J].林业科学,2001,37(6):15-19.
    [98]洪伟,郑郁善,邱尔发.毛竹丰产林密度效应研究[J].林业科学,1998,34(专刊1):1-4.
    [99]张文燕,马乃训,封剑文,等.毛竹伐桩伤流及其控制技术研究[J].林业科学研究,1994,7(4):414-419.
    [100]周海平,李晓铁,唐国荣,等.毛竹径级快速增粗增长试验[J].林业科技开发,2010,24(5):109-111.
    [101]洪伟,郑郁善,陈礼光.毛竹雪压危害和预防[J].林业科技通讯,1998,6:3 1-32.
    [102]周海平,李晓铁,唐国荣,等.毛竹低产林短期高效复壮技术研究[J].中国林副特产,2010,1:4-8.
    [103]陈家洪,张喜,尹洁,等.抚育和采伐组合措施对毛竹林生产力的影响[J].安徽农业科学,2010,38(4):2110-2111,2152.
    [104]颜宇娟,赵虎,杨倩,等.湖南阳明山毛竹林群落特征[J].华中农业大学学报,2010,29(3):375-380.
    [105]李正才,李玉红.两种不同类型毛竹林群落特征的初步研究[J].竹子研究汇刊,2001,20(1):45-49.
    [106]宣涛涛,陈建寅.不同经营类型毛竹林立竹结构稳定性分析[J].林业科技开发,2002,16(2):30-31.
    [107]郑进烜,董文渊,陈冲,等.海子坪天然毛竹林叶面积指数及秆形结构[J].林业科技开发,2009,23(3):44-48.
    [108]汪阳东.人工经营对毛竹秆形结构变异的影响[J].林业科学研究,2001,14(3):245-250.
    [109]周芳纯.毛竹秆形结构的研究[J].南京林产工业学院学报,1981,1:16-69.
    [110]何东进,洪伟.毛竹生长动态模拟预测新模型[J].竹子研究汇刊,1998,17(3):3236.
    [111]何东进,洪伟,吴承祯.毛竹林林分平均眉径模拟预测模型的研究[J].林业科学,2000,36(Sp.1):148-153.
    [112]刘恩斌,周国模,葛宏立.基于最大熵原理的浙江毛竹眉径分布及测量不确定度评定[J].生态学报,2009a,29(1):86-91.
    [113]黄庆丰,蔡训标,余德锋.巢湖市低丘毛竹林直径结构与生产力研究[J].安徽农业大学学报.2003,30(1):92-94.
    [114]胡超宗,潘孝政.毛竹笋用林立竹密度的研究[J].竹子研究汇刊,1983,2(2):53-61.
    [115]郑郁善,洪伟,郑功雕.材用毛竹丰产林密度效应模型研究[J].福建林学院学报,1996,16(4):343-345.
    [116]郑郁善,洪伟,陈礼光.毛竹林合理经营密度的研究[J].林业科学,19981,34(专刊1):5-10.
    [117]陈存及.毛竹林分密度效应的初步研究[J].福建林学院学报,1992,12(1):98-104.
    [118]卢寅六.用材毛竹林最佳年龄结构与年度新竹高产稳产的关系[J].江苏林业科技,1998,25(3):29-32.
    [119]朱剑秋.毛竹林不同留养度数对生长和产量的影响[J].竹子研究汇刊,1990,9(1):55-62.
    [120]郑郁善,洪伟,张炜银.笋竹两用丰产林年龄结构研究[J].林业科学,1998,34(专刊1):46-51.
    [121]李振基,林鹏.毛竹群落能量动态的研究[J].厦门大学学报(自然科学版),1993,32(2):236-240.
    [122]洪伟,兰斌,吴承祯,等.毛竹林能量分配的研究.林业科学,1998,34(专刊1):78-81.
    [123]蓝斌,何东进,吴承帧,等.闽北毛竹林生态系统能量分配规律的研究[J].应用生态学报,2000,11(2):245-250.
    [124]何东进,洪伟,吴承桢,等.武夷山毛竹天然林生物量与能量分配规律及其与人工林的比较研究[J].西北植物学报,2003,23(2):291-296.
    [125]郑郁善,洪伟,陈礼光,等.竹林生长及竹叶养分和土壤肥力相关研究[J].林业科学,1998i,34(专刊1):65-68.
    [126]郑郁善,主舒风.毛竹混交林鞭系结构特征的研究[J].竹子研究汇刊,1999,18(4):30-34.
