螺旋锥齿轮电化学光整加工技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋锥齿轮所具有的良好使用性能使其得到了日益广泛的应用,并已成为汽车制造业中的关键基础件之一;但与此同时,螺旋锥齿轮齿面的加工质量对其使用性能的影响也日益突出。大量的研究与实践证实,利用光整加工方法在稳定或提高零件加工精度的同时,通过改善零件的表面质量也可有效提高零件的使用性能。因此,对螺旋锥齿轮的齿面实施光整加工无疑会提高螺旋锥齿轮的使用性能。
     作为一种先进的、非传统的、非接触式的光整加工方法,电化学光整加工方法因其具有高效、不受零件表面硬度影响以及可使零件表面获得良好的微观几何形貌等优势而得到迅速发展,并在多种机械基础件中得到应用。实践表明,电化学光整加工不仅可大幅度改善零件的表面质量,而且还可不同程度地提高零件的加王精度。因此,将电化学光整加工方法作为螺旋锥齿轮的终加工工艺方法对于提高其加工质量具有十分重要的意义。
     针对国产汽车驱动桥螺旋锥齿轮加工质量的现状,应长春一汽集团公司的要求,本文在分析国内外螺旋锥齿轮终加工工艺方法及其应用现状的基础上,结合国内外对电化学光整加工的研究与应用,尤其是大连理工大学光整加工课题组多年来在电化学光整加工研究及应用方面所取得的成果,提出了螺旋锥齿轮电化学光整加工工艺方法以提高螺旋锥齿轮齿面的加工质量。
     螺旋锥齿轮齿面几何结构的特殊性、螺旋锥齿轮齿面的加工质量现状以及电化学光整加工的机理,决定了对螺旋锥齿轮齿面实施电化学光整加工将面临诸多难点问题。这些难点问题主要是既提高加工精度,又如何大幅度降低表面粗糙度的值以及电化学光整加工工艺方法的实施。前者不仅与电化学光整加工的整平机理有关,而且还与电化学光整加工工艺方法的选择有关;后者则主要涉及到工具阴极几何结构确定、极间流场设计以及工具阴极的移动方式等技术问题。
     在电化学光整加工的整平机理方面,依据法拉第电解定律和对实验结果的分析,在分析电化学光整加工整平过程的同时,建立了小间隙条件下阳极表面微观几何轮廓电化学阳极溶解的数学模型,从微观几何的角度研究了电化学光整加工整平过程中工件阳极表面微观几何轮廓的变化及其影响。研究结果表明:电化学光整加工的整平是小间隙条件下的电化学阳极溶解,其特点是电化学阳极溶解速度沿工件阳极表面微观几何轮廓分布不均;电化学光整加工的整平过程是工件阳极表面微观几何轮廓的圆角化过程;工件阳极表面微观几何轮廓的圆角化不仅影响整平效果的提高,而且也使工件阳极自身表面微观几何轮廓产生记忆效应;减小极间间隙以及使工件阳极表面微观几何轮廓尖峰化可提高电化学光整加工的整平效果。
     在此基础上,针对螺旋锥齿轮电化学光整加工可能的工艺方法,研究了其涉及到的若干关键基础问题,主要包括工具阴极的表面质量、脉冲电流的作用、机械单元的作用以及工件阳极原始表面质量状况对整平效果的影响。研究结果表明:经电化学光整加工整平后,所获得的工件阳极表面微观几何轮廓是工件阳极自身表面微观几何轮廓、工具阴极表面微观几何轮廓以及工件阳极材质分布不均共同作用复合的结果;工具阴极与工件阳极之间相对运动的存在及其与电流脉冲特性的结合不仅有助于利用工具阴极表面高点扫描改善表面质量,而且也有利于提高工件阳极的加工精度;电化学机械复合光整加工方法中的机械单元不仅具有刮膜作用,而且还具有使工件阳极表面微观几何轮廓尖峰化的作用;依据工件阳极的原始表面质量状况,合理强化电化学机械复合光整加工中机械单元的作用可大幅度提高整平效果。
     在螺旋锥齿轮电化学光整加工工艺实施方面,结合螺旋锥齿轮齿面的几何结构特点,通过对比移动式工具阴极脉冲电化学光整加工工艺方法与电化学机械复合光整加工工艺方法各自所具有的优势,确定了利用移动式工具阴极脉冲电化学光整加工工艺方法对螺旋锥齿轮齿面实施光整加工;与此同时,通过对螺旋锥齿轮的构形分析,确定了移动式工具阴极的平面几何结构及其移动方式,并对与极间流场相关的极间流场建立的方式以及极间流道等问题进行了设计。
     实施了面向机械式螺旋锥齿轮铣齿机的螺旋锥齿轮脉冲电化学光整加工工艺方法。实验结果表明:利用旋转扫描式工具阴极脉冲电化学光整加工工艺方法不仅可使成形法加工的螺旋锥齿轮齿面之表面粗糙度达Ra0.1μm的水平,而且还使其加工精度可由DIN10级提高到DIN7级。这一实验结果表明:课题的研究是先进的,工艺方法是有效可行的。
Having favorable working performances, spiral bevel gear (SBG) has been more and more used, and also becomes one of the key parts in automobile manufacturing. Meanwhile, it is increasingly shown that the influence of the machining quality of the gear on its working performances. Lots of studies and practices have demonstrated that part's working performances could be enhanced greatly by improving its quality of the surface, which is obtained by the finishing method. Therefore, if the surface of SBG is finished, its service performances will be enhanced undoubtedly.
