黑龙江省森林火灾碳排放定量评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类活动所引起的温室效应以及由此造成的以气候变暖为主要特征的气候变化和对全球生态环境的影响已受到国际社会的普遍关注,是全球性问题研究的热点。火干扰作为森林生态系统的重要干扰因子,剧烈地改变着森林生态系统的结构、功能、格局与过程,改变生态系统的碳分配格局与碳循环过程,影响生物地球化学循环,干扰生态系统的能量流动、物质循环与信息传递,是引起植被和土壤碳储量动态变化的重要原因,进而调控生态系统的碳收支,对区域乃至全球的碳循环与碳平衡产生重要影响。火干扰对森林生态系统碳循环产生的重要影响已引起人们的广泛关注。正确理解气候变化背景下火干扰与森林生态系统碳循环之间的逻辑循环关系,了解气候变暖背景下火干扰对森林生态系统碳循环的影响,对制定科学合理的林火管理策略和优化林火管理的路径、充分发挥林火管理措施在增加森林生态系统碳吸收汇,减少碳排放源中的碳效应,实现碳减排增汇效应,减缓气候变化速率等方面均有重要的意义。黑龙江省是我国森林资源大省,是重点林区,亦是森林火灾易发多发区,年均森林火灾面积居全国之首,开展该省森林火灾碳排放定量评价方法研究,改进森林火灾碳排放计量模型,科学测定森林火灾碳排放计量参数,合理计量森林火灾碳排放量,对了解火干扰在区域碳循环和碳平衡中的地位与作用具有重要意义。
     据此,以黑龙江省温带林和黑龙江省大兴安岭北方林为研究区域,以典型森林生态系统为研究对象,采用地理信息系统技术(GIS),通过大量野外火烧迹地调查与采样,结合室内控制环境实验以及野外实验,测定森林火灾碳排放的各种计量参数和4种主要含碳气体排放因子计量参数,在林分水平上,通过修正的森林火灾碳排放计量模型,对该省森林火灾碳排放量进行计量估算,采用排放因子法,对该省森林火灾4种主要含碳气体排放量进行计量估算,分析了森林火灾的时空分布格局及变化规律。通过分析森林火灾碳排放量和4种主要含碳气体排放量的研究结果,提出了科学合理的林火管理策略和优化林火管理的路径。主要结果如下:
     (1)系统地阐述了森林火灾碳排放定量评价方法。
     论述了野外火烧迹地调查与采样方法;室内控制环境实验及野外实验方法;森林火灾碳排放各种计量参数和4种主要含碳气体排放因子计量参数的测定方法;改进了森林火灾碳排放计量模型,使得森林火灾碳排放计量模型分别适用于黑龙江省温带林和黑龙江省大兴安岭北方林的碳排放计量:从林分水平上,阐明了森林火灾碳排放量的计量估算方法,采用排放因子法,论述了森林火灾4种主要含碳气体排放量的计量估算方法。
     (2)测定了森林火灾碳排放计量参数及主要含碳气体排放因子计量参数,并建立了计量参数数据库。
     分别测定了黑龙江省温带林和大兴安岭北方林森林火灾碳排放计量参数(各林型不同组分的单位面积森林可燃物载量、可燃物含碳率和燃烧效率)和4种主要含碳气体排放因子,在林分水平上对燃烧效率和排放因子进行了测定,测定了森林火灾土壤有机碳排放的计量参数,并建立了较为全面的森林火灾碳排放各计量参数及4种主要含碳气体排放因子计量参数数据库。
     (3)估算了大兴安岭北方林森林火灾碳排放量及单位面积碳排放量。
     通过实测的森林火灾碳排放各计量参数,根据大兴安岭不同林型,在林分水半上计量估算了1965—2010年46年间森林火灾碳排放量为3.12×107t,年均碳排放量为6.79×105t。分别计算了各林型单位面积森林火灾碳排放量:杜鹃-落叶松林11.79t/hm2、杜香-落叶松林7.53t/hm2、草类-落叶松林11.51t/hm2、偃松-落叶松林10.85t/hm2、白桦林5.55t/hm2、樟子松林4.01t/hm2、蒙古栎林12.67t/hm2、针叶林18.72t/hm2、阔叶林11.20t/hm2、针阔混交林3.06t/hm2。46年间森林火灾土壤有机碳排放量为2.20×107t,年均排放量为4.77×105t。分别计算了各林型单位面积森林火灾土壤有机碳排放量:杜鹃-落叶松林8.81t/hm2、杜香-落叶松林4.40t/hm2、草类-落叶松林6.65t/hm2、偃松-落叶松林7.97t/hm2、白桦林4.52t/hm2、樟子松林5.69t/hm2、蒙古栎林7.13t/hm2、针叶林8.58t/hm2、阔叶林4.64t/hm2、针阔混交林3.54t/hm2。
     (4)估算了大兴安岭北方林森林火灾4种含碳气体排放量及单位面积排放量。
     通过实测的森林火灾4种主要含碳气体的排放因子,根据大兴安岭不同林型,采用排放因子法计量估算了4种含碳气体排放量。46年间森林火灾含碳气体CO2、CO、CH4和非甲烷烃(NMHC)的排放量分别为9.76×107、9.51×106、5.46×105和2.14×105t,其年均排放量分别为2.12×106、2.07×105、1.19×104和4.65×103t。分别计算了单位面积4种主要含碳气体排放量:各林型CO2/CO、CH4和NMHC的排放量分别为:杜鹃-落叶松林36.09、4.18、0.22和0.07t/hm2;杜香-落叶松林23.94、2.35、0.10和0.05t/hm2:草类-落叶松林36.35、4.09、0.24和0.08t/hm2;偃松-落叶松林34.59、3.09、0.21和0.07t/hm2;白桦林17.48、1.35、0.07和0.04t/hm2;樟子松林12.30、1.18、0.13和0.03t/hrn2;蒙古栎林40.89、3.37、0.19和0.09t/hm2;针叶林58.43、3.66、0.27和0.14t/hm2;阔叶林36.36、2.34、0.11和0.08t/hm2;针阔混交林9.53、0.84、0.05和0.02t/hm2。
     (5)估算了黑龙江省温带林森林火灾碳排放量及单位面积碳排放量。
     通过实测的森林火灾碳排放计量参数,根据不同林型,在林分水平上计量估算了1953—-2012年60年间森林火灾碳排放量为5.88×107t,年均排放量为9.80×10st。分别计量了单位面积森林火灾碳排放量:阔叶红松林12.50t/hm2、落叶松林16.84t/hm2、白桦林20.07t/hm2、落叶松-白桦林12.99t/hm2、樟子松林22.25t/hm2、云冷杉林25.60t/hm2、杨桦林23.97t/hm2、硬阔林12.74t/hm2、蒙古栎林13.58t/hm2、针叶林29.75t/hm2、阔叶林26.42t/hm2、针阔混交林7.05t/hm2。60年间森林火灾土壤有机碳排放量为1.92×107t,年均排放量为3.20×105t。计量了单位面积森林火灾土壤有机碳排放量:阔叶红松林2.56t/hm2、落叶松林6.02t/hm2、白桦林5.77t/hm2、落叶松-白桦林2.73t/hm2、樟子松林6.99t/hm2、云冷杉林9.00t/hm2、杨桦林7.47t/hm2、硬阔林6.71t/hm2、蒙古栎林6.44t/hm2、针叶林7.70t/hm2、阔叶林6.22t/hm2、针阔混交林3.28t/hm2。
     (6)估算了黑龙江省温带林森林火灾4种含碳气体排放量及单位面积排放量。
     通过实测的森林火灾4种含碳气体的排放因子,根据不同林型,利用排放因子法计量估算了4种含碳气体排放量。含碳气体CO2、CO、CH4和NMHC的排放量分别为1.89×108、1.06×107、6.33×105和4.43×105t,其年均排放量分别为3.15×106、1.77×105、1.05×104和7.38×103t。分别计量了单位面积4种主要含碳气体排放量:各林型C02、CO、CH4和NMHC的排放量分别为:阔叶红松林39.07、2.64、0.14和0.09t/hm2;落叶松林52.87、3.39、0.18和0.13t/hm2;白桦林66.06、3.62、0.24和0.15t/hm2;落叶松-白桦林41.72、2.15、0.13和0.08t/hm2;樟子松林7.27、3.99、0.20和0.18t/hm2;云冷杉林85.55、3.72、0.25和0.20t/hm2;杨桦林76.56、4.46、0.27和0.20t/hm2;硬阔林41.30、2.10、0.15和0.11t/hm2;蒙古栎林43.93、2.54、0.15和0.11t/hm2;针叶林97.72、4.48、0.28和0.23t/hm2;阔叶林87.80、3.83、0.31和0.20t/hm2;针阔混交林21.49、1.45、0.06和0.05t/hm2。
     (7)提出了合理的林火管理策略和优化林火管理的路径。
     通过分别对黑龙江省大兴安岭北方林和黑龙江省温带林森林火灾碳排放各计量参数及4种主要含碳气体排放因子的测定结果进行分析,并结合森林火灾碳排放量及4种主要含碳气体排放量的计量结果可知,不同林型森林火灾碳排放计量参数存在较大差异,尤其是燃烧效率和排放因子,从而导致森林火灾碳排放量以及含碳气体排放量存在较大的差异,对此提出了相应的林火管理策略和优化林火管理的路径,并提出了减缓气候变暖,增加森林碳吸收汇的森林碳汇管理措施。
     (8)黑龙江省年均的碳排放对区域的碳循环与碳平衡产生重要影响。
