葡萄连作障碍机理及调控途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄连作后植株长势衰弱、病害蔓延,严重制约着葡萄产业的发展,为了探讨葡萄连作障碍产生的原因,本试验以连作葡萄30年和种植葡萄3年的葡萄园土壤为研究对象,以晚红葡萄(Vitis vinifera L. Red Globe)组培苗、山河二号葡萄(V. amurensis×V. riparia No.2)组培苗及贝达(V. riparia×V labrusca cv. Beta)葡萄盆栽苗为试材,分析了葡萄连作后土壤微生物、理化性质的变化;研究了根系分泌物、浸提液及腐解物的化感作用,确定了主要自毒物质,并深入分析了自毒物质对葡萄植株生长及根际微环境的影响,同时探讨了不同有机物料及菌剂对葡萄连作障碍的缓解作用,为连作障碍的综合防治提供了理论依据。主要结果如下:
     1.生物因素是导致葡萄连作障碍的重要原因之一。连作园根区土盆栽葡萄,植株根系活力下降,叶片的叶绿素含量及净光合速率降低,植株长势衰弱。连作土灭菌后葡萄叶片SOD活性增强,MDA含量降低,根系活力随生长期的延长,表现出先下降再上升的趋势,植株长势明显增强。并且连作土壤灭菌后葡萄根系分泌的还原糖及氨基酸总量显著降低,分别比连作土壤降低了72.60%和91.10%;氨基酸的种类及其含量也发生改变。
     2.葡萄连作后根际土壤微生物数量及种群结构发生改变。葡萄连作后根际土壤细菌、放线菌的数量及比例降低,而真菌的数量及比例增加。连作使土壤细菌和真菌的多样性增加,根际土壤的微生物多样性高于非根际土壤。连作后细菌Flavobacterium sp.(DQ339585)(?)Bacillus sp. (AY039821)种群数量减少,Pedobacter sp. (AJ871084)种群数量增多;真菌中Omphalina farinolens(EF413029)出现, Pestalotiopsis sp.(DQ657877, DQ657875, DQ657871)、Phacidium lacerum (DQ470976)和Lecythophora decumbens(AF353597)种群数量减少,Pilidium acerinum voucher (AY48709)种群数量增多。其中Bacillus sp.、Flavobacterium sp.和Pestalotiopsis sp.对病原菌具有颉颃作用,连作园根际土中上述微生物种群数量的减少,不利于葡萄对病原菌的颉颃;Pilidium acerinum voucher数量的增加可能与葡萄连作后病害加重有关。
     3.葡萄连作后土壤物理性质未出现恶化,但土壤养分比例发生失调。葡萄连作后并没有增加根区土壤的容重、酸度及盐分含量水平。根区土壤有机质及大量元素随着葡萄种植时间延长而增加,微量元素Fe和Mn含量减少,Zn和Cu含量增加,Zn/Mn、Zn/Fe、N/Fe、N/Mn、P/Fe、P/Mn、Ca/Fe、和Ca/Mn等失调比例较高,其中Zn/Mn、Zn/Fe比例失调最为严重。
     4.根系分泌物、浸提液及腐解物具有显著的自毒作用,在它们中确定了5种主要自毒物质。室内组培苗试验结果表明,葡萄根系分泌物、浸提液及根系腐解物具有显著的自毒作用,在它们中分离鉴定出对羟基苯甲酸、水杨酸、香豆酸、苯丙酸和苯甲酸5种酚酸类物质,它们均是影响葡萄生长的重要自毒物质。在根系分泌物和腐解物中推断出5种酸类(邻苯二甲酸、软脂酸、柠檬酸、没食子酸和乌头酸)、2种醇类(1-二十一醇和β-谷甾醇)物质,其中邻苯二甲酸、软脂酸、柠檬酸和没食子酸对葡萄生长表现出“低促高抑”的化感效应,1-二十一醇对葡萄生长的影响无规律性变化,而β-谷甾醇在低浓度时抑制葡萄的生长,高浓度时对葡萄生长具有促进作用。
     5.根系分泌物和腐解物能够改变土壤微生物种群结构,影响根际土壤中速效N、P、K水平。根系分泌物处理后,根际土壤碱解N的含量与对照差异不显著,低浓度的根系分泌物处理(E100和E200)增加了根际土壤速效P和速效K含量,高浓度的根系分泌物(E300)处理表现相反的趋势,根系分泌物处理使葡萄根际土壤由“细菌型”向“真菌型”方向转化。根系腐解物处理提高了根际土壤速效N、P、K的含量,降低了根际土壤的真菌种群多样性,使有益的木霉菌消失,而出现了与病害有关的腐霉属和根串珠霉属。
     6.化感物质苯丙酸和水杨酸主要是通过干扰植物细胞膜及相关生理过程影响葡萄的生长。盆栽试验表明不同浓度的(0.1 mmo1·L-1,1 mmo1·L-1,10 mmo1·L-1)苯丙酸和水杨酸增加了葡萄植株细胞膜透性、降低了SOD活性及植株根系活力,影响了光合作用和叶片物质积累等生理生化过程,进而使葡萄株高、茎粗、地上鲜重和地下鲜重发生变化,导致植株长势衰弱。
     7.稻草和玉米秸秆能够改善连作土壤物理性质,活化土壤营养成分,改善根际微域环境而促进葡萄植株的生长。连作土壤施入稻草和玉米秸秆后,土壤容重降低,孔隙度增加,有机质、速效P和速效K含量均有不同程度的提高,植株长势增强(除连作土中施入0.5%的稻草处理),并且土壤微生物区系的比例发生改变,细菌比值增加。土壤磷酸酶活性随着有机物料腐解时间延长而增强,但土壤过氧化氢酶活性并没有因稻草的施入而提高,玉米秸秆处理显著增加了土壤过氧化氢酶活性。
     8.丛枝菌根真菌可以促进连作葡萄生长,改变植株根系分泌特性。连作土灭菌后接种丛枝菌根真菌(Arbuscular Mycorrhizal Fungi, AMF)[地表球囊霉Glomus versiforme(简称G.V)、摩西球囊霉Glomus mosseae (简称GM)和幼套球囊霉Glomus etunicatum(简称G.E)]促进了葡萄植株的生长,叶片SOD活性增强,MDA含量降低,根系活力增强,其中G.V和G.M处理效果最显著。接种菌剂后,葡萄根系分泌的物质种类及其含量也发生变化,其中G.V处理葡萄根系分泌的物质种类较多,并且含有特异性成分橙花叔醇。
     9.淡紫拟青霉、木霉菌剂及重茬EB是缓解葡萄连作障碍的重要途径。葡萄连作土壤接种淡紫拟青霉、木霉菌剂及EB后,增强了叶片及根系的SOD活性,降低了MDA含量,叶片的可溶性糖、淀粉及蛋白质含量增加,根系呼吸速率提高,植株长势明显增强。其中淡紫拟青霉中以DZ2(30 g淡紫拟青霉/槽连作土)处理效果最好,木霉菌剂中以MM2(500 g健根宝/槽连作土)处理较好,而EB中以EB1(20 g/槽连作土)处理植株长势最强。综合来看,连作土壤中施入木霉菌剂及EB对葡萄生长的促进效果优于淡紫拟青霉。
The grape replant problem is expressed as stunted growth, low productivity and a decline in tree vigor leading to shortened economic life. At present, the problem is common in all grape growing regions and has seriously restricted the development of grape industry. In order to study the reason of grape replanting, using rhizosphere soil, non-rhizosphere soil and fallow soil of replanted vineyard and new-planted vineyard which had been planted grape for 30 years and 3 years respectively as research object, and tissue culture seedling of Red Globe (V. vinifera L. cv), tissue culture seedling of'Shanhe No.2'grape and pot seedling of Beta (V riparia×V. labrusca cv.) as experimental material, changes of soil microbe and physic-chemical properties were analyzed, and allelopathy of root exudates, root aqueous extracts and root decomposing products were studied, and major allelochemicals were determined, and its effect on grape growth and rhizosphere microenvironment were further analyzed, at the same time, the effect of adding organic materials and inocula into replanting soil on alleviating grape replant obstacle were studied. The major results were as follow:
     1. Biological factor played a causal role in the development of grape replant obstacle. Based on pot experiment, the results indicated that root activity, leaves chlorophyll content and net photosynthetic rate which plant grew in root zone soils of replanted vineyard decreased compared to plants which grew in new-planted vineyard, and plants growth was weak. After sterilization of replanting soil, SOD activity of grape leaves increased, while MDA content decresed, and root activity enhanced first and then declined, and plant height, stem diameter, fresh weight of shoot, fresh weight of root increased. Comparing with grape growing on replanting soil, the content of soluble sugar and amino acid of root exudate for grape growing on sterilized replanting soil deceased by 72.60% and 91.10%, and amino acid composition of root exudation also changed.