     As an unconventional and noncontact finishing method, the electrochemical finishing (ECF) method has been developed rapidly as a result of its advantages such as regardless of material hardness, high material removal rate and smooth micro-profile of the obtained surface, and thus the method has been used in finishing some key parts to achieve better surface quality. The finishing practice has indicated that ECF not only can improve the surface quality largely, but also can reach good dimensional accuracy. Hence, it is of great significance to apply ECF to finish the teeth surface of SBG for improving its machining quality.
     Aimed at the domestic machining condition of SBG, which is used in automobile's driving axle in our country, and for the requirements of Changchun FAW (First Automobile Works), this paper has analyzed the finishing methods of SBG both in home and abroad, combined the condition in application and research of ECF both in home and abroad, especially in the achievement of DLUT in ECF, and then put ECF forward as finishing method for better machining quality of SBG.
     Because of the factors such as SBG's geometry structure, the machining quality of SBG and the finishing mechanism of ECF, there are many difficult problems on utilizing ECF to advance the machining quality of SBG. These difficult problems not only relate to the mechanism of ECF and a good selection of the ECF methods, but also relate to the application of the selected ECF process.
     Considering the difficult problems in the finishing surface of SBG with ECF, the research, focusing on the finishing mechanism of ECF, has been carried out, and the mathematic model, explaining the electrochemical dissolution (ECD) of anodic surface micro-profile in the condition of small gap, has been brought forward according to Faraday's law. Based on the analysis of theory and experiment, it has been discussed that the influence of the change in anodic micro-profile on finishing effect during the process of ECF from the view of the micro-geometry. The research results show as follows: the ECF is just the ECD in the condition of the small gap, and its characteristic is that the rate of ECD is uneven distribution along with the anodic mico-profile; the finishing process of ECF is the process of blunting the anodic surface micro-profile, which does not only influence the improvement of finishing effect, but also leads to the memory effect of the anodic micro-profile; it can improve the smooth effect of ECF that decreasing the distance between electrodes and making anodic surface micro-profile sharp.