     大兴安岭北方林森林火灾年均碳排放量约占全国年均森林火灾碳排放量的6.00%。土壤有机碳年均排放量约占全国年均森林火灾碳排放量的4.22%。4种主要含碳气体CO2、CO、CH4和NMHC的年均排放量分别占全国年均森林火灾各含碳气体排放量的5.22%、7.63%、10.60%和4.12%,CO2、CO和CH4的排放量分别约占我国年均生物质燃烧各含碳气体排放量的0.76%、1.29%和2.20%。黑龙江省温带林森林火灾年均碳排放量约占全国年均森林火灾碳排放量的8.66%。土壤有机碳年均排放量约占全国年均森林火灾碳排放量的2.83%。4种主要含碳气体CO2、CO、CH4和NMHC的年均排放量分别约占全国年均森林火灾各含碳气体排放量的7.74%、6.52%、9.42%和6.53%,CO2、CO和CH4的排放量分别约占我国年均生物质燃烧各含碳气体排放量的1.12%、1.10%和1.95%。由以上研究可知黑龙江省年均的碳排放对区域的碳循环与碳平衡产生重要影响。为此,提出了优化森林碳汇管理,减少森林火灾碳排放的森林经营可持续管理策略。
The greenhouse effect, which is caused by human activities, creates climate change, disrupts ecosystems and is causing increasing concern internationally. Forest fires, and the related disturbance, are a natural component of forest ecosystems. Forest fire, a main disturbance factor in forest ecosystems, is widely recognized as an essential natural process in those ecosystems. Many people have begun to realize that fires not only have physical effects but forest fires may increase in number and become more intense in response to future climatic change, which will influence the carbon cycle in forest ecosystems.
     Understanding the effect of fire disturbance and the changes it causes to a forest ecosystem's carbon cycle under the background of climate warming is important in support of attempts to gain a correct understanding of the overall effects of climate warming. Scientists need to formulate reasonable and scientifically-based methods to measure these effects in support of developing a forest fire management strategy. Estimating and displaying forest fire carbon emissions will allow land managers to better manage and understand the vital significance of the forest ecosystem carbon cycle and the function of carbon balance within the ecosystem. Finally, we propose an effective and scientifically-based forest fire management strategy.
     This paper analyzes the carbon cycle in two typical forests:the boreal forest of Daxing'anling Mountains and the temperate forest of Heilongjiang Province, China. A large number of field studies and extensive sampling were combined with indoor controlled environment experiments and data analysis to determine forest fire carbon and carbonaceous gas emissions at the stand level. This was done using a model to estimate forest fire carbon emissions and to analyze factors affecting emissions. Forest fire carbon and carbonaceous gas emissions were estimated and analyzed for a Heilongjiang Province forest (Daxing'anling boreal forest and Heilongjiang Province temperate forest), including an analysis of the spatial and temporal patterns of forest fires and the climatological factors influencing changes in fire intensity and extent.
     An optimal path for forest fire management can be determined by combining scientific and reasonable forest fire management strategies with an analysis of carbon and carbonaceous gas emissions from forest fires. The main results follow.
     1) Forest fire carbon emissions are systematically and quantitatively evaluated. Several field investigation and sampling methods are discussed, including:indoor controlled environment experiments and experimental analysis methods, analysis of forest fire carbon and carbonaceous gas emissions using various methods to determine the parameters to be measured, modeling and measuring of forest fire carbon emissions, stand level analysis used to clarify forest fire carbon emissions estimates and factors affecting emissions, and discussion of the methods used to estimate and inventory forest fire carbonaceous gas emissions.
     2) A database of actual forest fire carbon emissions was created using the selected parameters. Carbon emissions parameters (per unit area of forest fuel loading, fuel carbon content and combustion efficiency) and the main emission factors were measured for the Daxing'anling boreal forest and Heilongjiang Province temperate forest allowing the establishment of a more comprehensive forest fire emission database.