    [127]郑郁善,洪伟,陈礼光.毛竹林地下结构与笋竹产量效应研究[J].林业科学,1998,34(专刊1):26-34.
    [128]张幼法,林世奎,张世渊.毛竹林地下鞭动态生长的研究[J].竹子研究汇刊,1999,18(3):62-65.
    [129]郑郁善,洪伟,邱尔发.毛竹出笋退笋规律的研究[J].林业科学,1998g,34(专刊1):73-77.
    [130]蒋俊明,刘大雷,范少辉,等.川南毛竹林生态系统养分动态分析[J].南京林业大学学报(自然科学版),2010,34(2):31-36.
    [131]鲁顺保,龚霞,张勇江,等.江西毛竹主产区土壤有效Cu、Zn、Fe、和Mn空间分布特征研究[J].江西农业大学学报,2010,32(4):0752-0758.
    [132]Li Z J, Lin P, He J Y, et al. Silicon's organic pool and biological cycle in Phyllostachys pubescens community of Wuyishan Biosphere Reserve [J]. Journal of Zhejiang University Science B,2006,7(11):849-857.
    [133]刘广路,范少辉,漆良华,等.闽西北不同类型毛竹林养分分布及生物循环特征[J].生态学杂志,2010a,29(11):2155-2161.
    [134]高志勤.毛竹林土壤磷、钾养分状况及生长效应[J].南京林业大学学报(自然科学版),2010,34(6):33-37.
    [135]刘广路,范少辉,官凤英,等.不同年龄毛竹营养器官主要养分元素分布及与土壤环境的关系[J].林业科学研究,2010b,23(2):252-258
    [136]Wu J S, Xu Q F, Jiang P K, et al. Dynamics and Distribution of Nutrition Elements in Bamboos. Journal of Plant Nutrition,2009,32:489-501.
    [137]周薇.江西大岗山毛竹林生态系统氮沉降季节及年际变化的研究[D].内蒙古农业大学硕士学位论文.2010.
    [138]林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    [139]徐涵湄,丁九敏,刘胜,等.雪灾对武夷山毛竹林凋落物分解动态的影响[J].南京林业大学学报:自然科学版,2010,34(3):131-135.
    [140]Polglase P J, Jokela E J, Comerford N B. Phosphorus, nitrogen, and carbon fractions in litter and soil of southern pine plantations[J]. Soil Science Society America Journal,1992,56:566-572.
    [141]马元丹,江洪,余树全,等.模拟酸雨对毛竹凋落物分解的影响[J].中山大学学报(自然科学版),2010,49(2):95-99.
    [142]傅懋毅,方敏瑜,谢锦忠,等.竹林养分循环Ⅰ.毛竹纯林的叶凋落物及其分解[J].林业科学研究,1989,2(3):207-213.
    [143]方敏瑜,傅懋毅.竹林养分循环规律研究Ⅲ:毛竹纯林竹秆流及其养分输入[J].竹子研究汇刊,1998,17(2):59-64.
    [144]曹群根,傅懋毅,李正才.毛竹林凋落叶分解失重及养分累积归还模式[J].林业科学研究,1997,10(3):303-308.
    [145]吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展[J].江西农业大学学报,2000,22(3):405-410.
    [146]李贵才,韩兴国,黄建辉,等.森林生态系统土壤氮矿化影响因素研究进展[J].生态学报,2001,21(7):1187-1195.
    [147]穆兴民,樊小林.土壤氮素矿化的生态模型研究[J].应用生态学报,1999,10(1):114,118.
    [148]杨路华,沈荣开,覃奇志.土壤氮素矿化数学模型研究进展[J].土壤通报,2003,34(6):78-80.
    [149]周才平,欧阳华.温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J].植物生态学报,2001,25(2):204-209.
    [150]吴家森,周国模,徐秋芳,等.不同年份毛竹营养元素的空间分布及与土壤养分的关系[J].林业科学,2005,41(03):171-173.
    [151]Li R, Werger M J A, Durin H J, et al. Biennial variation in production of new shoots in groves of the giant bamboo Phyllostachys pubescens in Sichuan, China[J]. Plant Ecology,1998,135:103-112.
    [152]徐秋芳,徐建明.安吉县港口乡低产毛竹林地肥力分析[J].浙江林学院学报,2000,17(3):280-284.
    [153]何艺玲.不同类型毛竹林林下植被的发育状况及其与土壤养分关系的研究[D].北京:中国林业科学研究院,2000.
    [154]张贻荣.武夷山不同毛竹林类型毛竹生长与土壤养分研究[J].防护林科技,2010,5:38-40.
