河北地区华北落叶松、杨树单木生物量、碳贮量及其分配规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林作为陆地生态系统的主体,具有广泛的分布面积,最高的生物生产力和最大的生物量积累。森林吸收CO2,并具有长期保存能力,在调节陆地生态系统与大气碳库之间的碳交换中起到巨大的“生物泵”作用。因此建立单株生物量、碳贮量模型,建立统一标准,具有深远意义。
     本文通过对河北省内华北落叶松与栽培杨树的单木生物量、与单木碳贮量进行研究,找出了两树种生物量、碳贮量的分配规律,建立了胸径、树高、材积与生物量、碳贮量模型并进行比较分析,具体结果如下。
     1生物量与碳贮量分配规律
     随着胸径的增大,华北落叶松与栽培杨树各器官生物量与碳贮量分配比例都表现如下规律:树干生物量、碳贮量所占的比例均为最大,树根生物量、碳贮量所占的比例基本稳定,一直保持在20%左右;树叶生物量、碳贮量比例均随胸径的增大而逐渐降低;杨树树枝、树叶生物量、碳贮量所占比例相对于华北落叶松波动较大。
     2胸径、树高与生物量的回归模型
     华北落叶松与栽培杨树的胸径均与各部分生物量、碳贮量均具有极显著的相关性(P<0.01,N_落=63,N_杨=20),华北落叶松树高与各部分生物量、碳贮量极显著相关(P<0.01 ,N_落=63,N_杨=20),杨树树高与各部分生物量、碳贮量的相关性较差。模型W = a(D~ 2H)~b和W = aD~b均能很好地拟合胸径、树高与生物量、碳贮量的关系,但相比而言W = aD~b更优。
     3材积与生物量、碳贮量关系
     应用W = a+bV模型对材积与生物量、碳贮量进行拟合,结果发现,带皮材积、去皮材积与两树种生物量、碳贮量均能得到很好的效果。应用C = aVb模型对材积与碳贮量进行拟合,其相关指数较W = a+bV模型的相关系数更高,即C = aVb模型能够得到更好的拟合效果,应为首先考虑的模型。
As the main body of the terrestrial ecosystem, the forest has a wide distribution area, the highest level of biological productivity and the largest biomass accumulation. Forests absorb CO2 and have the ability to long-term preservation of CO2. They play a tremendous role of the "biological pump" in the exchange of carbon between the terrestrial ecosystems and atmospheric carbon pools. Therefore, establishing the single plant biomass model and carbon storage model, building up a unifying standard, which have far-reaching significance.
     In this paper, as the research of single biomass and carbon storage of Larix principis-rupprechtii Mayr. and Populus in Hebei province, we have found out the allotment regulation, and build up the model of DBH, height, volume, biomass and carbon storage, and analyzed they. The results are as follows.
     1 The allotment regulation of biomass and carbon storage
     In Hebei province, with the increase of DBH, the allotment regulation of biomass and carbon storage of Larix principis-rupprechtii Mayr. and Populus is as follows: the proportions of trunk biomass and carbon storage are the largest; the proportion of roots biomass and carbon storage are basically stable, which have remained at about 20%; the proportion of leaf biomass and carbon storage is decreasing. The proportion of branches and leaves biomass and carbon storage of Populus have more fluctuations than Larix principis-rupprechtii Mayr.
     2 The regression model of DBH, tree height and biomass
     Applied the software SPSS17.0, we carry on Pearson relativity analysis to DBH, height, biomass and carbon storage of Larix principis-rupprechtii Mayr. and Populus. The results are as follows. DBH, biomass and carbon storage of the two species have a highly significant correlation (P<0.01,NL=63,NP=20). Height, biomass and carbon storage of Larix principis-rupprechtii Mayr. have a highly significant correlation (P<0.01,NL=63,NP=20). Height, biomass and carbon storage of Populus. have lower significant correlation. The models of W = a(D 2H)b and W = aDb can nicely draw up to match the relationship betweens DBH, height and biomass, carbon storage. But the model of W = a(D~ 2H)~b is much better.
     3 the relationship of volume, biomass and carbon storage
     Applied W = a+bV model to the volume, biomass with carbon storage, we find that it is good to draw up to match effect between take skin volume measure or to the skin volume measure and biomass or carbon storage of the two trees. Applied C = aV~b model to the volume with carbon storage to carry on drawing up to match, its correlation coefficient is higher than the W = a+bV model’s. It is mean that the C = aV~b model can get better draw up to match effect, we should consider it first.