     3) Total forest fire carbon emissions for forest fires in the Daxing'anling boreal forest during1965-2010(46years) were estimated to be3.12×107t, or an average of6.79×105t yr-1. Forest fire carbon emissions for various forest types were:Larix-Rhododendron forests,11.79t/hm2; Larix-Ledum forests,7.53t/hm2; Larix-grass forests,11.51t/hm2; Pinus pumila-Larix gmelinii forests,10.85t/hm2; Betula platyphylla forests,5.55t/hm2; Pinus sylvestris var. mongolica forests,4.01t/hm2; Quercus mongolica forests,12.67t/hm2; coniferous forests,18.72t/hm2; broad-leaved forests,11.20t/hm2; coniferous broad-leaved mixed forests,3.06t/hm2. The46-year soil organic carbon emissions from forest fires totaled2.20×107t.
     4) Levels of emissions of four major carbonaceous gases from forest fires were estimated for the Daxing'anling boreal forest. Forest fire carbonaceous gas [CO2, CO, CH4and non-methane hydrocarbons (NMHC)] emissions in the Daxing'anling boreal forest were estimated to be9.76×107t,9.51×106t,5.46×105t and2.14x105t, respectively, with an annual average of2.12×106t,2.07×105t,1.19×104t and4.65×103t, respectively. Emissions of the four major carbonaceous gases (CO2, CO, CH4, and NMHC, listed respectively below) calculated per unit area for each forest type were:Larix-Rhododendron forests,36.09,4.18,0.22and0.07t/hm2; Larix-Ledum forests,23.94,2.35,0.10and0.05t/hm2; Larix-grass forests,36.35,4.09,0.24and0.08t/hm2; P. pumila-L. gmelinii forests,34.59,3.09,0.21and0.07t/hm2; B. platyphylla forests,17.48,1.35,0.07and0.04t/hm2; P. sylvestris var. mongolica forests,12.30,1.18,0.13and0.03t/hm2; Q. mongolica forests,40.89,3.37,0.19and0.09t/hm2; coniferous forests,58.43,3.66,0.27and0.14t/hm2; broad-leaved forests,36.36,2.34,0.11and0.08t/hm2; coniferous broad-leaved mixed forests,9.53,0.84,0.05and0.02t/hm2.
     5) Total forest fire carbon emissions for Heilongjiang Province temperate forest during1953-2012(60years) were estimated to be5.88x107t, or an average of9.80×105t yr-1. Calculated forest fire carbon emissions per unit area for various forest types were:broad-leaved Pinus koraiensis forests,12.50t/hm2; L. gmelinii forests,16.84t/hm2; B. platyphylla forests,20.07t/hm2; B. platyphylla-L. gmelinii forests,12.99t/hm2; P. sylvestris var. mongolica forests,22.25t/hm2; Abies nephrolepis-Picea asperata forests,25.60t/hm2; B. platyphylla-Populus davidiana forests,23.97t/hm2; hardwood forests,12.74t/hm2; Q. mongolica forests, 13.58t/hm2; coniferous forests,29.75t/hm2; broad-leaved forests,26.42t/hm2; coniferous broad-leaved mixed forests,7.05t/hm2. The60-year soil organic carbon emissions from forest fires totaled1.92×107t and the average annual emissions were3.20x105t, accounting for2.83%of the national average annual forest fire carbon emissions.
     6) Levels of emissions of four major carbonaceous gases from forest fires were estimated for Heilongjiang Province temperate forest. Forest fire carbonaceous gas (CO2, CO, CH4and NMHC) emissions in Heilongjiang Province temperate forest were estimated to be1.89×108t,1.06×107t,6.33×105t and4.43×105t, respectively. Its average annual emissions were3.15×106t,1.77×105t,1.05×104t and7.38×103t, respectively. Emissions of the four major carbonaceous gases (CO2, CO, CH4, and NMHC, listed respectively below) calculated per unit area for each forest type were:broad-leaved Pinus koraiensis forests,39.07,2.64,0.14and0.09t/hm2; L. gmelinii forests,52.87,3.39,0.18and0.13t/hm2; B. platyphylla forests,66.06,3.62,0.24and0.15t/hm2; B. platyphylla-L. gmelinii forests,41.72,2.15,0.13and0.08t/hm2; P. sylvestris var. mongolica forests,7.27,3.99,0.20and0.18t/hm2; A. nephrolepis-P. asperata forests,85.55,3.72,0.25and0.20t/hm2; B. platyphylla-P. davidiana forests,76.56,4.46,0.27and0.20t/hm2; hardwood forests,41.30,2.10,0.15and0.11t/hm2; O. mongolica forests,43.93,2.54,0.15and the0.11t/hm2; coniferous forests,97.72,4.48,0.28and0.23t/hm2; broad-leaved forests,87.80,3.83,0.31and0.20t/hm2; coniferous broad-leaved mixed forests,21.49,1.45,0.06and0.05t/hm2.
     7) A corresponding forest fire management strategy and optimal path for forest fire management is outlined. During the analysis of carbon emissions from forest fires, we found that the forest fire carbon emissions varied widely for these two study areas; emissions were especially influenced by combustion efficiency and other factors influencing emissions. These factors need to be considered when developing a forest fire management strategy and optimal path for forest fire management.
     8) Changes in the average annual carbon emissions in Heilongjiang Province have an important impact on the carbon cycle and carbon balance in that area. Fires in the Daxing'anling boreal forest annually produce an average of about6.00%of the national average annual forest fire carbon emissions, and annual soil organic carbon emissions in this area account for about4.22%of the national average annual forest fire carbon emissions. Annual emissions of the four major carbonaceous gases (CO2, CO, CH4and NMHC) accounted for5.22,7.63,10.60and4.12%of the national average annual forest fire emissions of these gases, respectively or for0.76,1.29and2.20%of the national average annual biomass from carbonaceous gas emissions from burning, respectively. Annual emissions from forest fires in Heilongjiang Province temperate forest account for about8.66%of the national average annual forest fire carbon emissions, while annual soil organic carbon emissions in that area account for about2.83%of the national average annual forest fire carbon emissions. Annual emissions of the four main carbonaceous gases (CO2, CO, CH4and NMHC) accounted for7.74,6.52,9.42and6.53%of the national average annual forest fire emissions of carbonaceous gases, respectively, accounting for5.22,7.63,10.60and4.12%of the national average annual biomass from carbonaceous gas emissions from burning, respectively.
引文
[1]胡海清,魏书精,魏书威,等.气候变暖背景下火干扰对森林生态系统碳循环的影响.灾害学,2012,27(4):37-41.