    [155]张文元,范少辉,苏文会,等.毛竹成竹期根际土壤微量元素变化规律[J].林业科学研究,2010,23(4):586-591.
    [156]张奇春,王雪芹,楼莉萍,等.毛竹林生态系统地表径流及其氮素流失形态研究[J].水土保持学报,2010,24(5):23-26.
    [157]丁九敏,卜晓莉,刘胜,等.2008年雪灾对武夷山毛竹林土壤微生物生物量氮和可溶性氮的影响[J].生态学杂志,2010,29(3):517-522.
    [158]郝云庆,江洪,向成华,等.天目山毛竹种群生物量结构[J].四川林业科技,2010,31(4):29-33.
    [159]Embaye K, Weih M, Ledin S, et al. Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia:implications for management[J]. Forest Ecology and Management,2005,204:159-169.
    [160]洪伟,郑郁善,陈礼光.毛竹枝叶生物量模型研究[J].林业科学,1998,34(专刊1):11-15.
    [161]洪伟,郑郁善,邱尔发.应用列联表研究竹林产出变化规律Ⅰ.竹林产量与立竹量关系的研究[J].林业科学,1998,34(专刊1):35-39.
    [162]彭在清,林益明,刘建斌,等.福建永春毛竹种群生物量和能量研究[J].厦门大学学报(自然科学版),2002,41(5):579-583.
    [163]Isagi Y, Kawahara T, Kamo K, Ito H. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand[J]. Plant Ecology,1997,133:123.
    [164]范少辉,肖复明,汪思龙,等.毛竹林细根生物量及其周转[J].林业科学,2009a,45(7):1-6.
    [165]刘恩斌,周国模,蒋培坤,等.生物量统一模型构建及非线性偏最小二乘辨识——以毛竹为例[J].生态学报,2009,29(10):5561-5569.
    [166]范渭亮,杜华强,周国模,等.大气校正对毛竹林生物量遥感估算的影响[J].应用生态学报,2010,21(1):1-8.
    [167]刘广路.毛竹林长期生产力保持机制研究.北京:中国林业科学研究院学位论文(D).2009.
    [168]刘广路,范少辉,官凤英,等.不同劈草时间毛竹林生产力及土壤变化特征[J].山地学报,2010,28(6):704-711.
    [169]Dixon R K, Winjum J K, Schroeder P E. Conservation and sequestration of carbon [J]. Global Environ Change,1993,3(2):159-173.
    [170]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems [J]. Science,1994,263:185-190.
    [171]Woodwell G M, Whittaker R H, Reiners W A, et al. The biota and world carbon budget [J]. Science,1978,199:141-146.
    [172]Olson J S, J A Watts, L J Allison. Carbon in Live Vegeattion of Major World Ecosystems [M]. oak Ridge National Labortory, Oak Ridge, Tenn.1983,15-25.
    [173]Isaev A, Korvin G, Zamolodchikov D, et al. Carbon stock and deposition in phytomass of the Russian forests[J]. Water Air and Soil Pollution,1995,82: 247-256.
    [174]Alexeyev V, Birdsey R, Stakanov V, et al. Carbon in vegetation of Russian forests: Methods to estimate storage and geographical distribution[J]. Water, Air and Soil Pollution,1995,82:271-282.
    [175]Woodbury P B, Simth J E, Heath L S. Carbon sequestration in the U.S. forest sector from 1990 to 2010[J]. Forest Ecology and Management,2007,241:14-27.
    [176]方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000,24(5):513-517.
    [177]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [178]方精云,郭兆迪,朴世龙,等.1981~2000年中国陆地植被碳汇的估算[J].中国科学(D辑),2007,37(6):804-812.
    [179]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [180]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    [181]周玉荣,于振良,赵士洞.我国主要森林生态系统碳库和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [182]Jian N. Carbon storage in terrestrial ecosystems of China:estimates at different spatial resolutions and their responses to climate change[J]. Climatic Change,2001, 49:339-358.
    [183]Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458:1009-1013.
    [184]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [185]郑帷婕,包维楷,辜彬等.陆生高等植物碳含量及其特点[J].生态学杂志,2007,26(3):307-313.
    [186]Smith J E, Heath L S, Skog K E, et al. Methodology for Estimating Net Carbon Stock Changes in Forest Lands Remaining Forest Lands[J]. New town Square, PA: USDA Forest Service.2006.
    [187]何英.森林固碳估算方法综述[J].世界林业研究,2005,18(1):22-26.