     Based on this, taking optional methods of ECF for SBG into account, this paper has analyzed the related key processing problems such as the cathodic surface quality, the effect of pulse electricity, the function of mechanical role and the anodic original surface quality.The research result indicates that after the smooth process of ECF, the achieved anodic surface micro-profile is related to the anodic surface micro-profile, the cathodic surface micro-profile, and the uneven distribution of anodic materials as well. The existence of relative movement between the electrodes and its combination with the pulse current are helpful for applying the cathodic high-point-scanning to improve the surface quality and better accuracy of anode also. The mechanical role, which exists in the electrochemical mechanical finishing (ECMF), can not only contribute to the function of scratching, but also sharpen the anodic surface micro-profile. According to the anodic original surface quality, it can improve the smooth effect obviously that enhancing the action of the mechanical role of ECMF properly.
     Combing the characters of SBG's geometry structure, through comparing the different advantages of pulse electrochemical finishing (PECF) with moving cathode and ECMF, the former one has been chosen to finish the surface of SBG. At the same time, through the analysis of SBG structure, it has been discussed that the application model of cathode with moving in the finishing process of SBG, and then the flow-field between the electrodes has been also designed.
     According to above-mentioned analysis, the chosen method has been carried out by using the mechanical machining tool of SBG. The experimental result reveals that the SBG with the surface roughness Ra0.1μm and machining accuracy DIN7, which was machined with forming shape method, can be achieved by using the PECF with moving cathode.The experiment result shows that the topic of the dissertation is an advanced, and the ECF process can improve the machining quality of SBG effectively.
引文
[1] 乐美豪.中国齿轮制造业的发展预测.制造技术与机床,2003,5:11-13.
    [2] 江甫炎著.近代齿轮制造工艺.北京:航空工业出版社,1996,6.
    [3] 乐美豪.中国齿轮制造业50年(上).机电产品市场,2000,5:5-8.
    [4] 中国流体传动及机械传动产品市场分析与预测.http://www.chpsa.org.cn/10-1-ptc/12-yc.html.
    [5] 乐美豪.我国齿轮制造业的发展、现状及展望(下).制造技术与机床,2000,12:7-9.
    [6] 曾韬.汽车后桥螺旋锥齿轮制造的发展方向与对策.世界制造技术与装备市场,2006,6:79-83.
    [7] 杨世春.表面质量与光整加工技术.北京:机械工业出版社,1999,12.
    [8] 周锦进,李洪友,王晓明.齿轮表面质量对其使用性能和寿命的影响.机械科学与技术,2004,23 (4):468-470.
    [9] 庞桂兵.脉冲电化学及电化学机械齿轮光整与修形加工技术研究:(博士学位论文).大连:大连理工大学,2005.
    [10] 翟小兵.脉冲电化学光整加工技术及其应用研究:(博士学位论文).大连:大连理工大学,2004.
    [11] 北京齿轮厂编.螺旋锥齿轮.北京:科学出版社,1974,5.
    [12] 曾韬著.螺旋锥齿轮设计与加工.哈尔滨:哈尔滨工业大学出版社,1989.
    [13] 郑昌启著.弧齿锥齿轮和准双曲面齿轮.北京:机械工业出版社,1988,4.
    [14] 北京齿轮厂编译.格里森锥齿轮技术资料译文集(第二分册).北京:机械工业出版社,1983,7.
    [15] YK2045、YK2050数控螺旋锥齿轮磨齿机.世界制造技术与装备市场,2005,10:89.
    [16] 长春第一汽车制造厂工艺处机械加工实验室编.圆弧齿伞齿轮加工手册.吉林:吉林人民出版社,1980,10.
    [17] 戴瑜,曾韬,丁志文.偏心机构磨削螺旋锥齿轮成形法大轮的研究.机械工程师,2005,11:72-74.
    [18] 王星桥编译.齿轮制造技术的新进展.世界制造技术与装备市场,2004,9:60-61.
    [19] 庄中.格里森弧齿锥齿轮磨齿技术的发展.汽车工艺与材料,1995,4:11-13.