    [2]胡海清,魏书精,孙龙,等.气候变化、火干扰与生态系统碳循环.干旱区地理,2013,36(1):58-76.
    [3]魏书精,孙龙,魏书威,等.气候变化对森林灾害的影响及防控策略.灾害学,2013,28(1):36-64.
    [4]Bousquet P, Peylin P, Ciais P, et al. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science,2000,290:1342-1346.
    [5]Sundquist E T. The global carbon dioxide budget. Science,1993,259:934-940.
    [6]Prentice K C, Fung I Y. The sensitivity of terrestrial carbon storage to climate change. Nature,1990,346:48-51.
    [7]吕爱锋,田汉勤.气候变化、火干扰与生态系统生产力.植物生态学报,2007,31(2):242-251.
    [8]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems. Science,1994,263:185-190.
    [9]Wong C S. Atmospheric input of carbon dioxide from burning wood. Science,1978,200: 197-200.
    [10]Wong C S. Carbon input to the atmosphere from forest fires. Science,1979,204:209-210.
    [11]Crutzen P J, Heidt L E, Krasnec J P, et al. Biomass burning as a source of the atmospheric gases CO, H2, N2O, NO, CH3C1, and COS. Nature,1979,282:253-256.
    [12]Crutzen P J, Andreae M O. Biomass burning in the tropics:impact on the atmospheric chemistry and biogeochemical cycles. Science,1990,250:1669-1678.
    [13]Clark J S. Effect of climate change on fire regimes in northwestern Minnesota. Nature, 1988,334:233-235.
    [14]Neary D G, Klopatek C C, Debanoc L F, et al. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management,1999,122:51-71.
    [15]贾庆宇,王宇,李丽光.城市生态系统-大气间的碳通量研究进展.生态环境学报,2011,20(10):1569-1574.
    [16]IPCC (Intergovernmental Panel on Climate Change).Climate Change 2007:the Science of Climate Change. Cambridge:Cambridge University Press,2007.
    [17]IPCC. Climate Change 2001:Impacts, adaptation, and vulnerability. A Report of Working Group II of the Intergovernmental Panel on Climate Change. Geneva, Switzerland,2001.
    [18]王遵娅,丁一汇,何金海,等.近50年来中国气候变化特征的再分析.气象学报, 2004,62(2):228-236.
    [19]国家林业局.应对气候变化林业行动计划.北京:中国林业出版社,2010.
    [20]田晓瑞,舒立福,王明玉.1991-2000年中国森林火灾直接释放碳量估算.火灾科学,2003,12(1):6-10.
    [21]吕爱锋,田汉勤,刘永强.火干扰与生态系统碳循环.生态学报,2005,25(10):2734-2743.
    [22]Lu A, Tian H, Liu M, et al. Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000. Journal of Geophysics Research,2006,111: doi:10.1029/2005 JD006198.
    [23]徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响.植物生态学报,2007,31(2):175-188.
    [24]王效科,庄亚辉,冯宗炜.森林火灾释放的含碳温室气体量的估计.环境科学进展,1998,6(4):1-15.
    [25]许文强,陈曦,罗格平,等.土壤碳循环研究进展及干旱区土壤碳循环研究展望.干旱区地理,2011,34(7):614-620.
    [26]Levine J S, Cofer W R Ⅲ, Cahoon D R Jr, et al. Biomass burning:a driver for global change. Environmental Science & Technology,1995,29:120-125.
    [27]Dixon R K, Krankina O N. Forest fires in Russia:carbon dioxide emission to the atmosphere. Canadian Journal Forest Research,1993,23,700-705.
    [28]Joshi V. Biomass burning in India, in Global Biomass Burning:Atmospheric, Climatic and Biospheric Implications. Cambridge, Mass:The MIT Press,1991,185-196.
    [29]舒立福,田晓瑞,李红.世晁森林火灾状况综述.世界林业研究,1998(6):41-47.
    [30]田晓瑞,舒立福,阿力甫江.林火研究综述(III)一-ENSO对森林火灾的影响.世界林业研究,2003,16(5):22-25.
    [31]孙龙,张瑶,国庆喜,等.1987年大兴安岭林火碳释放及火后NPP恢复.林业科学,2009,45(12):100-104.
    [32]杨国福,江洪,余树全,等.浙江省1991-2006森林火灾直接碳释放量的估算.应用生态学报,2009,20(5):1038-1043.
    [33]黄麟,邵全琴,刘纪远.1950-2008年江西省森林火灾的碳损失估算.应用生态学报,2010,21(9):2241-2248.
    [34]李正才,徐德应,杨校生,等.北亚热带6种森林类型凋落物分解过程中有机碳动态变化.林业科学研究,2008,21(5):675-680.
    [35]O'Neill K P, Kasischke E S, Richter D D. Seasonal and decadal patterns of soil carbon uptake and emission along an age sequence of burned black spruce stands in interior Alaska. Journal of Geophysical Research,2003,108:8155-8170.
    [36]Certini G. Effects of fire on properties of forest soils:A review. Oecologia,2005,143:1-10.
    [37]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应.生态学报,2002,22(9):1534-1544.
    [38]舒立福,田晓瑞,马林涛.林火生态的研究与应用.林业科学研究,1999,12(4):422-427.
    [39]Pausas J G Changes in fire and climate in the eastern Iberian Penisula (Mediterranean Basin). Climatic Change,2004,63:337-350.
    [40]Iiski J, Nissinen A, Erhard M, et al. Climatic effects on litter decomposition from Arctic tundra to tropical rainforest. Global Change Biology,2003,9:575-584.
    [41]Moore T R, Trofymow J A, Taylor B, et al. Litter decomposition rates in Canadian forests. Global Change Biology,1999,5(1):75-82.
    [42]Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry,2007,85(1):91-118.
    [43]Lal R. Soil carbon sequestration impacts on global climate change and food security. Science,2004,304:1623-1627.
    [44]Schulze E D, Freibauer A. Carbon unlocked from soils. Nature,2005,437; 205-206.
    [45]Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature,2006,440:165-173.
    [46]Burton A J, Pregitzer K S. Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiology,2003,23: 273-280.
    [47]周瑞莲,张普金,徐长林.高寒山区火烧土壤对其养分含量和酶活性的影响及灰色关联分析.土壤学报,1997,34(1):89-96.
    [48]胡海清.林火生态与管理.北京:中国林业出版社,2005:2-34.
    [49]孙龙,赵俊,胡海清.中度火干扰对白桦落叶松混交林土壤理化性质的影响.林业科学,2011,47(2):103-110.
    [50]Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 1995,27:753-760.
    [51]Ogee J, Brunet Y A. Forest floor model for heat and moisture including a litter layer. Journal of Hydrology,2002,255:212-233.