     2. Soil microbial number and population structure changed after grape replanting. The numbers and proportions of bacteria and actinomycetes in rhizosphere soil of replanted vineyard decreased, and the number and proportion of fungi increased. Bacterial and fungal diversity in replanted vineyard was higher than that in new-planted vineyard, and the diversity in rhizosphere soil was greater than that in non-rhizosphere soil. Compared with the new-planted vineyard, grape replanting caused a great change in microbial population of rhizosphere soil. The content of Flavobacterium sp. (DQ339585) and Bacillus sp. (AY039821) decreased, while Pedobacter sp. (AJ871084) increased in bacteria. Omphalina farinolens (EF413029) appeared, and the content of Pestalotiopsis sp. (DQ657877, DQ657875, DQ657871), Phacidium lacerum (DQ470976) and Lecythophora decumbens (AF353597) decreased, while Pilidium acerinum voucher (AY48709) increased in fungi. Among them, Bacillus sp., Flavobacterium sp. and Pestalotiopsis sp. in rhizosphere soil of replanted vineyard had antagonism to pathogen, and the decrease of relative amount reduced resistance against pathogen. Increasing of Pilidium acerinum voucher might relate to severe disease after grape replanting.
     3. Soil physical properties were not deteriorated after grape replanting, while nutrient ratio was inbalance. Soil bulk density, acidity and conductivity decreased after grape replant. Soil organic matter and macroelements (N, P, K and available Ca, Mg) increased along with the prolonging of grape planting peroid, available Fe, Mn were deficit in replanted vineyard soils, while available Cu, Zn increased. Zn/Mn, Zn/Fe, N/Fe, N/Mn, P/Fe, P/Mn, Ca/Fe and Ca/Mn were imbalance in the root zone, and among them, Zn/Mn, Zn/Fe were most serious imbalance.
     4. Grape root exudates, aqueous extracts, root decomposing products had significant autotoxicity, and in which five allelochemicals were identified. Using the testing methods of tissue culture seedling, the results showed there were significant autotoxicity in grape root exudates, aqueous extracts of grape root, root decomposing products, and in which 5 phenolic acids (p-hydroxybenzoic acid, salicylic acid, coumaric acid, phenylpropionic acid and benzoic acid) were isolation and identification, and they were important allelochemicals. 5 acids (phthalic acid, palmitic acid, citric acid, gallic acid and aconitic acid) and 2 alcohols (1-heneicosanol andβ- sitosterol) was infered in root exudates and root decomposing products. Among them, low-concentration phthalic acid, palmitic acid, citric acid, and gallic acid promoted plant growth, and high concentration of which inhibited plant growth significantly. There were no regular change on grape growth under 1-heneicosanol treatment, and low-concentrationβ- sitosterol inhibited plant growth, while high concentration of which promoted plant growth significantly.
     5. Root exudates and root decomposing products changed microbial population structure and available N, P, K content of rhizosphere soil. There were no significant difference in available N content of rhizosphere soil between root exduate treatments and control. Low concentration (E100 and E200) root exudates made available P, available K contents of rhizosphere soil increased. Available P, K content of rhizosphere soil decreased under the treatment of high-concentration (E300) root exudates, which made rhizosphere soil transform from bacterial forms to fungial forms. The treatments of root decomposing products increased available N, available P and available K content of rhizosphere soil, decreased fungal diversity, made Trichoderma disappeared, Pythium, Thielaviopsis, Stilbellales appeared.
     6. Phenylpropionic acid and salicylic acid inhibited plant growth through disturbing membrane and related physiological process. Based on pot experiment, the results indicated that phenylpropionic acid and salicylic acid of different concentration (0.1mmol·L-1, 1mmol·L-1, 10mmol·L-1) enhanced cell membrane permeability, decreased SOD activity and root activity, affected photosynthesis and dry matter accumulation of grape leaves. So, they decreased significantly plant height, stem diameter, fresh weight of shoot and root with the rise of concentration, and resulted in growth vigor weak.
     7. Rice straw and corn straw improved soil physical properties, activated soil nutrients and ameliorate microenviroment of rhizosphere soil, which promoted grape growth. The measures of adding different proportion rice straw and corn straw into replanted soil decreased soil bulk density, increased soil porosity, organic matter content, available P, available K, and seedlings had strong growth vigor (except for the treatment of 0.5% rice straw adding into replanting soil). The proportion of microflora changed after treatments, and the ratio of bacteria increased. Moreover, soil phosphatase activity increased with decomposition time prolonging of organic materials, and soil catalase activity increased after adding corn straw into replanting soil, while rice straw treatment did not increased soil catalase activity.
     8. AMF (arbuscular mycorrhizal fungi) promoted plant growth, and changed root exudation characteristics. AMF (Glomus versiforme G.V, Glomus mosseae G.M and Glomus etunicatum G.E) promoted significantly plant growth, and SOD activity increased, MDA content decresed, root activity increased, among them, GV and G.M treatments were better. AMF (Arbuscular Mycorrhizal Fungi) also affected grape root exudation characteristics, and substance species and relative contents of grape root exudates were changed greatly in different treatment. G.V treatment had more substances and specific component nerolidol.
     9. Lilac paecilomyces, biocide and EB were important control approaches of grape replanting. After inoculating lilac paecilomyces, biocide and EB into replanting soil, SOD activity of grape leaves and root activity increased, and MDA content of leaves reduced. Soluble sugar content, starch content and protein content of grape leaves increased after inocula treatment, and root activity raised. Lilac paecilomyces treatment in which DZ2 (30 g lilac paecilomyces of per groove) was best, and biocide treatment in which MM2 (500 g biocide per groove) was best, while EB treatment in which EB1(20 g EB per groove) was best. Comprehensive analysis result showed that the effect of biocide and EB on grape growth better than lilac paecilomyces.
引文
1. 鲍士旦.1999.土壤农化分析.第3版.北京:中国农业出版社.
    2. 柴仲平,梁智,王雪梅,贾宏涛.2008.连作对棉田土壤物理性质的影响.农艺科学,24(8):192-195.
    3. 陈慧,郝慧荣,熊君,齐晓辉,张重义,林文雄.2007.地黄连作对根际微生物区系及土壤酶活性的影响.应用生态学报,18(12):2755-2759.
    4. 陈建明,俞晓平,程家安.2006.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,18(1):51-55.
    5. 陈建勋,王晓峰.1999.植物生理学实验指导.广州:华南理工大学出版社,56-57.
    6. 陈龙池,廖利平,汪思龙,黄志群,高洪.2002.酚类物质对杉木幼苗15N养分吸收、分配的影响.植物生态学报,26(5):525-532.
    7. 陈立杰,朱艳,刘彬,段玉玺.2007.连作和轮作对大豆胞囊线虫群体数量及土壤线虫群落结构的影响.植物保护学报,34(4):347-352.
    8. 陈龙池,廖利平,汪思龙,黄志群..2002.外源毒素对林地土壤养分的影响.生态学杂志,21(1):19-22.
    9. 陈三凤,李季伦,裘维蕃.1992.关于抑制植物病原真菌几丁质酶来源及效应的研究强作用黄杆菌的分离和鉴定.植物病理学报,22(4):323-327.
    10.陈绍莉,周宝利,王茹华,付亚文.2008.嫁接对茄子根系分泌物中肉桂酸和香草醛的调节效应.应用生态学报,19(11):2394-2399.
    11.陈申宽,齐广,武迎红,曹颖霞,闫任沛.1999.大豆连作对土壤养分及其产量的影响,9(3):31-33,40.
    12.成田保三郎.1983.论连作灾害的相应措施.日本土壤肥料学杂志,54(2):170-179.
    13.丁桔.2008.黄瓜自毒物质和枯萎病的致害及其调控机制研究[博士学位论文].浙江杭州:浙江农业大学.