    [20] 孙进平.弧齿锥齿轮硬齿面加工的现状与发展.机械工艺师,1997,6:31-32.
    [21] Z. H. Fong, Tsay. A, Chung-Biau. Mathematical Model for the Tooth Geometry of Circular-Cut Spiral Bevel Gears. Journal of Mechanical Design, 1991, 113 (6): 174-181.
    [22] Faydor L. Litvin, Alfonso Fuentes and Kenichi Hayasaka. Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears. Mechanism and Machine Theory, 2006, 41 (1): 83-118.
    [23] Pei-yu Wang, Zhong-Hua Fong. Adjustability improvement of face-milling spiral hevel gears by modified radial motion (MRM) method. Mechanism and Machine Theory, 2005, 40: 69-89.
    [24] 樊奇.格里森专家制造系统(GEMS)开创弧齿锥齿轮及双曲面齿轮数字化制造新纪元.世界制造技术与装备市场,2005,4:87-93.
    [25] 王先逵,孙进平.弧齿锥齿轮硬齿面刮削过程的几何仿真.清华大学学报(自然科学版),1998,38(8):9-11.
    [26] 林朝镰,刁克强,陈天福.螺旋锥齿轮电火花跑合的试验研究.成都科技大学学报,1983,2:9-16.
    [27] 魏冰阳,邓效忠,杨建军等.超声研磨的材料去除机理与试验研究.中国机械工程,2006,17 (10):995-999.
    [28] 锥齿轮电火花磨复合加工技术.http://www.cusci.com/cus/sciachive_list2.asp?id=9038.
    [29] 邓效忠.建立我国自主知识产权的车桥齿轮数字化制造生产线.中国齿轮专业协会2005年会文集,39-41.
    [30] 李小清.螺旋锥齿轮数控加工与误差修正技术研究:(博士学位论文).武汉:华中科技大学,2004.
    [31] 陈懋圻,周锦进,王恒国.电抛光中几个问题的研究.大连工学院学刊,1959,3:27-39.
    [32] 陈敏贤.机械制造技术基础.上海:上海大学出版社,2002.
    [33] 王晓明.脉冲电化学及其复合光整加工机理和表面特性的研究:(博士学位论文).大连:大连理工大学,2002.
    [34] 查全性.电极过程动力学.北京:科学出版社,2002.
    [35] 王建业,徐家文.电解加工原理及应用.北京:国防工业出版社,2001.
    [36] Klock. F, Sparrer. M, Electrochemical Finishing — the Fast Way to Finished Dies and Moulds. International Journal of Manufacturing Science. 1998, 1 (4): 247-256.
    [37] M. Zybura-Skrabalak, A. Ruszaj. The Influence of Electrode Surface Geometrical Structure on Electrochemical Smoothing Process. International Journal of Materials Processing Technology, 2000 (107): 288-292.
    [38] D. Landolt. Fundamental Aspects of Electropolishing. Electrochemic Acta, 1987, 32(1): 1-11.
    [39] D.Landolt.方景礼译.电抛光和电解加工的进展.国外金属加工,1990,2:38-43.
    [40] 周锦进,方建成,徐又骥.光整加工技术的研究与发展.制造技术与机床,2004(3):7-11.
    [41] 周锦进.特种加工在制造技术中的地位、作用及发展前景.95’先进制造技术发展战略研讨会论文集,1995(北京).
    [42] K. P. Rajurkar (2), D. Zhu, J. A. McGeough (1), et al. New Development in Electrochemical Machining. Annals of CIRP, 1999, 48(2): 567-579.
    [43] 张明,周锦进.冷轧机工作辊光整工艺.重型机械,1999,4:60-61.
    [44] 方建成,金洙吉,徐文骥等.磁场电化学磁粒复合光整加工实验研究.中国机械工程,2001,12(9):1033-1035.