    [52]姜勇,诸葛玉平,梁超,等.火烧对土壤性质的影响.土壤通报,2003,34(1):65-69.
    [53]谷会岩,金靖博,陈祥伟,等.不同火烧强度林火对大兴安岭北坡兴安落叶松林土壤化学性质的长期影响.自然资源学报.2010,25(7):1114-1121.
    [54]崔晓阳,郝敬梅,赵山山,等.大兴安岭北部试验林火影响下土壤有机碳含量的时空变化,水土保持学报.2012,26(5):195-200.
    [55]王海淇,郭爱雪,邸雪颖.大兴安岭林火点烧对土壤有机碳和微生物量碳的即时影 响.东北林业大学学报.2011,39(5):72-76.
    [56]郭爱雪,郭亚芬,崔晓阳.大兴安岭马尾松林下土壤在不同火烧强度下的养分变化,东北林业大学学报.2011,39(5):69-71.
    [57]Andreae M O, Merlet P. Emissions of trace gases and aerosols from biomass burning. Global Biogeochemical. Cycles,2001,15:955-966.
    [58]van der Werf G R, Randerson J T, Giglio L, et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys.2006.6,3423-3441.
    [59]Schultz M G, Heil A, Hoelzemann J J, et al. Global wildland fire emissions from 1960 to 2000, Global Biogeochem. Cycles,2008,22, GB2002,doi:10.1029/2007GB003031.
    [60]Seiler W, Crutzen P J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change,1980,2:207-247.
    [61]van der Werf G R, Randerson J T, Collatz G J, et al. Carbon emissions from fires in tropical and subtropical ecosystems, Global Biogeochemical. Cycles,2003,9:547-562.
    [62]Ito A, Penner J E. Global estimates of biomass burning emissions based on satellite imagery for the year 2000, J. Geophys. Res.,2004,109, D14S05, doi:10.1029/2003JD004423.
    [63]Langenfelds R L, Francey R J, Pak. B C, et al. Interannual growth rate variations of atmospheric CO2 and its δ13 C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochemical Cycles,2002,16,1048, doi:10.1029/2001GB001466.
    [64]Hoelzemann J J, Schultz M G, Brasseur G P, et al. Global Wildland Fire Emission Model (GWEM):Evaluating the use of global area burnt satellite data. Journal of Geophysical Research,2004,109:doi:10.1029/2003JD003666.
    [65]Laursen K K, Hobbs P V, Radke L F. Some trace gas emission from North American biomass fires with an assessment of regional and global fluxes from biomass burning. Journal of Geophysical Research,1992,97:20687-20701.
    [66]Streets D G, Yarber K F, Woo J H, et al. Biomass burning in Asia:annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles,2003,17(4):1099-1119.
    [67]Akimoto H. Global air quality and pollution.Science,2003,302:1716-1719.
    [68]Mouillot F, Rambal S. Joffer R. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem.Global Change Biology,2002,8:423-437.
    [69]Kasischke E S,Stocks B J. Fire,Climate change, and carbon cycling in the boreal forest.New York:Springer Verlag,2000,377-389.
    [70]Hank A M,Michael G R. A physiological basis for biosphere-atmosphere interactions in the boreal forest:an overview.Tree Physiology,1997,17:491-499.
    [71]Kasischke E S, Hyer E J, Novelli P C. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Global Biogeochemical Cycles, 2005,19:doi:10.1029/2004GB002300.
    [72]胡海清,孙龙.1980-1999年大兴安岭灌木、草本和地被物林火碳释放估算.应用生态学报,2007,18(12):2647-2653.
    [73]Sun L, Hu H, Guo Q, et al. Estimating carbon emissions from forest fires during 1980 to 1999 in Daxing'an Mountain, China. African Journal of Biotechnology.2011,10:8046-8053.
    [74]Adams J A S, Mantovani M S M, Lundell L L. Wood versus Fossil Fuel as a Source of Excess Carbon Dioxide in the Atmosphere:A Preliminary Report, Science,1977,196,54-59.
    [75]Robinson J R. On uncertainty in the computation of global emissions from biomass burning. Climatic Change,1989,14:243-262.
    [76]Lavoue D, Stocks B J. Emissions of air pollutants by Canadian wildfires from 2000 to 2004. International Journal of Wildland Fire,2011,20:17-34.
    [77]Campbell J, Donato D, Azuma D, et al. Pyrogenic carbon emission from a large wildfire in Oregon, United States. Journal of Geophysical Research,2007,112: doi:10.1029/2007JG000451.
    [78]Auclair A N D, Carter T B. Forest wildfire as a recent source of CO2 at northern latitudes. Canadian Journal of Forest Research,1993,23:1528-1536.
    [79]Amiro B D, Todd J B, Wotton B M, et al. Direct carbon emissions from Canadian forest fires 1959-1999. Canadian Journal of Forest Research,2001,31:512-525.
    [80]Choi S D, Chang Y S, Park B K. Increase in carbon emissions from forest fires after intensive reforestation and forest management programs. Science of the Total Environment, 2006,372:225-235.
    [81]Kasischke E S, Bruhwiler L P. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. Journal of Geophysical Research,2003,107: 8146, doi:10.1029/2001JD000461.
    [82]French N H F, Kasischke E S, Williams D G Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest. Journal of Geophysical Research, 2003,108:doi:10.1029/2001JD000480.
    [83]De Groot W J, Pritchard J M, Lynham T J. Forest floor fuel consumption and carbon emissions in Canadian boreal forest fires. Canadian Journal of Forest Research,2009,39: 367-382.
    [84]Cofer W R III, Winstead E L, Stocks B J, et al. Crown fire emissions of CO2, CO, H2, CH4 and TNMHC from a dense jack pine boreal forest fire. Geophysical Research Letters, 1998,25:3919-3922.
    [85]Sinha P, Hobbs P V, Yokelson R J, et al. Emissions from miombo woodland and dambo grassland savanna fires. Journal of Geophysical Research,2004,109: doi:10.1029/2004JD004521.
    [86]Cofer W R Ⅲ, Levine J S, Winstead E L, et al. Gaseous emissions from Canadian boreal forest fires. Atmospheric Environment.Part A. General Topics,1990,24:1653-1659.
    [87]French N H F, Goovaerts P, Kasischke E S. Uncertainty in estimating carbon emissions from boreal forest fires. Journal of Geophysical Research,2004,109: doi:10.1029/2003JD003635.
    [88]SMIC. Report on the Study of Man's Impact on Climate:Inadvertent Climate Modification. Cambridge, Mass.:MIT Press,1971.