    14.杜安楠,马跃,李贺,孟楠,孙立茹,张志宏.2009.木霉菌剂对草莓微繁殖苗生长和抗病性的影响.中国果树,(3):20-23.
    15.樊红科,杜志辉,吴岱彦,雷新乐.2009.渭北高原不同施肥方案土壤效应及对再植苹果生长发育的影响.干旱地区农业研究,27(1):56-61.
    16.樊红科,赵政阳,刘怀锋,张小猜,张志敏.2008.渭北高原苹果根区土壤养分变化及对再植苹果植株生长的影响.园艺学报,35(12):1727-1734.
    17.范君华,龚明福,刘明,孙红专,张利莉.2008.棉花连作对土壤养分、微生物及酶活性的影响.塔里木大学学报,20(3):72-76.
    18.傅慧兰,杨振明,邹永久,王树起,韩丽酶.1996.大豆连作对土壤酶活性的影响.植物营养与肥料学报,2(4):374-377.
    19.傅慧兰,邹永久,韩丽酶,闫飞,刘金萍.1996.大豆连作土壤障碍因素研究Ⅱ连作土壤酶活性与肥力因素间相关性分析,15(4):332-339.
    20.葛会波,高志华,李青云,张广华,张学英,宋金龙.2004.AS818菌剂对连作草莓影响的研究.河北科技师范学院学报,18(2):14-18.
    21.关连珠.2000.土壤肥料学.北京:中国农业出版社.
    22.关松荫.1986.土壤酶及其研究方法.北京:农业出版社,309-313.
    23.韩丽梅,鞠会艳,杨振明.2005.两种基因型大豆根分泌物对大豆根腐病菌的化感作用.应用生态学报,16(1):137-141.
    24.韩丽梅,沈其荣,鞠会艳,阎石,阎飞.2002大豆地上部水浸液的化感作用及化感物质的鉴定.生态学报,22(9):1425-1432.
    25.韩丽梅,王树起,鞠会艳,阎飞,李国权,阎吉昌.2000.大豆根分泌物的鉴定及其化感作用的初步研究.大豆科学,19(2):119-125.
    26.韩丽梅,王树起,鞠会艳,阎雪,阎飞,杨振明.2000.大豆根茬腐解产物的鉴定及化感作用的初步研究.生态学报,20(5):771-778.
    27.韩晓日,邹德乙,刘杰.1993.长期施用有机肥和化肥对土壤锌锰铜铁养分平衡的影响.胡思农.硫、镁和微量元素在作物营养平衡中的作用-国际学术讨论会论文集.成都:成都科技大学出版社,329-398.
    28.韩雪,吴凤芝,潘凯.2006.根系分泌物与土传病害关系之研究综述.植物保护科学,22(2):316-318.
    29.郝建军,刘延吉.1994.植物生理学实验技术.辽宁:辽宁科学技术出版社,56-57,162-166.
    30.何海斌,陈祥旭,林瑞余,林文雄,何华勤,贾小丽,熊君,沈荔花,梁义元.2005.化感水稻PI312777苗期根系分泌物中化学成分分析.应用生态学报,16(12):2383-2388.
    31.何华勤,林文雄.2001.水稻化感作用潜力研究初报.中国生态农业学报,9(2):47-49.
    32.何琳,娄翼来,王玲莉,赵凯,关连珠.2008.烤烟连作对土壤养分状况的影响.现代农业科技,(8):115-116
    33.何炎森,李瑞美,刘长全.2005.蜜柚果园施用有机肥与化肥对土壤酶及土壤养分的影响.福建农业学报,20(3):172-175.
    34.贺普超,罗国光.1994.葡萄学.北京:中国农业出版社.
    35.侯永侠,周宝利,吴晓玲,付亚文,王月英.2006.土壤灭菌对辣椒抗连作障碍效果.生态学杂志,25(3):340-342.
    36.胡江春,王书锦.1996.大豆连作障碍研究Ⅰ.大豆连作土壤紫青霉菌的毒素作用研究.应用生态学报,7(4):396-400.
    37.胡元森,刘亚峰,吴坤,窦会娟,贾新成.2006.黄瓜连作土壤微生物区系变化研究.土壤通报,37(1):126-129.
    38.胡元森,吴坤.李翠香,贾新成.2007.黄瓜连作对土壤微生物区系影响Ⅱ—基于DGGE方法对微生物种群的变化分析.中国农业科学,40(10):2267-2273.
    39.胡元森.2005.黄瓜连作障碍因子分析及其生物修复措施探讨[博士学位论文].南京农业大学.
    40.黄奔立,许云东,伍烨,张顺琦,陈学好.2007.两个不同抗性黄瓜品种和云南黑籽南瓜根系分泌物对黄瓜枯萎病发生的影响.应用生态学报,18(3):559-563.
    41.黄明,彭世清.1998.植物多酚氧化酶研究进展.广西师范大学学报(自然科学版),16(2):65-70.
    42.黄强,殷志刚,田长彦,汪宏年,张建军,陈春英.2001.施有机肥条件下的土壤溶液盐分变化动态.干旱区研究,18(1):53-56.
    43.黄振文.1991.利用土壤添加物防治作物土壤传播性病害.植物保护学会会刊(台湾),33:113-123.
    44.黄志群,廖利平,汪思龙,刘应迪.2001.杉木采伐根桩和根际土壤酚含量的变化及其他感效应.应用生态学报,11(2):190-192.
    45.计钟程,许文艺.1995.重茬大豆减产与土壤环境变化.大豆科学,14(4):321-329.
    46.季尚宁,肖玉珍,田慧敏,赵福华.1996.土壤灭菌对连作大豆生长发育的影响.东北农业大学学报,27(4):326-329.
    47.贾新民,姜述君,殷奎德,范文艳.1997.重迎茬条件下大豆根系分泌物对根腐病病原菌的影响.黑龙江八一农垦大学学报,9(3):12-15.
    48.贾新民,于泉林,沙永平,郑玉龙,赵萍,高彦彬.1995.大豆连作土壤多酚氧化酶研究.黑龙江八一农垦大学学报,8(2):40-43.
    49.姜培增,李宏园,陈铁保.2006.淡紫拟青霉防治植物线虫研究进展.中国农业科技导报,8(6):38-41.
    50.蒋玉蓉,房卫平,祝水金,季道藩.2005.陆地棉植株组织结构和生化代谢与黄萎病抗性的关系.作物学报,31(3):337-341.
    51.鞠会艳,韩丽梅.2002.连作大豆根分泌物对根腐病病原菌及种子萌发的影响.吉林农业大学学报,24(4):45-49.
    52.孔垂华,徐涛,胡飞.1998.胜红蓟化感物质之间相互作用的研究.植物生态学报,22(5):403-408.
    53.孔垂华,徐效华,梁文举,周勇军,胡飞.2004.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性.生态学报,24(7):1317-1322.
    54.孔维栋,刘可星,廖宗文,朱永官,王碧玲.2005.不同腐熟程度有机物料对土壤微生物群落功能多样性的影响.生态学报,25(9):2291-2296.
    55.劳秀荣,吴子一,高燕春.2002.长期秸秆还田改土培肥效应的研究.农业工程学报,18(2):49-52.
    56.雷娟利,周艳虹,丁桔,王礼,喻景权.2005.不同蔬菜连作对土壤细菌DNA分子水平多态性影响的研究.中国农业科学,38(10):2076-2083.
    57.李明,马永清,税军峰.2005.南瓜组培根根系分泌物的化感效应研究.应用生态学报,16(4):744-749.
    58.李鹏民.2006.快速叶绿素荧光诱导动力学在植物逆境生理研究中的应用[博士学位论文].山东:山东农业大学.
    59.李琼芳.2006.不同连作年限麦冬根际微生物区系动态研究.土壤通报,37(3):563-565
    60.李书田,刘荣乐,陕红.2009.我国主要畜禽粪便养分含量及变化分析.农业环境科学学报,28(1):179-184.
    61.李淑芬,陈悦,王建忠,.吕立涛,李广,郝晓莉,臧春明,王颖,孟淑洁.2009.辽宁省土壤有效态微量元素丰缺及其分级标准的研究.辽宁农业科学,(1):31-38.
    62.李天来,李淼,孙周平.2009.钙和水杨酸对亚高温胁迫下番茄叶片保护酶活性的调控作用.应用生态学报,20(3):586-590.