    [188]Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry,2000,48:7-20.
    [189]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-355.
    [190]Li Y F, Jiang P K, Chang S X, et al.Organic mulch and fertilization affect soil carbon pools and forms under intensively managed bamboo (Phyllostachys praecox) forests in southeast China[J]. Journal of Soils and Sediments,2010,10:739-747.
    [191]Xu Q F, Xu J M. Changes in Soil Carbon Pools Induced by Substitution of Plantation for Native Forest[J]. Pedosphere,2003,13(3):271-278.
    [192]郭起荣,杨光耀,杜天真,等.中国竹林的碳素特征[J].世界竹藤通讯,2005,3(3):25-28.
    [193]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20-24.
    [194]周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究[D].杭州:浙江大学,2006a.
    [195]周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响[J].北京林业大学学报,2006,28(6):51-55.
    [196]周国模,徐建明,吴家森,等.毛竹林集约经营过程中土壤活性有机碳库演变[J].林业科学,2006b,42(6):124-128.
    [197]肖复明.毛竹林生态系统碳平衡特征的研究[D].北京:中国林业科学研究院.2007.
    [198]肖复明,范少辉,汪思龙,等.毛竹、杉木人工林生态系统碳贮量及其分配特征[J].生态学报,2007,27(7):2794-2801.
    [199]肖复明,范少辉,汪思龙,等.毛竹、杉木人工林生态系统碳平衡估算[J].林业科学,2010,46(11):59-65.
    [200]王兵,魏文俊,邢兆凯,等.中国竹林生态系统的碳储量[J].生态环境,2008,17(4):1680-1684.
    [201]刘广路,范少辉,苏文会,等.不同管护模式毛竹林碳氮分布特征及其耦合关系[J].水土保持学报,2010e,24(5):218-222.
    [202]李正才,杨校生,周本智,等.北亚热带6种森林凋落物碳素归还特征[J].南京林业大学学报:自然科学版,2010,34(6):43-46.
    [203]王晶,解宏图,朱平,等土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,2003,22(6):109-112.
    [204]黄承才.浙江省毛竹林和茶园土壤碳库的研究[J].绍兴文理学院学报,2001,21(1):55-57.
    [205]肖复明,范少辉,汪思龙,等.毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J].水土保持学报,2008,22(2):131-134.
    [206]肖复明,范少辉,汪思龙,等.毛竹林土壤有机碳及微生物量碳特征研究[J].水土保持学报,2008,22(6):128-131.
    [207]杜满义,范少辉,漆良华,等.不同类型毛竹林土壤碳、氮特征及其耦合关系[J].水土保持学报,2010,24(4):198-202.
    [208]徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究[J].水土保持学报,2003,17(4):15-21.
    [209]高志勤,傅懋毅.不同毛竹林土壤碳氮养分的季节变化特征[J].浙江林学院学报,2006,23(3):248-254.
    [210]李永夫,姜培坤,刘娟,等.施肥对毛竹林土壤水溶性有机碳氮与温室气体排放的影响[J].林业科学,2010,46(12):165-170.
    [211]姜培坤,徐秋芳,俞益武.土壤微生物量碳作为林地土壤肥力指标[J].浙江林学院学报,2002,19(1):17-19.
    [212]姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,41(1):10-13.
    [213]Anderson T, Domsch K H. Ratios of microbial biomass carbon to total organic carbon in arable soils [J]. Soil Biol. Biochem.,1989,21:471-479.
    [214]Bradley R L, Fyles J V V. A kinetic parameter descrybing soil available C and its relation-ship to rate increase in C mineralization [J]. Soil Biology & Biochemistry, 1995,(2):167-172.
    [215]Raich J W, Potter C S. Global Patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles,1995,9:23-36.
    [216]Risk D, Kellman L, Beltrami H. Carbon dioxide in soil profiles:production and tempera-ture dependence[J]. Geophysical Research Letters,2002,29(6):11-14.
    [217]Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production phytomass [M]//Bolin. The global carbon cycle. New York:John Wiley&Sons.1979:129-181.
    [218]Jenkinson D S, Adams D E, Wilg A. Model estimates of CO2 emissions from soil in response to global warming [J]. Nature,1991,351:304-306
    [219]Conant R T, Dalla-Betta P, Klopatek C C, et al. Controls on soil respiration in semiarid soil[J]. Soil Biology& Biochemistry,2004,36:945-951.
    [220]Vanhala P. Seasonal variation in the soil respiration rate in coniferous forest soils[J]. Soil Biology & Biochemistry,2002,34(9):1375-1379.