    [89]Isaev A S, Korovin G N, Bartalev S A, et al. Using remote sensing to assess Russian forest fire carbon emissions. Climatic Change.2002,55:235-249.
    [90]Kasischke E S, French N H F, Bourgeau C, et al. Estimating release of carbon from 1990 and 1991 forest fires in Alaska. Journal of Geophysical Research,1995,100:2941-2951.
    [91]Cahoon D R Jr, Stocks B J, Levine J S, et al. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. Journal of Geophysical Research,1994, 97:805-814.
    [92]Conard S G, Sukhinin A L, Stocks B J, et al. Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Climatic Change,2002.55:197-211.
    [93]Soja A J, Cofer W R, Shugart H H, et al. Estimating fire emissions and disparities in boreal Siberia (1998-2002). Journal of Geophysical Research,2004,109: doi:10.1029/2004JD004570.
    [94]Kaufman Y J, Setzer A, Ward D, et al. Biomass burning airborne and spaceborne experiment in the Amazonas (BASE-A). Journal of Geophysical Research,1992,97: 14581-14599.
    [95]Turquety S, Logan J A, Jacob D J, et al. Inventory of boreal fire emissions for North America in 2004:Importance of peat burning and pyroconvective injection. Journal of Geophysical Research,2007,112:doi:10.1029/2006JD007281.
    [96]Korontzi S, Roy D P, Justice CO, et al. Modeling and sensitivity analysis of fire emissions in southern Africa during SAFARI 2000. Remote Sensing of Environment,2004,92:255-275.
    [97]Zhang Y H, Wooster M J, Tutubalina O, et al. Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOTVGT. Remote Sensing of Environment,2003,87:1-15.
    [98]Fraser R H, Li Z. Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sensing of Environment,2002,82:95-110.
    [99]Page S E, Siegert F, Rieley J O, et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature,2002,403:61-65.
    [100]Michalek J L, French N H F, Kasischke E S, et al. Using Landsat TM data to estimate carbon release from burned biomass in an Alaskan spruce forest complex. International Journal of Remote Sensing,2000,21:323-338.
    [101]Brandis K, Jacobson C. Estimation of vegetative fuel loads using Landsat TM imagery in New South Wales, Australia. International Journal of Wildland Fire,2003,12:185-194.
    [102]Mitri G H, Gitas I Z. A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery. International Journal of Wildland Fire, 2004,13:367-376.
    [103]Hudak A T, Morgan P, Bobbitt M J, et al. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecology,2007,3:64-90.
    [104]Lewis S A, Hudak A T, Ottmar R D, et al. Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA. International Journal of Wildland Fire,2011,20:255-271.
    [105]van der Werf G R, Randerson J T, Collate G J, et al. Continental-scale partitioning of fire emissions during the 97/98 El Nino. Science,2004,303:73-76.
    [106]De Groot W J, Landry R, Kurz W A, et al. Estimating direct carbon emissions from Canadian wildland fires. International Journal of Wildland Fire,2007,16:593-606.
    [107]Lambin E F, Goyvaerts K, Petit C. Remotely-sensed indicators of burning efficiency of savannah and forest fires. International Journal of Remote Sensing,2003,24:3105-3118.
    [108]French, N H F, Kasischke E S, Hall R J. Using Landsat data to assess fire and burn severity in the North American boreal forest region:an overview and summary of results. International Journal of Wildland Fire,2008,17:443-462.
    [109]殷丽,田晓瑞,康磊,等.林火碳排放研究进展.世界林业研究,2009,22(3):46-51.
    [110]Song Y, Chang D, Liu B, et al.2010. A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009. Environmental Research Letters,5: 014014.Doi:10.1088/1748-9326/5/l/.014014.
    [111]王效科,冯宗炜,庄亚辉.中国森林火灾释放的CO2、CO和CH4研究.林业科学,2001,37(1):90-95.
    [112]单延龙,张姣.吉林省19692004年森林火灾释放碳量的估算.林业科学,2009,45(7):84-89.
    [113]田晓瑞,舒立福,王明玉,等.卫星遥感数据在林火排放模型中的应用.安全与环境学报,2006,6(4):104-108.
    [114]曹国良,张小曳,王丹,等.中国大陆生物质燃烧排放的污染物量.中国环境科学,2005,25(4):389-393.
    [115]陆炳,孔少飞,韩斌,等.2007年中国大陆地区生物质燃烧排放污染物量.中国环境科学,2011,31(2):186-194.
    [116]田贺忠,赵丹,王艳,等.中国生物质燃烧大气污染物排放量.环境科学学报,2011,31(2):349-357.
    [117]焦燕,胡海清.黑龙江省1980—1999年森林火灾释放碳量的估算.林业科学,2005,41(6):109-113.
    [118]吕新双.黑龙江大兴安岭主要乔木树种火灾碳释放研究.哈尔滨:东北林业大学硕士论文,2006:3-12.
    [119]李玉昆,邓光瑞.大兴安岭三种森林类型地表可燃物燃烧气体排放量的研究.林业科技,2006,31(6):28-31.
    [120]邓光瑞.大兴安岭森林可燃物燃烧气体释放的研究.哈尔滨:东北林业大学博士论文,2006,18-26.
    [121]胡海清,孙龙,国庆喜,等.大兴安岭1980—1999年乔木燃烧释放碳量研究.林业科学,2007,43(11):82-88.
    [122]胡海清,李敖彬.小兴安岭主要乔、灌木燃烧过程的烟气释放特征.应用生态学报,2008,19(7):143 1-1436.
    [123]殷丽.大兴安岭林火释放碳量的估算.北京:中国林业科学研究院硕士论文,2009:1-5.
    [124]田晓瑞,殷丽,舒立福,等.2005-2007年大兴安岭林火释放碳量.应用生态学报,2009,20(12):2877-2883.
    [125]刘斌,田晓瑞.大兴安岭呼中森林大火碳释放估算.林业资源管理,2011(3):47-51.
    [126]王明玉,舒立福,宋光辉.大兴安岭小尺度草甸火燃烧效率.生态学报,2011,31(6):1678-1686.
    [127]胡海清,郭福涛.大兴安岭森林火灾中主要乔木树种含碳气体释放总量的估算.应用生态学报,2008,19(9):1884-1890.
    [128]郭福涛,胡海清,彭徐剑.19802005年大兴安岭森林火灾灌木、草本和地被物烟气释放量的估算.林业科学,2010,46(1):78-83.
    [129]Bonnicksen T M. Impacts of California wildfires on climate and forests:a study of seven years of wildfires (2001-2007). FCEM Report 3. The Forest Foundation. Auburn, California.22.2009.
    [130]Burgan R E, Klaver R W, Klaver J M. Fuel models and fire potential from satellite and surface observations. International Journal of Wildland Fire,1998,8:159-1701.