    63.李文庆,贾继文,李贻学.1997.大棚蔬菜种植对土壤理化及生物性状影响规律的研究.菜园土壤肥力与蔬菜合理施肥.河海大学出版社,10:76-79.
    64.李夏,周宝利,陈绍莉,蔺姗姗.2009.茄子自毒物质对辣椒种子萌发及枯萎菌的化感效应.生态学报,29(2):960-965.
    65.李艳宾,张琴,万传星,龚明福,张利莉.2009.棉秆腐解物的化感作用及其主要化学成分分析.棉花学报,21(6):497-502.
    66.李银平,林忠东,李小斌,徐文修,王亭,杨涛,候松山,韩晶垒,候猛.2010.北疆连作棉田轮作倒茬模式的研究.干旱地区农业研究,28(1):243-246,254.
    67.梁文举,张晓珂,姜勇,孔垂华.2005.根分泌的化感物质及其对土壤生物产生的影响.地球科学进展,20(3):330-337.
    68.林文雄,熊君,周军建,邱龙,沈荔花,李振方,陈慧,郝慧荣,陈婷,林瑞余,何海斌,梁义元.2007.化感植物根际生物学特性研究现状与展望.中国生态农业学报,15(4):1-8.
    69.林文雄.2006.水稻化感作用.厦门:厦门大学出版社.
    70.刘福德,姜岳忠,刘颜泉,王华田,焦绪娟,孔令刚.2005.连作Ⅰ-107杨树无性系苗圃地的土壤酶活性特征.中国水土保持科学,3(2):119-124.
    71.刘福德.2005.杨树连作地力衰退及林地生产力维持技术的研究[硕士学位论文].山东:山东农业大学.
    72.刘明,孙世贤,齐华,杨国航,白向历,张振平,梁熠,孟显华.2009.水分胁迫对玉米苗期叶绿素荧光参数的影响.玉米科学,17(3):95-98.
    73.刘润进,陈应龙.2007.菌根学.北京:科学出版社,386-387.
    74.刘素萍,王汝贤,张荣,郭岩,杨为之.1998.根系分泌物中糖氨基酸对棉花枯萎菌的影响.西北农林科技大学学报(自然科学版),26(6):30-35.
    75.刘晓燕,何萍,金继运.2008.氯化钾对玉米根系糖和酚酸分泌的影响及其与茎腐病菌生长的关系. 植物营养与肥料学报,14(5):929-934.
    76.刘秀芬,马瑞霞,袁光林,孙思恩.1996.根际区他感化学物质的分离、鉴定与生物活性的研究.生态学报,16:1-10.
    77.娄翼来,关连珠,王玲莉,胡克伟,何琳.2007.不同植烟年限土壤pH和酶活性的变化.植物营养与肥料学报,13(3):531-534.
    78.楼兵干.2005.杭州地区腐霉种及腐霉属分子系统学研究[博士学位论文].杭州:浙江大学.
    79.陆利民,严志衡,姚春霞,邱琴,陆建忠,徐益章.2006.大棚西瓜连作的土壤养分和分的动态变化初探.上海农业学报,22(1):113-115.
    80.吕卫光,余廷园,诸海涛,沈其荣,张春兰.2006.黄瓜连作对土壤理化性状及生物活性的影响研究.中国生态农业学报,14(2):119-121.
    81.吕卫光,张春兰,袁飞,彭宇.2002.有机肥减轻连作黄瓜自毒作用的机制.上海农业学报,18(2):52-56.
    82.吕卫光,张春兰,袁飞,彭宇.2002.化感物质抑制连作黄瓜生长的作用机理.中国农业科学,35(1):106-109.
    83.罗娅,汤浩茹,张勇.2007.低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响.园艺学报,34(6):1405-1410.
    84.马德华,庞金安,李淑菊,霍振荣.1998.温度逆境锻炼对高温下黄瓜幼苗生理的影响.园艺学报,25(4):350-355
    85.马瑞霞,冯怡,李萱.2000.化感物质对枯草芽孢杆菌(Bacillus subtilis)在厌氧条件下的生长及反硝化作用的影响.生态学报,20(3):452-457.
    86.马祥庆,范少辉,刘爱琴,陈绍栓,林上杰.2000.不同栽植代数杉木人工林土壤肥力的比较研究.林业科学研究,13(6):577-582.
    87.毛志泉,王丽琴,沈向,束怀瑞,邹岩梅.2004.有机物料对平邑甜茶实生苗根系呼吸强度的影响.植物营养与肥料学报,10(2):171-175.
    88.蒲金基,曾会才.2002.绿色木霉LTR12-1对黄瓜枯萎病菌防治作用机制的初步研究.热带农业科学,22(4):22-25.
    89.秦嗣军.2006.樱桃属植物根域特征及根域处理与植株生长发育关系的研究[博士论文].沈阳:沈阳农业大学.
    90.邱莉萍,刘军,王益权,孙慧敏,和文祥.2004.土壤酶活性与土壤肥力的关系研究.植物营养与肥料学报,10(3):277-280.
    91.邱龙,王海斌,熊君,方长旬,吴文祥,何海斌,林文雄.2008.外源水杨酸调控水稻化感抑草作用及其分子生理特性.应用生态学报,19(2):330-336.
    92.阮少波.2005.花椒水浸液对植物种子萌发和幼苗生长的影响[硕士学位论文].成都:中国科学院成都生物研究所.
    93.阮维斌,王敬国,张福锁,李小鸣,王玉峰,宿庆瑞.2001.溴甲烷土壤灭菌对大豆苗期根系生长的影响.生态学报,21(5):759-764.
    94.阮维斌,王敬国,张福锁,沈建波.1999.根际微生态系统理论在连作障碍中的应用.中国农业科技导报,1(4):53-58.
    95.沈菊培,陈利军.2005.土壤磷酸酶活性对施肥-种植-耕作制度的响应.土壤通报,36(4):622-627.
    96.宋志伟,陈世昌,王小琳,刘中平.2006.复合微生物制剂对重茬草莓生长及产量品质的影响研究.土壤通报,37(3):146-148.
    97.孙红霞,武琴,郑国祥,王振忠.2001.EM对茄子、黄瓜抗连作障碍和增强土壤生物活性的效果.土壤.(5):264-267.
    98.孙秀山;封海胜,万书波;左学青.2001.连作花生田主要微生物类群与土壤酶活性变化及其交互 作用.作物学报,9:617-621.
    99.孙艳,徐伟君,范爱丽.2006.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响,17(3):399-402
    100.谭兆赞,林捷,刘可星,廖宗文.2007.复合微生物菌剂对番茄青枯病和土壤微生物多样性的影响.华南农业大学学报,28(1):45-49.
    101.涂书新,孙锦荷,郭智芬,谷峰.2000.植物根系分泌物与根际营养关系评述.土壤与环境,9(1):64-67.
    102.汪立刚,王玉,华天懋,王敬国,张福锁,阮维斌.2001.土壤灭菌对大豆的增产效果及其机理探.西北农业学报,10(1):67-71.
    103.王芳.2003茄子连作障碍机理研究[博士论文].北京:中国农业大学.
    104.王光华,金剑,徐美娜,刘晓冰.2006.植物、土壤及土壤管理对土壤微生物群落结构的影响.生态学杂志,25(5):550-556.
    105.王金龙,徐冉,陈存来,王彩洁.2000.大豆连作下土壤环境条件变化的概述.大豆科学,19(4):367-370.
    106.王静,杨德光,马凤鸣,常敬礼.2007.水分胁迫对玉米叶片可溶性糖和脯氨酸含量的影响.玉米科学,15(6):57-59.
    107.王茹华.2005.嫁接茄子根系分泌物生化特性及其对黄萎菌化感作用的研究[博士学位论文].沈阳:沈阳农业大学.
    108.王玉彦.2009.设施黄瓜不同种植作模式及其土壤修复机理的研究[博士学位论文].东北农业大学
    109.王震宇,王英祥,陈祖仁.1991.重茬大豆生长发育障碍机制初探.大豆科学,10(1):31-36.
    110.王志刚,郭天文,徐伟慧.2006.大棚韭菜连作对产量和品质及土壤养分状况的影响.甘肃农业大学学报,41(6):34-37.
    111.吴凤芝,刘德,王东凯,栾非时,王伟,刘元英.1998.大棚蔬菜连作年限对土壤主要理化性状的影响.中国蔬菜,(4):5-8.