引文
[1]耿元波,董云社,孟维奇.陆地碳循环研究进展.地理科学进展[J]. 2000,19(4):297-303.
    [2]LeithHRH,Whittaker.Primary Productivity of Biosphere[M]. Berlin:springer Verlag,1975.
    [3]蒋有绪.世界森林生态系统结构与功能的研究综述[J].林业科学研究,1995,8(3): 314-321.
    [4]韩世杰.森林生态系统碳循环过程研究.地球系统碳循环[M].北京:科学出版社,2004.
    [5]方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000,24(5):513-517.
    [6]Alldersson, F.O, Agren, G.I, Fuhrer, E. Sustainable tree biomass production [J]. Forest Ecology and Management,2000(132):51-62.
    [7]Mitehell,C.P., Zsuffa, F.Andersson,S., Stevens, D,J.Forentry, Forest biomass and biomass conversion: the IEA bioenergy, agreement (1986-1989) summary, report[C]. Elsevier Science Publishers LTD, 1990.
    [8]Ebermeyer E.Die gesamte Lehreder Waldstreu mit Rucksicht auf die chemische static des Waldbaues[M]. Belin: J.Springer,1876,116.
    [9]Boysen Jensen P.Studier over skovtraernes for hold til lyset Tidsskr[J]. F.Skoraessen, 1910,22:11-61.
    [10]Kittredge J.Estimation of the amount of foliage of tree and stand[J]. J.For.,1944,42:905-912.
    [11]李文华.森林生物生产力的概念及其研究的基本途径.自然资源,1978(l):71-92.
    [12]潘维俦,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979(4):l-14.
    [13]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    [14]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981.34-50.
    [15]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [16]Botkin,D.B.,G..M.Woodwell, and N.Tempel. Forest productivity estimated from carbon dioxide uptake[J]. Ecology, 1970,51:1057-1060.
    [17]Wbfsy,S.P., M.L.Goulden, J.W.Munger, S.M.Fan, P.S.Bakwin, B.C.Daube, S.L.Bassow, And F.A.Bazzaz. Net exchange of CO2 in a mid-latitude forest[J]. Science,1993,260,1314-1317.
    [18]薛立,杨鹏.森林生物量研究综述.福建林学院学报,2004,24(3):283-288.
    [19]佐藤大七郎.陆地植物群落的物质生产[M].聂绍荃,译.北京:科学出版社,1986.
    [20]Ovinghton , J,D,The form, weights and productivity of trees pecies grown in close stands New Phytol , 1956,55:289-304.
    [21]Baskerville, G1L1Estimation of dry weight of tree components and total standing crop in conifer stands [J]. Ecology, 1965,46: 867-869.
    [22]杨忠,张建平,王道杰,等.元谋干热河谷桉树人工林生物量初步研究[J].山地学报,2001,19(2):503-510.
    [23]Woodwell G M, Whittaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Science, 1978, 199:141-146.
    [24]张恒.大青山主要乔木生物量和碳储量的研究[D].内蒙古:内蒙古农业大学,2010.
    [25]Brown S, Lugo A E. Biomass of tropical forests: A new estimate based on forest volumes[J]. Science, 1984,223:1290-1293.
    [26]陈尔学.合成孔径雷达森林生物量估测研究进展[J].世界林业研究.1999,12(6):18-23.
    [27]方精云,刘国华,徐嵩岭.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [28]张佳华,符涂斌.生物量估测模型中遥感信息与植被光合参数的关系研究.测绘学报,1999,28(2):128-132.
    [29]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报.2002,22(11): 1832-1839.
    [30]陈利军,刘高焕,励惠国.中国植被净第一性生产力遥感动态监测[J].遥感学报.2002,6(2):129-135.
    [31]王德艺,李东义,冯学全.暖温带森林生态系统[M].中国林业出版社.2003:243.
    [32]岳曼,常庆瑞,王飞.土壤有机碳储量研究进展[J].土壤通报, 2008.39(5):1173-1178.
    [33]Mitchell J F B. 1989, The Greenhouse effect and climate change[J]. Reviews of Geophysics, 27(l):115-139.