    [45] T. Masuzawa, S. Sakai. Quick Finishing of WEDM Products by ECM Using a Mate—Electrode. Annals of the CIRP, 1987, 26(1): 123-126.
    [46] 清宫紘一.电解砥粒研磨法镜面加工.应用机械工学,1987.2:102-108.
    [47] 清宫紘一.电解利用钢先进表面仕上应用机械工,1989.12:185-189.
    [48] F. A. TehRani, J. Atkinson. Overcut in Pulsed Electrochemical Grinding, Proc Instn Mech Engrs, 2000. 214(4): 259-269.
    [49] F. A. TehRani, J. Atkinson. A Study of Pulse Electrochemical Grinding. In Proceedings of 11th International Symposium on Electro-machining(ISEM). Lausanne. Swizerland, 1995.
    [50] 木本康雄,垣野羲昭,小昌一志.电解复合镜面加工基础研究.Memoirs of the Osaka Institute of Technology, Senese A, 1985. 29(2).
    [51] 木本康雄,垣野羲昭,中川真二.高精度电解复合镜面加工.精密工学会志,1988.54(2).
    [52] 前畑英彦,田宫胜恒.电解复合镜面研磨法金属表面化技术.应用机械工学,1989.12:191-195.
    [53] 釜田浩,前畑英彦.电解复合研磨法素材镜面仕上应用机械工学,1987.8:161-165.
    [54] Tehrani F. A. and Atkinson, J. A Study of Pulsed Electrochemical Grinding, Proceedings of the ISEM-11(1995): 543-552.
    [55] 万亚兰,李福援.电解机械复合光整加工机理及其数学模型.机械科学与技术,1998,17(2):285-287.
    [56] 张明,侯仰海,毛蜀平.电化学机械光整加工表面相貌研究.机械工程学报,2003,39(7):154-158.
    [57] 邢彦峰,张明,侯仰海.电化学机械光整加工表面相关性分析.山东理工大学学报 (自然科学版),2003,17(3):23-26.
    [58] 张云鹏,韩光臣,张安洲,任中根.脉冲电化学机械复合光整加工模型的建立.电加工与模具,2003.4:19-21.
    [59] 周锦进等.模具特种光整加工技术.国家级成果,项目编号:892844.
    [60] 周锦进.聚氯乙稀釜内壁镜面加工新工艺.中国化工文献库,1986,1(30).
    [61] 杨连文,周锦进.电化学机械加工在化工容器制造中的应用.化工机械,1996,2:46-47.
    [62] 李邦忠,周锦进.不锈钢电化学机械镜面加工电解液研究.中国机械工程,2004,15(11):954-958.
    [63] 李邦忠.基于电化学机械复合机理的大面积薄板和粗糙表面镜面光整加工技术研究:(博士学位论文).大连:大连理工大学,2004.10.
    [64] 周锦进,王晓明.电化学机械加工轴承滚道的表面特性.轴承,2002,9:15-17.
    [65] 周锦进,王晓明,庞桂兵.非传统光整加工技术研究.大连理工大学学报,2003,43 (1):51-56.
    [66] 李红友,周锦进,庞桂兵等.齿轮光整加工艺及其新发展.起重运输机械,2003,3:1-4.
    [67] J. Kozak, K. P. Rajurkar, R. F. Ross. Computer Simulation of Pulse Electrochemical Machining. Journal of Materials Proceesing Technology. 1991, Vol. 28: 149-157.
    [68] J. Kozak, K. P. Rajurkar, B. Wei. Modelling and Analysis of Pusle Electrochemical Machining. Journal of Engineer for Industry. August1994, Vol. 116: 316-317.
    [69] K. P. Rajurkar, B. Wei, J. Kozak. Modelling and Monitoring Interelectrode Gap in Pusle Electrochemical Machining. Annals of the CIRP. 1995, 44(1): 177-180.