    [221]Wang M, Ji L Z, Li Q R, et al. Effects of temperature and moisture on soil respiration in different forest types in Changbai Mountain[J]. Chinese Journal of Applied Ecology,2003,14(8):1234-1238.
    [222]Bond-Lamberty B, Wang C K, Gower S T. Contribution of root respiration to soil surface CO2 flux in a borealblack spruce[J]. Tree Physiology,2004,24(12): 1387-1395.
    [223]Martin J G, Bolstad P V. Annual soil respiration in broad leaf forests of northern Wiscons in:in fluence of moisture and site biological, chemical, and physical characteristics[J]. Biogeochemistry,2005,73:149-182.
    [224]Yang J Y, Wang C K. Effects of soil temperature and moisture on soil surface CO2 flux of forests in northeastern China[J]. Journal of Plant Ecology,2006,30(2): 286-294.
    [225]Liu Q, Edwards N T, Post W M, et al. Temperature-independent diel variation in soil respiration observed from a temperated eciduous forest[J]. Global Change Biology, 2006,12(11):2136-2145.
    [226]Zhou H X, Zhang Y D, Song H L,et al. Soil respiration in temperate secondary forest and Larixgmelinii plantation in Northeast China[J].Chinese Journal of Applied Ecology,2007,18 (12):2668-2674.
    [227]张连举,王兵,刘苑秋,等.大岗山四种林型夏秋季土壤呼吸研究[J].江西农业大学学报,2007,29(1):72-84.
    [228]Toland D E, Zak D R. Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests[J]. Canadian Journal of Forest Research,1994,24(8): 1711-1716.
    [229]黄承才,葛滢,常杰,等.中亚热带东部三种主要术本群落土壤呼吸的研究[J].生态报,1999,19(3):324-328.
    [230]Hanson P J, Edwards N T, Garten G T, et al. Separating root and microbial contributions to soil respiration:a review of methods and observations[J]. Biogeochemistry,2000,48:115-146.
    [231]Rey A, Pegoraro E, Tedeschi V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biology,2002, 8(9):851-866.
    [232]Saiz G, Green C, Butterbach-BahlK, et al. Seasonal and spatial variability of soil respiration in four Sitka spruce stands[J]. Plant and Soil 2006,287 (1/2):161-176.
    [233]Fang Q L, Sha L Q. Soil respiration in a tropical seasonal rain forest and rubber plantation in Xishuangbanna, Yunnan, SW China[J]. Journal of Plant Ecology,2006, 30(1):97-103.
    [234]Chang J G, Liu S R, Shi Z M, et al. Soil respiration and its components part-itioning in the typical forest ecosystems at the transitional area from the northern subtropics to warm temperate[J]. Acta Ecologica Sinica,2007,27(5):1791-1802.
    [235]栾军伟,向成华,骆宗诗,等.森林土壤呼吸研究进展[J].应用生态学报,2006,17(12):2451-2456.
    [236]Wang W J, Zu Y G, Wang H M, et al. Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system[J]. Journal of Forestry Research,2005,10:57-60.
    [237]Suh S U, Chun Y M, Chae N Y, et al. A chamber system with automatic opening and closing for continuously measuring soil respiration based on an open-flow dynamic method[J]. Ecological Research,2006,21:405-414.
    [238]Nakayarna F S. Soil respiration[J]. Remote Sensing Reviews,1990.5:311-321.
    [240]李凌浩,韩兴国,王其兵,等.锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计[J].植物生态学报,2002,26(1):29-32.
    [241]范少辉,肖复明,汪思龙,等.湖南会同林区毛竹林地的土壤呼吸[J].生态学报,2009,29(11):5971-5977.
    [242]李雅红,江洪,原焕英,等.西天目山毛竹林土壤呼吸特征及其影响因子[J].生态学,2010,30(17):4590-4597.
    [243]姜艳,王兵,汪玉如.江西大岗山毛竹林土壤呼吸时空变异及模型模拟[J].南京林业大学学报:自然科学版,2010,34(6):47-52.
    [244]曹群根.毛竹林冠层对降水的截留作用[J].福建林学院学报,1991,11(11):37-43.
    [245]刘永敏,王彦辉.毛竹林林内雨,冠层截留与降水的关系研究[J].竹子研究汇刊,1993,12(2):55-62.
    [246]黄进,胡海波,张家洋,等.北亚热带毛竹林林冠截留特征的研究[J].南京林业大学学报(自然科学版),2009,33(2):31-34.