    112.吴凤芝,孟立君,王学征.2006.设施蔬菜轮作与连作土壤酶活性的研究.植物营养与肥料学报,12(4):554-558.
    113.吴凤芝,孟立君,文景芝.2002.黄瓜根系分泌物对枯萎病菌菌丝生长的影响.中国蔬菜,(5):26-27.
    114.吴凤芝,潘凯,马凤鸣,王学东.2004.苯丙烯酸对黄瓜幼苗光合作用和细胞超微结构的影响.园艺学报,31(2):183-188.
    115.吴凤芝,王伟,奕非时.1999.土壤灭菌对大棚连作黄瓜生发育影响.北方园艺,5:49.
    116.吴凤芝,王学征.2007.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系.中国农业科学,40(10):2274-2280.
    117.吴凤芝,于高波,刘博.2008.不同基肥对黄瓜根际土壤微生物群落多样性的影响.植物营养与肥料学报,14(3):576-580.
    118.吴凤芝,赵凤艳,刘元英.2000.设施蔬菜连作障碍原因综合分析与防治措施.东北农业大学学报,31(3):241-247.
    119.武志杰,张海军,许广山,张玉华,刘春萍.2002.玉米秸秆还田培肥土壤的效果.应用生态学报,13(5):539-542
    120.西尾道德.1983.连作障害の发生について.日本土壤肥料学毅志,54(1):64-73.
    121.肖宏.2004.土壤消毒和轮作对克服苹果连作障碍效果的研究[硕士论文].泰安:山东农业大学.
    122.邢云章,马凤茹.1983.绿色木霉防治人参根腐病的研究,.特产研究(4):20-22.
    123.熊顺贵.1996.基础土壤学(植物生产类专业用).北京:中国农业大学出版社..
    124.许大全,张玉全.1992.植物光合作用的光抑制.植物生理学通讯,28(4):237-243.
    125.许大全.2002.光合作用效率.上海:上海科学技术出版社,29-35.
    126.许曼琳.2005.芽孢杆菌(Bacillus sp.)的抑菌作用和抗菌蛋白基因TasA的克隆和表达.[硕士学位论文].福建:福建农林大学.
    127.许艳丽,韩晓增.1995.重迎茬对大豆病、虫害发生与危害的研究.大豆重迎茬研究.哈尔滨工程大学出版社.
    128.薛炳烨,罗新书.1992.VAM真菌对再植桃实生苗生长的作用.果树科学,9(2):106-109.
    129.薛应龙.1985.植物生理学实验手册.上海:上海科技出版社.
    130.严昶升.1988.土壤肥力研究法.北京:农业出版社.
    131.杨健,李秀根.2001.果树再植障碍及其控制途径.西北园艺,4:24-26.
    132.杨丽娟,李天来,刘好,苏娜.2005.长期施用有机肥和化肥对菜田土壤锌有效性的影响.土壤通报,36(3):395-397.
    133.杨梅,林思祖,曹光球.2008.邻羟基苯甲酸胁迫对不同杉木无性系叶片核酸和蛋白质合成的影响.中国农学通报,24(11):160-164.
    134.杨庆凯,马占峰,李季文.1994.黑龙江大豆重迎茬问题及对策.大豆科学,13(2):157-163.
    135.殷峻,陈英旭,刘和,王远鹏.2004.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性.环境科学,25:11-15.
    136.于广武,许艳利,刘晓冰,王光华.1993.大豆连作障碍机制研究初报.大豆科学,12(3):237-243.
    137.于贵瑞,陆欣来.1988.大豆向日葵等作物连作障碍与轮作效应机理的研究初报.生态学杂志,7(2):1-8.
    138.于继洲,秦国新,杜方,李柯,孙雪梅.2004.果树再植障碍机理研究进展.山西果树,2:36-37.
    139.于占东,宋述尧.2001.非腐解有机物配施生物菌剂对设施土壤理化性质的影响.吉林农业大学学报,,23(4):69-71,74.
    140.郁继华,张韵,牛彩霞,李建建.2006.两种化感物质对茄子幼苗光合作用及叶绿素荧光参数的影响.应用生态学报,17(9):1629-1632.
    141.喻敏,余均沃,曹培根,梁火娣,潇洪东,王蕴波,崔志新.2004.百合连作土壤养分及物理性状分析.土壤通报,35(3):377-379.
    142.袁飞,彭宇,张春兰,沈其荣.2004.有机物料减轻设施连作黄瓜苗期病害的微生物效应.应用生态学报,15(5):867-870.
    143.翟衡,管雪强,郝玉金,赵春芝.1998.葡萄野生资源和砧木抗南方根结线虫鉴定.葡萄栽培与酿酒,(1):6-7.
    144.湛方栋,陆引罡,关国经,唐远驹,张永春,黄建国.2005.烤烟根际微生物群落结构及其动态变化的研究.土壤学报,42(3):488-494.
    145.张爱君,张明普.2001.长期施用有机和无机肥料对黄潮土有机质含量及组成的影响.江苏农业研究,22(3):30-33.
    146.张成娥,杜社泥,白岗栓,梁银丽.2001.黄土塬区果园套作对土壤微生物及酶活性的影响.土壤与环境.10(2):121-123.
    147.张江红.2005.酚类物质对苹果的化感作用及重茬障碍影响机理的研究.[博士论文].山东:山东农业大学.
    148.张守仁.1999.叶绿素荧光动力学参数的意义及讨论.植物学通报,16(4):444-448.
    149.张淑香,高子勤,刘海玲.2000.连作障碍与根际微生态研究Ⅲ.土壤酚酸物质及其生物学效应.应用生态学报,11(5):741-744.
    150.张顺捷,马凤鸣,石振,侯静.2008.大豆苗期根系分泌物化感作用的初步研究.作物杂志,4:43-45.
    151.张新杰,王记侠,任玉华,何维华.2007.葡萄砧木特性及其对嫁接品种的影响.安徽农业科学,.35(31):9893-9895.
    152.张信娣,曹慧,徐冬青,金叶飞,陈银科.2008.光合细菌和有机肥对土壤主要微生物类群和土壤酶活性的影响.土壤,(3):443-447.
    153.张雪艳,高丽红,李元,田永强.2007.栽培模式对黄瓜连作温室土壤酶活性及相关养分的影响.内蒙古农业大学学报,28(3):113-117.
    154.张玉凤,冯固,李晓林.2003.丛枝菌根真菌对三叶草根系分泌的有机酸组分和含量的影响.生态学报,23(1):30-37.
    155.张媛媛,黄远,别之龙.2009.镉对黄瓜嫁接苗叶绿素含量、气体交换和叶绿素荧光参数的影响.长江蔬菜,2b:42-44.
    156.甄文超,曹克强,胡同乐,曹爱新.2001.作物再植病害的研究进展.河北农业大学学报,24(4):98-103.
    157.甄文超,代丽,胡同乐,曹克强.2005.连作草莓土壤微生物区系动态的研究.河北农业大学学报,28(3):70-72,87.
    158.甄文超,王晓燕,曹克强,靳增军.2004.草莓根系分泌物和腐解物中氨基酸的检测及其化感作用研究.河北农业大学学报,27(2):76-80.
    159.甄文超.2003.草毒再植病害发生机理及控制措施的研究[博士论文].保定:河北农业大学.
    160.周长勇,张秀清,尹旭兵.2001.番茄嫁接苗与自根苗的对比试验.中国蔬菜,1(4):32-33.
    161.周玉婵,潘小平.1997.采后低温诱导菠萝PPO活性升高的机理及其抑制途径.园艺学报24(3):235-238.
    162.周志红,骆世明,牟子平.1998.番茄植株中几种化学成分的化感效应.华南农业大学学报,19(3):56-60.
    163.周智彬,徐新文.2004.塔里木沙漠公路防护林土壤酶分布特征及其与有机质的关系.水土保持学报,15(5):10-15.
    164.朱红惠,姚青,李浩华,羊宋贞.2004.丛枝菌根真菌对番茄根系酚类物质和青枯菌种群数量的影响.微生物学通报,31(1):1-5.
    165.朱林,彭宇,袁飞,张春兰.2001.几种有机物料对连作黄瓜生长的影响.安徽农业科学,29(2):214-216
    166. Abd El-Moneem K.M.H..,Moharam M.H.A..,Ebtisam Ei-Sherif M.M..2003.Role of root exudates of certain peanut cultivars in resistance to root-rot disease.Assiut Journal of Agricultural Sciences,34(2):193-210.