    [131]罗菊春.从两个国际学术会议看“全球变化”与“森林经营”研究的现状.北京林业大学学报,1995,17(2):111-112.
    [132]Tian H Q, Melillo J M, Kicklighter D W, et al. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature,1998,396:664-667.
    [133]Fosberg, M A, Cramer W, Brovkin V, et al. Strategy for a fire module in dynamic global vegetation models. International Journal of Wildland Fire,1999,9:79-84.
    [134]吕爱锋.火干扰与生态系统碳循环—区域分析与模拟.北京:中国科学院研究生院博士论文,2006,49-69.
    [135]Kurt W A, Apps M J. A 70-year retro spective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications,1999,9:526-547.
    [136]Chen W, Chen J, Cihlar J. An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate,and atmospheric chemistry. Ecological Modeling,2000, 135:55-79.
    [137]Amiro B D, Macpherson J I, Desjardins R L, et al. Post-fire carbon dioxide fluxes in the western Canadian boreal forestevidence from towers, aircraft and remote sensing. Agricultural and Forest Meteorology,2003,115:91-107.
    [138]Hicke J A, Asner G P, Kasischke E S, et al. Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Global Change Biology,2003,9:1145-1157.
    [139]Mcguire A D, Sitch S, Clein J S, et al. Carbon balance of the terrestrial biosphere in the twentieth century:analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles,2001,15(1):183-206.
    [140]Zhuang Q L. Mcguire A D, O'Neill K P, et al. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. Journal Geophysical Research, 2003,108, doi:10.1029/2001JD001244.
    [141]Lucht W, Prentice IC, Myneni R B, et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science,2002,296,1687-1689.
    [142]Amiro B D, Chen J M, Liu J. Net primary productivity following forest fire for Canadian ecoregions. Canadian Forest Research,2000,30:939-947.
    [143]Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production:A process model based on global satellite and surface data, Global Biogeochemical Cycles,7 (4), 811-842,1993.
    [144]Mouillot F, Narasimha A, Balkanski Y, et al. Global carbon emissions from biomass burning in the 20th century, Geophysical Research Letters,2006,33, L01801, doi:10.1029/2005GL024707.
    [145]Melillo J M, Mcguire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature,1993,363,234-240.
    [146]Cao M K, Prince S D, Tao B, et al. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO2. Tellus, 2005.57,210-217.
    [147]Bachelet D, Neilson R P, Lenihan J M, et al. Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystem,2001,4,164-185.
    [148]Justice C O, Giglio L, Korontzi S, et al. The MODIS fire products. Remote Sensing of Environment,2002,83:244-262.
    [149]金森.遥感估测森林可燃物载量的研究进展.林业科学,2006,42(12):63-67.
    [150]Riano D, Meier E, Allgower B, et al. Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment,2003,86:177-186.
    [151]彭少麟,郭志华,王伯荪.利用GIS和RS估算广东植被光利用率.生态学报,2000,20(6):903-909.
    [152]国庆喜,张锋.基于遥感信息估测森林的生物量.东北林业大学学报,2003,31(2):13-16.
    [153]吴仲民,李意德,曾庆波,等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究.应用生态学报,1998,9(4):341-344.
    [154]Birdsey R A. Carbon storage and accumulation in United States forest ecosystems. United States Department of Agriculture Forest Service. General Technical Report WO-09, 1992.
    [155]Shvidenko A Z, Nilsson S, Rojikov V A, et al. Carbon budget of the Russian boreal forests:a systems analysis approach to uncertainty. In:Apps M J, Price D T. eds. Forest Ecosystems, Forest Management and the Global Carbon Cycle. Berlin:Springer-Verlag,1996,145-162.
    [156]马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析.北京林业大学学报,2002,24(5/6):96-100.
    [157]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律.生态学杂志.1997,16(6):17-21.
    [158]黑龙江森林编辑委员会.黑龙江森林.哈尔滨:东北林业大学出版社,1993.
    [159]徐化成.中国大兴安岭森林.北京:科学出版社,1998,1-20.
    [160]Woodall C W, Liknes G C. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States. Carbon Balance and Management,2008, 3:5.
    [161]Huxley J S. Problems of Relative Growth. New York:Dial Press,1932.1-9
    [162]胡海清,魏书精,孙龙.1965-2010年大兴安岭森林火灾碳排放的估算研究,植物生态学报,2012,36(7):629-644.
    [163]胡海清,魏书精,孙龙.大兴安岭2001-2010年森林火灾碳排放的计量估算,生态学 报,2012,32(17):5373-5386.
    [164]胡海清,魏书精,孙龙.大兴安岭呼中区2010年森林火灾碳排放的计量估算,林业科学,2012,48(10):109-119.
    [165]Blackstone N W. Allometry and relative growth:pattern and process in evolutionary studies. Systematic Zoology,1987,36(1):76-78.
    [166]胡海清,魏书精,金森,等.森林火灾碳排放计量模型研究进展.应用生态学报,2012,23(5):1423-1434.
    [167]Jolicoeur P. The multivariate generalization of the allometry equation. Biometrics,1963, 19(3):497-501.
    [168]方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320~2322)的若干说明.植物生态学报,2002,26(2):243-249.
    [169]郑焕能,骆介禹,耿玉超.几种林火强度计算方法的评价.东北林业大学学报,1988,16(5):103-108.
    [170]骆介禹.关于林火强度计算的情况.森林防火,1988(4):13-15.
    [171]王岳.国外林火强度计算方法.森林防火,1996(1):43-44.
    [172]田晓瑞,王明玉,殷丽,等.大兴安岭南部春季火行为特征及可燃物消耗.林业科学,2009,45(3):90-95.
    [173]赵彬,孙龙,胡海清,等.兴安落叶松林火后对土壤养分和土壤微生物生物量的影响.自然资源学报,2011,26(3):450-459.
    [174]郑焕能.森林防火.哈尔滨:东北林业大学出版社,1994.47-50,78-79,246.
    [175]Hao W M, Ward D E, Olbu G, et al. Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems, J. Geophys. Res.,1996,101(D19),23577-23584.
    [176]Pereira J M C, Pereira B S, Barbosa P, et al. Satellite monitoring of fire in the EXPRESSO study area during the 1996 dry season experiment:Active fires, burnt area, and atmospheric emissions, J. Geophys. Res.,1999,104(D23),30701-30712.
    [177]Potter C, Brooks-Genovese V, Klooster S, et al. Biomass burning emissions of reactive gases estimated from satellite dataanalysis and ecosystem modeling for the Brazilian Amazon region, J. Geophys. Res.,2002,107(D20),8056, doi:10.1029/2000JD000250.