    [70] J. Kozak. Mathematical Madels for Computer Simulation of Pulse Electrochemical Processes. Journal of Materials Proceesing Technology. 1998, Vol. 76: 170-175.
    [71] H. Hardisty, A. R. Mileham, H. Shirvarni. A Finite Element Simulation of Electrochemical Machining. Annals of the CIRP. 1993, 42(1): 201-204.
    [72] Evgueny I. Filatov. The Numerical Simulation of Unsteady ECM Process. Journal of Materials Proceesing Technology. 2001, Vol. 109: 170-175.
    [73] O. V. Krishinaiah Chetty, R. V. G. K. Murthy, V. Radhakrishnan. On Some Aspects of Surface Formation in ECM. Journal of Engineer for Industry. August 1981, Vol. 103: 341-348.
    [74] K. P. Rajurkar. Some Aspects of ECM Performance and Control. Annals of the CIRP. 1988, 37(1): 183-186.
    [75] K. P. Rajurkar, J. Kozak, B. Wei. Study of Pusle Electrochemical Machining Characteristics. Annals of the CIRP. 1993, 42(1): 231-234.
    [76] D. Clifton, A. R. Mount, G. M. Alder et al. Ultrasonic Measurement of the Inter-electrode Gap in Electrochemical Machining. Machine Tools & Manufacture. 2002, Vol. 42: 1259-1267.
    [77] E. Rosset, M. Datta, D. Landolt. Pulse Polishing of Die Steels in Neutral Solutions. PLATING AND SURFACE FINISHING, JULY 1985: 60-64.
    [78] J. J. Sun, E. J. Taylor, R. Srinivasan. MREF-ECM Process for Hard Passive Materials Surface Finishing. Journal of Materials Processing Technology, 2001, 108: 356-368.
    [79] T. Masuzawa (2), M. Kimura. Electrochemical Surface Finishing of Tungsten Carbide Alloy. Annals of the CIRP, 1991, 40 (1): 199-202.
    [80] De Silva. A., MeGough. J. A.. Hybrid Electrodischarge-Electrochemical Process for Roughness and Finishining Dies and Moulds. Processdings of the ISEM-12(1998): 397-406.
    [81] T. Masuzawa, C. L. M. Kou, Fujino. A Combined Electrical Machining Process for Micro nozzle Fabrication. Annals of the CIRP, 1994, 43 (1): 189-192.
    [82] 余承业等编著.特种加工新技术.北京:国防工业出版社,1995,1.
    [83] 余承业,刘正埙等.脉冲电流电解加工流场特性的研究.电加工,1984.4:1-6.
    [84] 王建业.提高电加工模具成型精度的新途径—高频、窄脉冲电流源电解加工.航空制造技术,2002.12:21-24.
    [85] 吴高阳,张之敬,张卫民等.超薄结构件的高频群脉冲电解加工工艺研究.北京理工大学学报,2006,26(7):585-588.
    [86] 唐兴伦,张之敬,王建平等.高频群脉冲电化学微小型加工中的反向电流与压力波.中国机械工程,2004,15(21):1881-1886.
    [87] 朱树敏,沈光祖.锻模脉冲电流电解加工.电加工与模具,1990.1:15-17
    [88] 沈健,牛志强,张海岩,朱树敏.微秒级脉冲电流电化学抛光的工艺规律研究.电加工与模具,2001.6:49-51.
    [89] 李洪友,王辉,张芝涛等.脉冲电化学齿轮光整加工电源设计与研究.大连理工大学学报,2003.43(4):452-456.
    [90] 李洪友.齿轮的脉冲电化学光整加工技术基础研究:(博士学位论文).大连:大连理工大学,2003.
    [91] 周锦进,庞桂兵,徐文骥等.脉冲电化学齿轮齿面光整加工实验研究.中国机械工程,2004,15(24):2187-2189.
    [92] Z. M. Hu, T. A. Dean. A study of surface topography, frication and lubricants in metal forming. International Journal of Machine Tools & Manufacture, 2000, 40: 1637-1649.