    [247]黄进,张家洋,张金池,等.北亚热带次生毛竹林冠生态水文效应及其影响因素分析[J].水土保持通报,2009,29(1):23-27.
    [248]孔维健,周本智,安艳飞,等.天然次生林和人工毛竹林水文生态特征比较[J].水土保持研究,2010,17(1):113-139.
    [249]王彦辉.江西省大岗山毛竹林水分效应研究[J].林业科学研究,1993,6(4):373-379.
    [250]Zhang G, Zeng G M, Huang G H, et al. Deposition pattern of precipitation and throughfall in a subtropical evergreen forest in south-central China[J]. Journal of Forestry Research,2006,11:389-396.
    [251]王彦辉.人工毛竹林土壤的水文生态效应[J].竹子研究汇刊,1990,9(4):40-49.
    [252]萧江华.重视发挥竹林的生态功能效益[J].林业经济,2001a,(1):31-34.
    [253]萧江华.分类经营定向培育提高竹林经济效益[J].竹子研究汇刊,2001b,20(3):12-15.
    [254]Chiwa M, Onozawa Y, Otsuki K. Hydrochemical characteristics of throughfall and stemflow in a Moso-bamboo(Phyllostachys pubescens) forest[J]. Hydrological Processes,2010,24,2924-2933.
    [255]吴炳生,谢华,谭淑.毛竹林群落类型水源养功能的初步研究[J].竹子研究汇刊,1992,11(4):18-24.
    [256]陈开伍.杉木毛竹混交林水源涵养功能的研究[J].福建林学院学报,2000,20(3):258-261.
    [257]廖军,薛建辉,施建敏.竹阔混交林的水文效应[J].南京林业大学学报(自然科学版),2002,26(4):6-10.
    [258]方金长.不同经营模式毛竹混交林土壤肥力性状及其水文效应研究[J].山东林业科技,2008,6:22-24,11.
    [259]张昌顺,范少辉,谢高地.闽北毛竹林枯落物层持水功能研究[J].林业科学研究,2010,23(2):259-265.
    [260]刘广路,范少辉,漆良华,等.不同类型毛竹林土壤渗透性研究[J].水土保持学报,2008,22(6):44-47,56.
    [261]丁新新,洪伟,陈建忠,等.不同经营模式下毛竹林土壤水分物理性质比较[J].水土保持研究,2009,16(3):74-83.
    [262]张昌顺,范少辉,官凤英,等.闽北毛竹林的土壤渗透性及其影响因子[J].林业科学,2009,45(1):36-42.
    [263]王勤,丁正亮,徐小牛.安徽老山不同毛竹林土壤渗透性能及其影响因素[J].经济林研究,2010,28(4):50-54.
    [264]Zhao R J, Jiang Z H, Hse C Y, et al. Effects of steam treatment on bending properties and chemical composition of Phyllostachys pubescens[J]. Journal of Tropical Forest Science,2010,22(2):197-201.
    [265]范少辉,刘广路,官凤英,等.不同管护类型毛竹林土壤渗透性能的研究[J].林业科学研究,2009c,22(4):568-573
    [266]范少辉,刘广路,漆良华,等.闽西北不同经营时间毛竹林土壤渗透性研究[J].水土保持学报,2010,24(1):24-27,48.
    [267]胡文力.长白山过伐林区云冷杉针阔混交林分结构的研究[D].硕士论文.北京林业大学.2003.
    [268]李毅,孙雪新,康向阳.甘肃胡杨林分结构的研究[J].干旱区资源与环境,1994,8(3):88-95.
    [269]陈东来,秦淑英.山杨天然林林分结构的研究[J].河北农业大学学报,1994,17(1):36-43.
    [270]孟宪宇.测树学[M].北京:中国林业出版社,1996.
    [271]姚爱静,朱清科,张宇清,等.林分结构研究现状与展望[J].林业调查规划,2005,30(2):70-76.
    [272]聂道平,徐德应,朱余生.林分结构、立地条件和经营措施对竹林生产力的影响[J].林业科学研究,1995,8(5):564-569.
    [273]温太辉.竹林生产力因子的评价[J].竹子研究汇刊,1990,9(2):1-10.
    [274]Nanang D. M. Suitability of the Normal, Log-normal and Weibull distributions for fitting diameter distributions of neem plantations in Northern Ghana[J]. Forest Ecology and Management,1998.103:1-7.