    167. Abdalla M E, Abdel-Fattah G M..2000.Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt.Mycorrhiza,10(1):29-35.
    168. Abdel-Fattah G M, Shabana Y M..2002. Efficacy of the Arbuscular Mycorrhizal Fungus Glomus Clarum in Protection of Cowpea Plants against root rot pathogen rhizoctonia solani. Journal of Plant Disease and Protection,109(2):207-215.
    169. Alsaadawi L.S.,AI-Hadithy S. M.,Arif M. B..1986.Effect of three phenolic acid on chorophyll content and ion uptake in cowpea seedling. J.Chem.Ecol.,12:221-227.
    170. An YJ, Joo YH, Hong IY, Ryu HW..2004.Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.Applied Microbiology and Biotechnology,65:611-619.
    171.Anaya A.L.,Calera M.R.,Mata R,Pereda-Miranda R..1990.Allelopathic potential of compounds isolated from Ipomoea tricolor Cav. (Convolvulaceae).J Chem Ecol,16:2145-2152.
    172. Anaya,A.L..1999.Allelopathy as a tool in the management of biotic resources in agroecosystems.Crit.Rev.PlantSci.,18:697-739
    173.Appel H.M..1993.Phenolics in ecological interactions:The importance of oxidation. J Chem Ecol.,19(7):1521-1552.
    174. Bais H.P.,Park S.W.,Weir T.L.,Callaway R.M.,Vivanco J.M..2004.How plants communicate using the under-ground information superhighway.Trends Plant Sci.,9:23-32.
    175. Bais H.P.,Weir T.L.,Perry L.G.,Gilroy S.,Vivanco J.M..2006.The role of root exudates in rhizosphere interactions with plants and other organisms.Annu.Rev.PlantBiol.,57:233-266.
    176. Barber D.A.,Martin J.K..1976.The release of organic substances by cercal roots in soil. New Physiologist,76:69-80.
    177. Barkosky R.R.,Einhellig F.A..1993.Effects of salicvlic acid on plant-water relationships.Chem Ecol.,19:237-247.
    178. Batish D. R., Kaur S, Singh H. P., Kohli R. K..2009.Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice(Oryza sativa).Flora,204(5):388-395.
    179. Batish D.R.,Lavanya K.,Singh H.P.,Kohli R.K..2007.Root-mediated allelopathic interference of Nettle-leaved Goosefoot (Chenopodiummurale) on wheat (Triticum aestivum). J.Agron.CropSci.,193:37-44.
    180. Baziramakenga R..1995.Effects of benzonic and cinnamic acids on membrability of soybean roots. J Chem Ecol.,(10):1272-1281.
    181. Bazivamakenga R. R., Leroux G. D., Simard R. R..1995.Effects of benzonic and cinnamic on membrane permeability of soybean roots. Journal of Chemical Ecology,21:1271-1285.
    182. Benizri E.J Piutti S.,Verger S.,Pages L.,Vercambre G.,.Poessel J. L.,Michelot P..2005.Replant diseases:Bacterial community structure and diversity in peach rhizosphereas determined by metabolic and genetic fingerprinting. Soil Biology and Biochemistry,37:1738-1746.
    183. Benson G O..1990.Corn replant decisions:a review.Jouranl of Production Agriculture,3(2):180-184.
    184. Bertin,C.,Yang,X.,Weston,L.A..2003.The role of root exudates and allelochemicals in the rhizosphere. Plant Soil,256:67-83.
    185. Blum U.,Shafer S.R..1988.Microbial population and phenolic acids in soil. Soil Biol.Biochemtyry,20(6):793-800.
    186. Bode H.R..1958.Beitrage zur Kenntnis allelopathischer Erscheinungen bei einigen Juglandaceen.Planta,51:440-480
    187. Booker F L,Blum U,Fiscus E L..1992.Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedling.Journal of Experimental Botany,43(5):649-655.
    188. Brinker A. M. and Creasy L. L..1988.Inhibitors as a possible basis for grape replant problem.J.Amer.Soc.Hort.Science,113:304-309.
    189. Brinker A. M.,Creasy L. L..1988.Inhibitors as a possible basis for grape replant problem. Journal of the American Society for Horticultural Science,113(3):304-309.
    190. Cameron H.J.Julian G.R..1980.Inhibition of protein synthesis in lettuce (Latuca sative L) by allelopathic compounds.Chem.Ecol.,6:989-995.
    191. Chaboud A..1983. Isolation,purification and chemical composition of maize root cap slime. Plant and Soil,73:395-402.
    192. Chou C. H.,Leu L. L..1992.Allelopathic substances and activities of Delonix regia Raf.Journal of Chemical Ecology,(18):353-367.
    193. Chung, I. M.,Mille D. A..1995.Natural herbicide potential of alfalfa residue on selected weed species.Agronomy Journal,87:920-925.
    194. Cruz R.,Anaya A. L.,Hernandez B. E..1998.Effects of allelochemical stress produced by sicyos deppei on seedling root ultrastructure of phaselus vulgaris and Cucurbita ficifolia. J Chem Ecol.,24(12):2039-2057.
    195. Darran P.R..1991.Model of therhizosohere.Plant and Soil,138:147-158.
    196. Desmond R. L.,Guido S..2006.Preplant practics to manage armillaria root rot disease and other soil pathogens on a commercial peach replant site.HortsScience,41:1028-1029.
    197. Desmond R. Loyne and Guido Schnabel..2006.Preplant practices to manage Armillaria root rot disease and other soil pathogens on a commercial peach replant site. HortScience,41:967-1084.
    198. Devi R. S., Prasad M. N. V..1992.Effects of ferulic acid on growth and hydrolytic enzyme activities of germinating maize seeds. J.Chem Ecol.,18:1981-1990.
    199. Dick R P.1988.Microbial biomass and soil enzyme activities in compacted and rehabilitated skid trail soil.Soil Science Society of America Journal,52:512-516.
    200. Dick RP.1992.A review:long-term effects of agricultural systems on soil biochemical and microbial parameters. Agriculture, Ecosystems and Environment,40:25-36.
    201.Djurdjevic L.J Popovic Z.,Mitrovic M.,Pavlovic P.,Jaric S.,Oberan L.,Gajic G.2008.Dynamicsof bioavailable rhizosphere soil phenolics and photosynthesis of Arummaculatum L.in a lime-beech forest. Flora,203:59-601.
    202. Domach K.H.,Gerna W.,Anderson T.H..1981.Compendium of soil fungi.London.Academic Press,,530-532.
    203. Duff J D.,Barnanrt A..1992.Solarisation controls soil borne fungal pathogens in nursery potting mixes.Australasian Plant Pathology,21(1):20-23.
    204. Eiuhellig F.A..1995.Mechanism of action of allelochemical in allelopathy.Allelopathy,(1):97-115.
    205. Fliebbach A., Eyhorn F., Mader P..2001.DOK' long-term farming systerm trial:microbial biomass, activity and diversity affected the decomposition of plant residues. In:Rees R M, Campell B C(eds) Sustainable Management of Organic Matter. Wallingford:CABI Publishing,.363-369.
    206. Ghini R..1993.A solar collector for soil disinfestation. European Journal of Plant Pathology,99:45-50.
    207. GlassD.K..1974.Influenceof phenolic acids on ion uptake.Plant Physiology,54:855-858.
    208. Guenzi W. D.,McCalla T. M..1966.Phenolic acids in oats wheat, sorghum and corn residues and their phytotoxicity. Agron J,58:303-304.
    209. Guenzi W.D., McCalla T.M..1962.Inhibition of germination and seedling development by crop residues.Soil Sci.Soc.Am.Proc.,26:456-458.
    210. Gur A.,Cohen Y..1988.Causes of soil sickness in replanted peaches:1.The role of cyanogenesis in peach soil sickness.Acta Hort.,233:25-31.
    211. Gur A.,CohenY..1989.The peach replant problem-some causal agents.Soil Biology and Biochemistry,6:829-834.
    212. Halligan J.P..1973.Bare areas associated with shrub stands in grass land:the case of Artemistia California. Bioscience,23:429-432.
    213. Han C.M.,Pan K.W.,Wu N.,Wang J. C.,Li W.2008.Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive.Scientia horticulturae,116(3):330-336.