    [178]French N H F, de Groot W J, Jenkins L K, et al. Model comparisons for estimating carbon emissions from North American wildland fire. J. Geophys. Res.,2011,116, G00K05, doi:10.1029/2010JG001469.
    [179]徐化成.森林生态与生态系统经营.北京:化学工业出版社,2004,26-33.
    [180]曹慧娟.植物学.北京:中国林业出版社,1992,52-54.
    [181]Post W M, Emanuel W R, Zinke P, et al. Soil carbon pools and world life zones. Nature, 1982,298:156-159.
    [182]Houghton R A, Skole D L, Nobre C A, et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature,2000,403,301-304.
    [183]Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292,2320-2322.
    [184]Cofer W R III, Winstead E L, Stocks B J, et al. Emissions from boreal forest fires:Are the atmospheric impacts underestimated. In:Levine JS ed. Biomass Burning and Global Change, vol.2. The MIT Press, Cambridge.1996,834-839.
    [185]徐化成,李湛东,邱扬.大兴安岭北部地区原始林火干扰历史的研究.生态学报,1997,17(4):337-343.
    [186]刘志华,常禹,贺红士,等.火控制政策对大兴安岭森林景观、可燃物动态及火险的长期影响,生态学杂志,2009,28(1):70-79.
    [187]魏书精,胡海清,孙龙.气候变化对我国林火发生规律的影响.森林防火,2011(1):30-34.
    [188]Running S W. Is global warming causing more, larger wildfires. Science,2006,313:927-928.
    [189]魏书精,胡海清,孙龙,等.气候变化背景下我国森林防火工作的形势及对策.森林防火,2011,(2):1-4.
    [190]邱扬,李湛东,张玉钧,等.火干扰对大兴安岭北部原始林下层植物多样性的影响.生态学报,2006,26(9):2863-2869.
    [191]魏书精,孙龙,胡海清.森林生态系统土壤呼吸空间异质性及影响因子研究进展[J].生态环境学报,2013,22(4):689-704.
    [192]Chang Y, He H S, Bishop I, et al. Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China. International Journal of Wildland Fire,2007,16(1): 34-44.
    [193]Wang X G, He H S, Li X Z. The long-term effects of fire suppression and reforestation on a forest landscape in Northeastern China after a catastrophic wildfire. Landscape and Urban Planning,2007,79(1):84-95.
    [194]王绪高,李秀珍,贺红士.1987年大兴安岭特大火灾后不同管理措施对落叶松林的长期影响.应用生态学报,2008,19(4):741-752.
    [195]金森,胡海清.黑龙江省林火规律研究I林火时空动态与分布.林业科学,2002,38(1):88-94.
    [196]贺红士,常禹,胡远满,等.森林可燃物及其管理的研究进展与展望.植物生态学报,2010,34(6):741-752.
    [197]Overpeck J T, Rind D, Goldberg R. Climate-induced changes in forest disturbance and vegetation. Nature,1990,343:51-53.
    [198]刘志华,常禹,贺红士,等.模拟不同森林可燃物处理对大兴安岭潜在林火状况的影响.生态学杂志,2009,28(8):1462-1469.
    [199]刘志华,杨健,贺红士,等.黑龙江大兴安岭呼中林区火烧点格局分析及影响因素. 生态学报,2011,31(6):1669-1677.
    [200]Grissino-mayer H D. Modeling fire interval data from the American Southwest with the Weibull distribution. International Journal of Wildland Fire,1999,9:37-50.
    [201]KeeleY J E, Fotheringham C J, Morais M. Reexamining fire suppression impacts on brushland fire regimes. Science,1999,284:1829-1832.
    [202]Arno S F, Fiedler C E. Mimicking nature's fire:restoring fire-prone forests in the west. Washington D C:Island Press,2005.
    [203]Wiedinmyer C, Hurteau M D. Prescribed fire as a means of reducing forest carbon emissions in the western United States. Environmental Science & Technology,2010,44(6): 1926-1932.
    [204]Finney M A, Mchugh C W, Grenfell I C. Stand-and landscape-level effects of prescribed burning on two Arizona wildfires. Canadian Journal of Forest Research,2005,35:1714-1722.
    [205]Bradstock R A, Bedward M, Cohn J S. The modeled effects of differing fire management strategies on the conifer Callitris verrucosa within semi-arid mallee vegetation in Australia. Journal of Applied Ecology,2006,43:281-292.
    [206]魏书精,胡海清,孙龙,等.气候变化背景下我国森林可燃物可持续管理的形势及对策[J].森林防火,2012(2):22-25.
    [207]Gonzalez-Perez J A, Gonzalez-Vila F J, Almendros G, et al. The effect of fire on soil organic matter-a review. Environment International,2004,30:855-870.
    [208]Fearnside P M, de Alencastro Graca P M L, Filho N L, et al. Tropical forest burning in Brazilian Amazonia:measurement of biomass loading, burning efficiency and charcoal formation at Altamira, Para. Ecology and Management,1999,123:65-79.
    [209]Nepstad D C, Verssio A, Alencar A, et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature,1999,398:505-508.
    [210]van der Werf G R, Randerson J T, Giglio L, et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009).Atmospheric Chemistry and Physics,2010,10:11707-11735.
    [211]de Vasconcelos S S, Fearnside P M,de Alencastro Graca P M L,et al.Forest fires in southwestern Brazilian Amazonia:Estimates of area and potential carbon emissions.Forest Ecology and Management,2013,291:199-208.
    [212]Mortonl D C,Le Page Y, DeFries R,et al.Understorey fire frequency and the fate of burned forests in southern Amazonia.Philosophical Transactions of the Royal Society,2013,368:20120163.
    [213]Chen Y, Randerson J T, Morton D C, et al. Forecasting fire season severity in South America using sea surface temperature anomalies.Science,2011,334:787-791.
    [214]Davidson E A, de Araujo A C, Artaxo P, et al. The Amazon basin in transition.Science,2012,481:321-328.
    [215]Silvestrini R A, Soares-Filho B S, Nepstad D, et al. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecological Applications, 2011,21:1573-1590.
    [216]张维.A.I.D.法和梯度分析法评价树种抗火性的效果比较.云南林业科技,2003,2003(4):42-50.
    [217]Gurney K R, Eckels W J. Regional trends in terrestrial carbon exchange and their seasonal signatures. Tellus,2011,63:328-339.
    [218]Aragao L E O, Shimabukuro Y E.The incidence of fire in Amazonian forests with implications for REDD. Science,2010,328:1275-1278.
    [219]Moss R H, Edmonds J A, Hibbard K A, et al.The next generation of scenarios for climate change research and assessment. Nature,2010,463:747-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700