    [275]游水生,饶英豪,罗水发,等.福建武平帽布米楮林择伐经营策略初探—Ⅰ.年龄结构和生长过程分析[J].福建林学院学报,1996,16(3):234-238.
    [276]梁士楚,李久林,程仕泽.贵州青岩油杉种群年龄结构和动态的研究[J].应用生态学报,2002,13(1):21-26.
    [277]肖扬,郭晋平,冯晓燕.华北落叶松天然林年龄结构初步研究[J].林业科技通讯,2002,4:23-24.
    [278]张伟,郝青云,任俊义,等.庞泉沟次生混交林主要种群年龄结构和空间格局研究[J].山西农业大学学报,2002,22(1):50-53,71.
    [279]聂道平.江西大岗山毛竹林的结构特征[J].林业科学研究,1992,5(6):693-699.
    [280]黄启民,杨迪蝶,沈允钢,等.毛竹林的初级生产力研究[J].林业科学研究,1993,6(5):536-540.
    [281]Post W M, Emanuel W R. Soil carbon pools and world life zones[J]. Nature,1982,298:156-159.
    [282]李铭红,于明坚,陈启瑞.青冈常绿阔叶林碳素动态[J].生态学报,1996,16(6):645-651.
    [283]Shanmughavel P, Francis K. Balance and turnover of nutrients in a bamboo plantation (Bambusa bambos) of different ages[J].Biology and Fertility of Soils, 1997,25:69-74.
    [284]张希彪,上官周平.黄土丘陵区主要林分生物量及营养元素生物循环特征[J].生态学报,2005,25(3):527-537.
    [285]吴家森,周国模,钱新标,等.不同经营类型毛竹林营养元素的空间分布[J].浙江林学院学报,2005,22(5):486-489.
    [286]McFee W W, Stone E L. The persistence of decay ingwood in humus layers of north-ern forests[J]. Soil Science Society of America Journal,1966,30:513-516.
    [287]王希华,黄建军,闫恩荣.天童国家森林公园常见植物凋落叶分解的研究[J].植物生态学报,2004,28(4):457-467.
    [288]Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus,1992,44:81-89.
    [289]Bray J R, Gorham E. Litter production in forests of the world [J]. Advances in Ecological Research,1964,2:101-157.
    [290]李正才,徐德应,杨校生,等.北亚热带6种森林类型凋落物分解过程中有机碳动态变化[J].林业科学研究,2008,21(5):675-680.
    [291]王小屈,刘益军.毛竹干流特征的初步研究[J].经济林研究,2004,22(2):30-32.
    [292]吴中能,周根土,张均,等.不同埋青配方对毛竹生长的影响[J].林业科技开发,2006,20(5):69-71.
    [293]Matsushima M, Chang S X. Vector analysis of understory competition, N fertilization, and litter layer removal efects on white spruce growth and nutrition in a 13-year-old plantation[J]. Forest Ecology and Management,2006,236:332-341.
    [294]Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Science,2000,165(4):277-304.
    [295]Huang W Z, Schoenau J J. Fluxes of water-soluble nitrogen and phosphorus in the forest floor and surface mineral soil of a boreal aspen stand[J]. Geoderma,1998,81 (3-4):251-264.
    [296]Zsolnay A. Dissolved humus in soil waters. In:Piccolo A (ed.) Humic Substances in Terrestrial Ecosystems[J]. Amsterdam:Elsevier,1996:171-223.
    [297]Williams B L, Edwards A C. Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils[J].Chemistry and Ecology,1993,8 (3):203-215.
    [298]Uselman S M, Qualls R G, Lilienfein J. Contribution of root vs. leaf litter to dissolved organic carbon leaching through soil[J]. Soil Science Society of America Journal,2007,71:1555-1563.
    [299]沈宏,哲志洪,胡义正.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    [300]Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Australian Journal of Soil Research, 1992,30(2):195-207.
    [301]Liang B C, Mackenzie A F, Schnitzer M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils,1997,26 (2):88-94.
    [302]Michelsen A, Andersson M, Jensen M, et al. Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems[J]. Soil Biology and Biochemistry,2004,36 (11):1707-1717.
    [303]马少杰,李正才,王刚,等.集约和粗放经营下毛竹林土壤活性有机碳的变化[J].植物生态学报,2011,35(5):551-557.
    [304]刘绍辉,方精云.土壤呼吸的影响网素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-474.
    [305]Kelting D L, Burger J A, Edwards G S. Estimating root respiration microbial respiration in the rhizophere and root free soil respiration in forest soils[J]. Soil biology and Biochemistry,1998,30:961-968.