    [34]Houghton J T, Jerkins G J, Ephraums J J. 1990, Climate change: the IPCC scientific assessment[M]. New York: Cambridge Univ Press283-310.
    [35]Bate A.K. Climate in Crisis: The greenhouse effect and what we can do(气候危机:温室效应与我们的对策)[M].苗润牛,成志勤译.北京:中国环境科学出版社,1992.
    [36]陈遐林.华北主要森林类型的碳汇功能研究[D],北京:北京林业大学,2003.
    [37]Batjes N H, Brides E M, eds. A Review of Soil Factors and Processes that Control Fluxes of Heat. Moisture and Greenhouse Gases [R]. International Soil Reference and Information Center, Wageningen, 1994,97-148.
    [38]王效科,欧阳志云,苗鸿.DNDC模型在长江三角洲农田生态系统的CH4和N2O排放量估算中的应用[J].环境科学,2001,22(3):15~19.]
    [39]李忠佩,王效举.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟[[J],应用生态学报,1998, 9(4):365~3700.
    [40]Olson J S. 1983. Carbon in live vegetation of major world ecosystems. Report ORNT-5862(Oak Ridge, Tenn) Oak Ridge National Laboratory.
    [41]叶笃玉,陈浮勤.中国的全球变化预研究(第二部分)[M].地震出版社,1992:253-256.
    [42]唐秀萍.碳汇拓展林业外部空间[J].中国林业, 2005(11B):10-16.
    [43]Paustian, K., Collins, H.P., Paul, E.A., Management controls on soil carbon. In: Paul, E.A., Paustian, K., Elliott, E.T., Cole, C.V. Soil Organic Matter in Temperate Agro-ecosystems. Boca Raton, FL: CRC Press, 1997:15-49.
    [44]伍光合,田连恕,胡双熙等.自然地理学[M].北京:高等教育出版社,2000:322-323.
    [45]陈阜.农业生态学[M].北京:中国农业大学出版社,2002:131.
    [46]何建坤,陈文颖.温室气体减排项目评价方法研究[J].环境科学研究,1999,12(2):24-27.
    [47]Gillon J, Yaki D. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2 .Science, 2001, 291 :2584-2587.
    [48]Dreybrodt W, Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion .Chemical Geology, 1991, 90 :107-122 .
    [49]Meybeck M. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Load .Amer. J. Sci, 1987, 287 :401-428 .
    [50]Deying Xu. The Potential For Reducing AtmosPherie Carbon By Large-Scale Afforestation in China and Related Cost/Benefit Analysis. Biomass and Bioenergy Vol.8,No.5,pp. .337-344,1995
    [51]周玉荣,于振良,赵士洞.2000.我国主要森林生态系统碳储量和碳平衡[J].植物生态学报,24(5): 518-522
    [52]DeyingXu,Xiao-quan Zhang and Zuomin Shi. Mitigation Potential for Carbon Sequestration Through Forestry Aetivities in Southern and Eastern China. Mitigation and Adaptation Strategies for Global Change 6:213-232,2001.
    [53]方精云,陈安平.中国森林植被碳库动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [54]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2000.
    [55]耿元波,董云社,孟维奇.陆地碳循环研究进展[J].地理科学进展,2000,19:297-306.
    [56]魏殿生主编.造林绿化与气候变化——碳汇问题研究.北京:中国林业出版社,2003.
    [57]曹吉鑫,田赟 ,王小平,等.森林碳汇的估算方法及其发展趋势[J].生态环境学报.2009,18(5):2001-2005.
    [58]张坤.森林碳汇计量和核查方法研究[D].北京:北京林业大学,2007.
    [59]赵敏,周广胜.基于森林资源清查资料的生物量估算模式[J].应用生态学报, 2004, 15(8): 1468-1472.
    [60]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报, 2004, 24(3):283-288.
    [61]杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报:自然科学版, 2005, 41(2): 172-177.
    [62]黄从德,张健,杨万勤,等.四川森林植被碳储量的时空变化[J].应用生态学报, 2007, 18(12): 2687-2692.
    [63]方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报, 2000, 24(5): 635-638.
    [64]Fang J Y, Wang G G, Liu G H, Xu S L. Forest biomass of China:an estimation based on the biomass-volume relationship[J]. Eeological Applications, 1998, 48(3):1084-1091.