    [93] 《电解加工》编泽组编译.电解加工 (根据国外资料编译).北京:国防工业出版社,1977,7.
    [94] 刘今起.中性电解液及其对电物理加工的表面处理作用.电加工,1993,1:12-15.
    [95] B. Bhattacharyya, J. Munda, M. Malapati. Advancement in Electrochemical micro-machining. International Journal of Machine Tools & Manufacture, 2004, 44: 1577-1589.
    [96] 徐文骥.复合轨迹电解磨料镜面加工工艺研究:(硕士学位论文).大连:大连理工大学,1992,3.
    [97] 张三惠主编.电磁学 (大学物理学 (第二册)).北京:清华大学出版社,1999,12.
    [98] W.R.斯麦思著.静电学和电动力学(上册).北京:科学出版社,1981,1.
    [99] 复旦大学、上海师范大学物理系编.物理学 (电磁学).上海:上海科学技术出版社,1979,8.
    [100] 苏步青,华宣积,忻元龙.实用微分几何引论.北京:科学技术出版社,1986.
    [101] K. P. Rajurkar, Zhu, D. Minimization of Machining Allowance in ECM. Annals of the CIRP, 1998, 47 (1): 165-168.
    [102] 薛义臣.脉冲电化学螺旋齿轮光整加工技术基础研究:(硕士学位论文).大连:大连理工大学,2005,12.
    [103] 朱荻,曲宁松,Rajurkar.K.P等.电极平动式电解孔加工技术研究.机械工程学报,2001,37(5):105-109.
    [104] 刘晋春,赵家齐,赵万生著.特种加工.北京:机械工业出版社,2000,5.
    [105] 毕贵军,周锦进.脉冲电化学机械复合光整加工工艺的研究.机械制造,2000.38 (9):10-11.
    [106] C. Y. Yu, Y. H. Huang and Z. X. Liu. The investigation of the Flow Characteistics of the Gap in the Pluse Electrochemical Machining. Annals of the CIRP, 1982. 31(1): 119-123.
    [107] 王建业.电解加工技术的新发展—高频窄脉冲电流电解加工.电加工,1998(2):37-41.
    [108] 朱荻.国外电解加工的研究进展.电加工与模具,2000.1:11-16.
    [109] [日]微细加工技术编辑委员会编,朱怀义,赵巾奎译.微细加工技术.北京:科学出版社,1983,7.
    [110] 杨上东.移动式成型阴极脉冲电化学齿轮修形工艺研究:(硕士学位论文).大连:大连理工大学,2005,12.
    [111] 孙桓,陈作模主编.机械原理.北京:高等敦育出版社,1996.
    [112] 黄纯颖,于晓宏,唐进元等编著.机械创新设计.北京:高等教育出版社,2000.
    [113] 梁肇基,阿达依.平面泵的螺旋演化及新型螺旋泵结构.流体机械,1987,08:29-33.
    [114] 梁肇基,崔平正.进动机构与进动泵的“型综合”.新疆石油学院学报,1989,00:8-13.
    [115] 梁肇基,崔平正.容积泵的发展与“进动泵”.流体机械,1989,07:26-31.
    [116] 程极泰编著.集合论.北京:国防工业出版社,1985,4.
    [117] 北京齿轮厂编译.格里森锥齿轮技术资料译文集(第五分册).北京:机械工业出版社,1983,7.
    [118] 西安交通大学机制教研室齿轮研究组编.弧齿锥齿轮和准双曲线齿轮加工调整原理.上海:上海科学技术出版社,1979,6.
    [119] 赵学端,廖其奠主编.粘性流体力学.北京:机械工业出版社,1993,3.
    [120] E.M.鲁米扬采夫,A.Д.达维多夫著,刘友轩译.金属电解加工工艺.北京:国防工业出版社,1989,9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700