    [306]Tang J W, Badocchi D D, Xu L K. Tree photosynthesis modulates soil respiration on a diurnal time scale[J]. Global Change Ecology,2005,11:1298-1304.
    [307]Musselman R C, Fox D G. A review of the role of temperate forests in the global CO2 balance. Journal of the Air & Waste Management Association,1991,41:798-807.
    [308]Burton A J, Pregitzer K S. Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine[J]. Tree physiology, 2003,23:273-280.
    [309]房秋兰,沙丽清.西双版纳热带季节雨林与橡胶林土壤呼吸[J].植物生态学报,2006,30(1):97-103.
    [310]Shi P L, Zhang X Z, Zhong Z M, et al. Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau[J]. Agricultural and Forest Meteorology,2006,137,220-233.
    [311]Rayment M B, Jarvis P G. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest[J]. Soil Biology and Biochemistry,2000,32:35-45.
    [312]李凌浩,王其兵,白永色,等.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报,2000,24(6):680-686.
    [313]Fang C, Moncrief J B, GholzH L, et al. Soil CO2 efflux and its spatial variationin a Florida slash pine plantation[J]. Plant and Soil,1998,205:135-146.
    [314]Maier C A, Kress L W. Soil CO2 evolution and root respiration in 11-year-old loblolly pine plantation as affected by moisture andnutrient availability[J].Canadian Journal of Forest Research,2000,30:347-359.
    [315]Davidson E A, Belk E, Bone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J].Global Change Biology,1998,4:217-227.
    [316]O'Neill K P, Kasischke E S, Richter D D. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska[J]. Canadian Journal of Forest Research,2002,32(9):1525-1541.
    [317]肖复明,范少辉,汪思龙,等.湖南会同毛竹林土壤碳循环特征[J].林业科学,2009,45(6):11-15.
    [318]Fisher R F, Binkley, D. Ecology and management of forest soils[C]. New York:John Wiley & sons.inc,2000.
    [319]Mazzarino M J, Bertiller M B, Sain C, et al. Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regines [J]. Plant and Soil,1998,202: 125-131.
    [320]Margolis H A,Vezina L P, Ouimet R, et al. Relation of light and nitrogen source to growth, nitrate reductase and glutamine synthetase activity of jack pine seedlings[J]. Physiological Plant,1988,72:790-795.
    [321]Van Den Driessche R. Different effects of nitrate and ammonium forms of nitrogen on growth and photosynthesis of slash pine seedlings[J]. Australian Forestry,1972, 36:15-137.
    [322]Von Wiren N,Gazzarrini S and Frommer WB. Regulation of mineral nitrogen uptake in plants[J]. Plant and Soil,1997,196:191-199.
    [323]孟盈,薛敬意, 沙丽清,等.西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究[J].植物生态学报,2001,25(1):99-104.
    [324]莫江明,郁梦德,孔国辉.鼎湖山马尾松人工林土壤硝态氮和铵态氮动态研究[J].植物生态学报,1997,21(4):335-341.
    [325]许翠清,陈立新,颜永强,等.温带森林土壤铵态氮、硝态氮季节动态特征[J].东北林业大学学报,2008,36(10):19-21.
    [326]Lyuch J M. Substrate flow in the rhizosphere[J]. Plant and Soil,1990,129 (1):1-10.
    [327]Norton J M. Carbon flow in the rhizosphere of ponderosa pine seedlings[J]. Soil Biology and Biochemistry,1990,22(4):149-155.
    [328]梅杰,周国英.不同林龄马尾松林根际与非根际土壤微生物、酶活性及养分特征[J].中南林业科技大学学报,2011,31(4):46-49.
    [329]厉婉华.栓皮栎,杉木和火炬松根际与非根际土壤氮素及pH值差异的研究[J].南京林业大学学报,1996,20(2):49-52.
    [330]Xu M, Qi Y. Soil-surface CO2 efllux and its spatial and temporal variation in a young ponderosa pine plantation in northern California[J]. Global Change Biology,2001,7: 667-677.
    [331]Erland B, HakanW. Soil and rhizesphere microorganisms have the same Q10 for respiration in a model system[J]. Global Change Biology,2003,9:1788-1791.
    [332]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究——含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    [333]李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378.
    [334]方晰,田大伦,项文化,等.第二代杉木中幼林生态系统碳动态与平衡[J].中南林学院学报,2002,22(1):1-6.
    [335]张凯.园林绿地生态系统养分动态及其利用效率研究[D].合肥:安徽农业大学博士学位论文.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700