    [65]王效科.中国森林生态系统的生物量、碳贮量和生物质然绕释放的含碳气体.北京:中国科学院生态环境研究中心[D].1997.
    [66]方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文( Science, 2001, 291: 2320-2322 )的若干说明[J].植物生态学报, 2002, 26(2): 243-249.
    [67]BROWN S, GILLESPIE R, LUGO A E. Biomass estimation methods for tropical forests with applications to forest inventory data[J]. ForestScience, 1989, 35: 881-902.
    [68]BROWN S, LUGO A E. Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon[J]. Interciencia, 1992, 17: 8-18.
    [69]方精云,刘国华,徐高龄.中国陆地生态系统碳库[M〕.北京:中国科技出版社,1996:251-277
    [70]FANG J Y, WANG G G, LIU G H, et al. Forest biomass of China: an estimation based on the biomass-volume relationship[J]. Ecological Application, 1998, 8: 1084-1091.
    [71]王玉辉.基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J].植物生态学报,2001,25(4):420-425.
    [72]Fang J Y, Chen A P, Peng C H, et al. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998[J]. Science, 2001,292(2):2320-2322.
    [73]李意德.海南岛热带山地雨林的森林生物量估测方法的比较分析[J].生态学报,1993,13(2),314-320.
    [74]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1),13-16.
    [75]赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述[J].西北林学院学报.2008,23(1):59-63.
    [76]Dixon R K, Brown S, Houghton A, et al. Carbon pools and flux of global forest ecosystems[J].Science,1994,263:185-190.
    [77]Levine J S,Cofer W R,Cahoon D R,et al. Biomass Burning: A Driver for Global Change [J]. Environmental Science and Technology,1995,29(3):120A-125A.
    [78]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [79]Schulze E D,Lloyd J,Kelliher F M,et al.Productivity of forests in the Eurosiberian boreal region and their potential to act as carbon sink-a synthesis[J]. Global Biogeoch. Cycl,1999(5):703-722.
    [80]郭海强,顾永剑,李博,等.全球碳通量塔东滩野外观测站的建立[J].湿地科学与管理, 2007, 3(1): 30-33.
    [81]陈泮勤.地球系统碳循环[M].北京:科学出版社, 2004:105.
    [82]于贵瑞,孙晓敏,等.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社, 2006:198-212.
    [83]于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社, 2008: 4-5.
    [84]王秀云,孙玉军.森林生态系统碳储量估测方法及其研究进展[J].世界林业研究, 2008, 21(5): 26-29.
    [85]王妍,张旭东,彭镇华,等.森林生态系统碳通量研究进展[J].世界林业研究, 2006, 19(3): 12-17.
    [86]ZHU Z L, SUN X M, WEN X F, et al. Study on the progressing method of nighttime CO2 eddy covariance flux data in Chinaflux[J].Science in China series D: Earth Science, 2006, 49(S2): 36-46.
    [87]Desiardins RL. Description and evaluation of a sensible heat flux detector[J]. Bound-Lay. Meteoro1,1977,11:147-154.
    [88]Sehulze ED, Lloyd J, Kelliher FM, et a1. Productivity of forests in the Euro-Siberia boreal region and their potential to act as a carbon sink-a synthesis[J].Global Change Bio1,1999(5):703-722.
    [89]何英.森林固碳估算方法综述[J].世界林业研究,2005,18(1):22-27.
    [90]李志恒,张一平.陆地生态系统物质交换模型[J].生态学杂志,2008, 27(7): 1207-1215.
    [91]冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报, 2004, 19(3): 369-378.
    [92]党永锋,曾伟生,王雪军.东北落叶松不同器官的含碳系数分析[J].林业资源管理,2011,4:30-34.
    [93]曾伟生,肖前辉.南方马尾松不同器官的含碳系数分析[J].中南林业调查规划,2011,30(2):51-55.
    [94]马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J]北京林业大学学报,2002,24(5):96-100.
    [95]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报, 2000, 20(5): 733-740.
    [96]周玉荣.我国主要森林生态系统碳储量和碳平衡[J].植物生态学报, 2000, 24(5): 518-522.
    [97]李庆云.黄淮海平原杨农间作系统碳储量研究.郑州:河南农业大学[D].2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700