    214. Harender R.,Sharma S. D..2009.Integration of soil solarization and chemical sterilization with beneficial microorganisms for the control of white root rot and growth of nursery apple. Scientia Horticulturae,119(2):126-131.
    215. Hassan M. S.,Alsaadawi I.S. El-behadli A..1989.Citrus replant problem in Iraq Ⅱ. Possible role of allelopathy.Plant and Soil,116:157-160.
    216. Hine RB..1961.The role of fungi in the peach replant problem.Plant Dis.Rep.,45:462-465.
    217. Hoestra H.,Oostenbrink M..1962.Nematodes in relation to plant growth IV. Pratylenchus penetrans (Cobb) on orchard trees. Neth. J.Agric.Sci.,286-296.
    218. Hoestra H..1965.Thielaviopsis basicola, a factor in the cherry replant problem in the Netherlands.Neth. J. Plant Path.,71:180-182.
    219. Holaopa L.D.,Blum U..1991.Effects of evogenously applied ferulic acid, a potenrial allelopathic compound,on leaf growth, water utilization and endogenous abscissic acid levels of tomato,cucumber, and bean. Chem Ecol.,17:865-886.
    220. Huang C.C., Peng W. K.., Talekar N.S..2003.Parasitoids and other enenmies of Marucavitrate feeding on Sesbania cannabina in Taiwan.Bio. Control,48(4):407-416.
    221. Huang J W, Kuklman G C.1991.Formulation of a soil amendment to control damping-off of slash pine seedling. Phytopathology,81(2):163-170.
    222. Hudska G. B.1988.Conclusions from research on replant problem with apple trees and possibilities of its control.Acta Horticulture,233:21-24.
    223.Inderjit M..1997.Effect of phenolic compounds on selected soil properties. Forest Ecology and Management,92(13):11-18.
    224. Jacobs H.,Gray S.H.,Crump D.H..2003.Interaction between nematophagous fungi and consequence for their potential agents for the control of potato cyst nematodes. Mycological Research,107(1):47-56.
    225. Ju D., Yao S., Chun L. X., Kai S., Yan H. Z.,Jing Q. Y..2007. Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. Journal of Experimental Botany,58(13):3765-3773.
    226. Kaur H., Inderjit, Kaushik S..2005.Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.)seedling growth. Plant physiology and biochemistry,43(1):77-81.
    227. Khan U. N.,Vaidyanathan C. S..1987.Cinnamate toxicity expression on phenylalamine ammonia-lyasm activity, germination and growth of cucumber(Cucumis sativus L.) seedlings. Plant Soil,97:299-302.
    228. Kim Y. S., Kil B. S..1989.Identification and growth inhibition of phytotoxic substance from tomato plant, Korean Journal of Botany,.32(1):41-50.
    229. Koeppe E.D.E.,Southwick L.M.,Bittell J. E..1976.The relationship of tissue chlorogenic acid concentrations and leaching of phenolics from sunflowers grown under varying phosphates nutrient conditions.Canad. J. Bot.,54:593-599.
    230. Komai K,Iwamura J,Hamada M.,Ueki K..1983.Plant growth inhibitor in the seed of catchweed and their allelopathy. Journal of Weed Science and Technology(Japan),28:205-209.
    231. Kupidlowska K.,Kowalec M.,Sulkowski G.,Zobel A. M..1994.The effect of coumarins on root enlongation and ultrastructure of meristematic cell protoplast.Annals Botony,73:525-530.
    232. Kuwatsuka S., Shindo H..1973.Behavior of phenolic substances in the decaying process of plants. I. identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas chromatography. Soil Science and Plant Nutrition,19(3):219-227.
    233. Larkin R.P.,Hopkins D.L.,Martin F.N..1993.Effect of successive watermelon plantings on Fusarium oxysporum and other microorganism in soils suppressive and conductive to Fusarium Wilt of watermelon. Phytopathology,83:1097-1104.
    234. Layne D.R.,Schnabel G..2006.Preplant practices to manage Armillaria root rot disease and other soil pathogens on a commercial peach replant site. HortScience,41:1028-1029.
    235. Leinfelder M. M., Merwin L. A..2006.Rootstock selection,preplant soil treatments and tree planting position as factors in managing apple replant disease.HorScience,41:394-401.
    236. Leslie C.A.,Romani RJ..1988. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol, 88:833-837.
    237. Li H.H.,Inoue M.,Nishimura H.,Mizutani J.,Tsuzuki E..1993.Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abcisic acid in seedling growth and seed germination of lettuce. Journal of Chemical Ecology,19(8):1775-1787.
    238. Li J Y; Harper J K; Grant D M; Tombe B O; Bashyal B; Hess W M; Strobel G A..2001.Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp.. Phytochemistry,56(5):463-468.
    239. Liu D.L.,Lovett J.V..1993.Biologically active secondary metabolites of barley II.Phytotoxicity of barley allelochemicals.J. Chem. Ecol.,19:2231-2244.
    240. Lovett J. V.,Hurrey A. P..1992.Allelopathy:a possible contributor to yield decline in sugarcane. Plant Protect.Quart.,17:180-182.
    241. Malanga G., Puntarulo S..1995.Oxidative stress and antioxidant content in Chlorella vulgaris after exposure to ultraviolet-B radiation. Physiologia plantarum,94:672-679.
    242. Marscher P.,Neumann G.,Kania A,Weiskopf L,Lieberei R..2002.Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin(Lupinus albus L.) J Plant Soil,246:167-174.
    243. Marschner P, Crowley D E, Higashi R M.1997.Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper(Capsicum annuum L.).Plant and Soil,189,11-20.
    244. Mazzola M, Gu Y.H..2000.Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathology,90:114-119.
    245. Mazzola M.1998.Elucidation of the microbial complex having a causal rule in the development of apple replant disease in Washington.Phytopathology,188:930-938.
    246. Mazzola M.1999.Transformation of soil microbial community structure and rhizoctonia-suppressive potential in response to apple roots.Phytopathology,89:920-927.
    247. Mersie W.,Singh M..1993.Phenolic acid affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf.Chem Ecol.,19:1293-1301.
    248. Michelle M,Leinfelder,Merwin I.A..2006.Rootstock selection, preplant soil treatments and tree planting position as factors in managing apple replant disease.HortScience,41:394-401.
    249. Miller D A..1996.Allelopathy in forage crops systems.Agrionomy Journal,88:854-859.
    250. Minegish M..1989.Strawberry production in Japan-cultivar,cultivating method,main disease,and breeding.Acta Horticulturae.,265:665-670.
    251. Minegish M..1989.Strawberry production in Japan-cultivar,cultivating method,maindisease,and breeding.Acta Horticulturae.,265:665-670.
    252. Mizutani J..1999.Selected allelochemicals.Crit.Rev.Plant Sci,18:653-671.
    253. Moroz P. A.1972.Allelopathic role of fallen leaves and root remains of apple trees.[Russian], Primenenie Fiziologicheski Aktivnykh Veshchestv v Sadovodstve..Moscow,USSR:89-95.Secondary Journal Source:Referativnyi Zhuranl(1973)9.55.666
    254. Murphy S D.1999.Pollen Allelopathy. In:Principles and practices in plant ecology:Allelochemical interactions (Ed by Inderjit).CRC Press,129-146.
    255. Neumann G., Massonneau A.,Martinia E, Romheld V..1999.Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. J. Planta,208:373-382.
    256. Olsson S.,Alstrm S..2000.Characterisation of bacteriain soils under barley monoculture and crop rotation. J. Soil Biol Biochem.,32:1443-1451.
    257. Patrick Z. A...1955.The peach replant problem in Ontario.Ⅱ Toxic substances from microbial decomposition products of peach root residues.Can. J. Bonaty.,33:481-486.
    258. Patterson D T..1981.Effect of allelopathic chemicals on growth and physiological responses of soybean(Glycine max).Weed Sci.,29(1):53-59.
    259. Paulus A.O..1990.Fungal disease of strawberry.Hortscience,25(8):885-889.
    260. Peirce, L.C.,Miller, H.G..1993.Asparagus emergence on Fusarium-treated and sterile media following exposure of seeds or radicals to one or more cinnamic acids. J.Amer.Soc.Hort.Sci.,118:23-28.
    261. Pellissier E..1993.Allelopathic effect of phenolic acids from humic solutions on two spruce mycorrhizal fungi:Cenococcum graniforme and Laccaria laccata.J.Chem.Ecol.,19:2105-2114.
    262. Penuelas J,Ribas-Carbo M,Giles L..1993.Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase.J. Chem. Ecol.,22(4):801-805.
    263. Politycka B.1998.Phenolics and the activities of phenylalanine ammonia-lyase, phenol-beta-glucosyltransferaase and beta-glucosidase in cucumber roots as affected by phenolic allelochemicals.Acta Physiol Plantarum,20(4):405-410.
    264. Pramanik M. H. R., Asao T., Yamamoto T., Matsui Y..2001.Sensitive bioassay to evaluate toxicity of aromatic acids to cucumber seedlings.Allelopathy Journal,18:161-169.
    265. Proebstiing E. L.,Gilmore A. E..1941.The relation of peach root toxicity to the reestablishing of peach orchards.Proc.Am.Soc.Horticult.Sci.,38:21-26.
    266. Ramani S, Apte S.K..1997.Transient expression of multiple genes in salinity-stressed young seedlings of rice (Oryza sativa L.) cv. bura rata.Biochemical and Biophysical Research Communications,233:663-667.
    267. Rambelli A.1973.The rhizosphere of mycorrhizae.In:Marks G. C., Kozlowshi T., T.eds Ectomycorrhizae (Their Ecology and Physiology). New York:Academic Press,299-349.
    268. Ray S.D., Laloraya M.M..1984.Interaction of gibberellic acid,abscisic acid and phenolic compounds in the control of hypocotyl growth of Ama-ranthus caudatus seedlings. Can J Bot.,62:2047-2052.
    269. Ren S.Z., Luo S.M., Shi Y.H., Shi M.B.,Tu C.Y..2001.Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agron Journal,93(1):72-79.
    270. Renaut J., Lutts S., Hofmann L.,.Hausman J. F..2004.Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biology,81-90.
    271. Rice E. L..1984.Allelopathy.Second Edition. New York:Academy Press Inc.
    272. Rimando A.M.,Olofsdotter M.,Dayan F.E.,Duke S.O..2001.Searching for rice allelochemicals:An example of bioassays-guided isolation.Agron J.,93:16-20.
    273. Rous PW.1991.Two newly reported leaf pathogens of Eucalyptus grandis in South Africa. South African Forestry Journal,157:12-15.
    274. Sandhu G.S., Kline B.C., Stockman L., Roberts G. D..1995. Molecular probes for the diagnosis of fungal infections. Journal of Clinical Microbiology,33(11):2913-2919.
    275. Scandalios L G..1993.Oxygen stress and superoxide dismutase.Plant Physiology,101:7-12.
    276. Sewell G. W. F..1981.Effects of Pythiune species on the growth of apple and their possible causal role in apple replant disease.Ann Appl Biol.,97:31-42.
    277. Sewell G.W.F., White G.C..1979.The effects of formalin and other soil treatments on the replant disease of apple.Journal of Horticultural Science,333-336.
    278. Shen S., Jing Y., Kuang T..2003.Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics,3(4):527-535.
    279. Siddiqui I.A.., Shaukat S.S..2003.Effects of Pseudomonas aeruginosa on the diversity of culturable microfungi and nematodes associated with tomato:impact on root-knot disease and plant growth.Soil Biology and Biochemistry,35(10):1359-1368.
    280. Siddiqui I.A..,Qureshi S.A..,Sultana V., Ehteshamul Haque S., Ghaffar A..2000.Biological control of root-knot disease complex of tomato.Plant and Soil,227:163-169.
    281. Singh H. P.,Kohli R. K.,Batish D. R..1999.Autotoxicity:Concept,,organisms,and ecological significance.Crit Rev Plant Sci,18(6):757-772.
    282. Tagliavini M.,Marangoni B..1992.Growth of peach as affected by decomposition of own root residues in soil.Plant and Soil,145:253-260.
    283. Takijima Y..1959.Studies on soil sickness in crop.1.Growth inhibition by consecutive cropping root residue and residual nutrient solution in hydroponics.Agriculture and Horticulture,34:971-972.
    284. Tang C. S.,Young C. C..1982.Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss(Hemarthria altissima).Plant Physiol.,69:155-160.
    285. Toscano G.,Colariet M. L.,Greco G..2003.Oxidativ polymerisation ofphenols by a phenol oxidase from green olives.Enzyme and Microbial Technology,33:47-54.
    286. Trasar-Cepeda C.,Leiros M. C.,Seoane S.,Gil-Sotres F..2000.Limitations of soil enzymes as indicators of soil pollution. Soil Biology and Biochemistry,32:1867-1875.
    287. Turco R. F., Bischoff M.,Breakwell D. P.,Griffith D.R..1990.Contribution of soil-borne bacteria to the rotation effect in corn.Plant Soil,122:115-120.
    288. Uren N. C.,Reisenauer H M..1988.The role of root exudates in nutrient acquisition.In:Tinker B., Lauchli A.(eds).Advaunces in Plant Nutrition. Vol.3.Praeger Publishers.NewYork.,79-114.
    289. Utkhede R. S, Li T. S. C..1988.The role of fungi,bacteria,and their interactions in apple replant disease complex in soils of British Columbial.Acta Horticuturae,233:75-77.
    290. Utkhedel R.S.,Vrain T.C.,Yorston J.M..1992.Effects of nematodes, fungi and bacteria on the growth of young apple trees grown in apple replant disease soil.Plant and Soil,139:1-6.
    291. Vance G.F.,Mokma D.L.,Boyd S.A..1986.Phenolic compounds in soils of hydrosequences and developmental sequences of spodosols. Soil Sci. Soc. Am J.,50:992-996.
    292. Vaughan D.,Ord B.G..1991.Extraction of potential allelochemicals and their effects on root morphology and nutrient contents, pp.399-421. In:Atkinson (ed.). Plant Root Growth. An Ecological Perspective. Blackwell Scientific publication. Special publication series of the British Ecological Society,Number 10,Oxford,UK.
    293. Vigo C.,Norman J R,Hooker J E..2000.Biocontrol of the pathogen phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci.Plant Pathology,49:509-514.
    294. Waschkies C., Schropp A.,Marschner H..1994.Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant and Soil,162:219-227.
    295. Westphal A.,Browne G.T.,Schneider S..2002.Evidence for biological nature of the grape replant problem in California. Plant and Soil,242:197-203.
    296. White C.S..1994.Monoterpenes:Their effects on ecosystem nutrient cycling.J Chem Ecol.,20:1381-1406.
    297. Wilson S.,Andrews P.,Nair T.S..2004.Non-fumigant management of apple replant disease. Scientia Horticulturae,102:221-231.
    298. Wink M.,Latz-Briining B..1995.Allelopathic properties of alkaloids and other natural products: possible modes of action In "Allelopathy:Organisms, Processes, and Applications" Inderjit, Dakshini KMM, Einhellig FA, editors. ACS Symposium Series 582,American Chemical Society; Washington, DC:117-126.
    299. WittackerR H, Feeny P P.1971.Allelochemics:Chemical interactions between species.Science,171(3937):757-770.
    300. Wittenmayer L,Szabo K..2000.The role of root exudates in specific apple (Malus domestica Borkh) replant disease (SARD). J Plant Nutr Soil Sci,163:399-404.
    301. Yoshida S, Ito M, Nishida I, Watanabe A.2002.Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defense responses in Arabidopsis thaliana. The Plant Journal,29:427-437
    302. Yoshida S., Ito M., Nishida I., Watanabe A...2002.Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defense responses in Arabidopsis thaliana. The Plant Journal,29:427-437.
    303. Yu J Q.1997.Effect of root exudates of cucumber and allelochemicals on ion uptake by cucumber seedlings.J.Chem.Ecol.,23(3):817-827.
    304. Yu J.Q., Matsui Y..1997.Effects of exudates of cucumber(Cucumis sativus) and allelochmicals on ion uptake by cucumber seedlings. Journal of Chemical Ecology,23:817-827.
    305. Yu J.Q.1999.Allelopathic Suppression of Pseudomonas solanacearum Infection of Tomato (Lycopersicon esculentum) in a Tomato-Chinese Chive (Allium tuberosum) Intercropping System. Journal of Chemical Ecology,25:2409-2417.
    306. Zhou J, Bruns MA, Tiedje JM..1996.DNA recovery from soils of diverse composition. Applied and Environmental Microbiology,62:316-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700