蜡梅属系统发育及蜡梅栽培起源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜡梅(Chimonanthus pracox)是蜡梅科蜡梅属植物,为我国特产,是著名的冬季园林观花植物。在中国大部分省市广泛栽培,栽培历史悠久。本研究通过运用单亲遗传的cpDNA序列变异和双亲遗传的nrDNA的扩增长度多态性(Amplified Fragment Length Polymorphism,AFLP)探讨了蜡梅的栽培起源。基于ITS、cpDNA序列和ITS+cpDNA联合序列构建了蜡梅属的系统发育树,结合形态学分类数据,探讨了蜡梅属内种间关系,并在此基础上对蜡梅属内物种提出分类处理建议。主要研究内容与结果如下:
     1)蜡梅属的系统发育与物种界定
     运用ITS和cpDNA的三个片段,以美国蜡梅(Calycanthus floridus)为外类群,对蜡梅属进行了分子系统学分析,ITS分析揭示了蜡梅属6个种分成明显的2个分支:西南蜡梅(Ch. campanulatus)与蜡梅(Ch.praecox)有明显的亲缘关系,支持率很高;山蜡梅(Ch.nitens)、浙江蜡梅(Ch. zhejiangensis)、柳叶蜡梅(Ch.salicifolius)和突托蜡梅(Ch. grammatus)形成另一支。在第2支的四个种中,表现出柳叶蜡梅与突托蜡梅关系更近,浙江蜡梅与山蜡梅近缘;cpDNA序列分析的结果也支持西南蜡梅和蜡梅之间的亲缘关系,但对其他四个种分辩率不高。ITS和cpDNA联合数据分子树确立了西南蜡梅与蜡梅的姐妹群关系,推测两者来自一个共同祖先,从花期、花色、叶揉碎后无气味等相似特征上更说明他们之间的近缘关系;同时表明山蜡梅与浙江蜡梅近缘,柳叶蜡梅和突托蜡梅近缘。
     对蜡梅种内不同群体的关系进行的分析表明,野生蜡梅中湖北保康(WBK)、神龙架(WSLJ)和宜昌(WYCH)的群体形成一个亚支,揭示地理位置较近的群体来自共同祖先的可能性很大,基因交流比其他群体之间更容易:湖北武汉(CWH)栽培群体和重庆巫溪(WWX)野生群体形成另一个亚支,揭示了武汉栽培群体中部分个体可能来自于重庆巫溪野生群体;其他各群体均表现为平行枝,说明蜡梅的种下变异很少,无论栽培的群体还是野生的群体都一样,需要进一步群体遗传学的研究。
     本研究的外部形态性状数据的PCoA分析也表明浙江蜡梅和山蜡梅相互重叠,难以区分。在分布区上,山蜡梅在湖南、福建、广西、贵州等地均有分布,但浙江未见分布,而浙江蜡梅仅分布于浙江龙泉,因此,结合形态、分子及地理分布特征,我们认为浙江蜡梅是山蜡梅分布区的最东边界的一个群体,可能只是山蜡梅的一种生态型(ecotype),而不是独立的分类单位。因此,赞成将浙江蜡梅合并入山蜡梅,作为山蜡梅的异名处理。浙江蜡梅、突托蜡梅和山蜡梅曾统称为山蜡梅复合体,在形态上的微小变异可能是环境因素的影响造成的。本文ITS和形态学数据研究结果也表明突托蜡梅在分子水平以及叶片大小、形态和花被片等形态方面与浙江蜡梅和山蜡梅存在一定区别,不支持并入山蜡梅,需要进一步增加基因片段进行深入的研究。
     2)基于cpDNA和AFLP的蜡梅栽培起源
     基于cpDNA的trnH-psbA、trnS1-G1和trnS2-G2片段和全基因组AFLP分子标记3个引物组合EcoRI-CAA(FAM)/MseI-TC,EcoRI-TTT(M)/MseI-AGG和EcoRI-CAA (FAM)/MseI-TA,对蜡梅13个栽培群体、8个野生群体进行了全面的群体遗传和亲缘地理研究。结果表明在蜡梅21个群体282个个体中,三个叶绿体片段共检测到9个多态位点,共有9种单倍型。单倍型网络图呈现以在群体中出现频率最高的A单倍型为中心的星状拓扑结构,以1-3步衍生出B、C、D、E、F、G、H、I单倍型。野生群体共有7种单倍型(占单倍型总数的77.8%),但仅2个野生群体(12.5%)具有单倍型多态性,而栽培群体有6种单倍型,其中有8个栽培群体(61.5%)具有单倍型多态性。野生群体与栽培群体有4种共有单倍型(A、B、C、D),后裔单倍型中有5个单倍型为群体特有,4个共有单倍型是在不同的野生群体内发现。结果表明野生群体具有较高的单倍型多样性和核苷酸多样性:hT=0.819,πT=0.0011;AMOVA分析表明栽培群体和野生群体的中基因流Nm分别为0.52和0.14,表明都已经发生遗传分化,栽培群体内的遗传变异与群体间的遗传变异分别为50.81%和49.19%,而野生群体的遗传变异主要存在群体之间(78.12%)。cpDNA序列单倍型揭示了在蜡梅野生群体中,遗传变异大部分存在于各个群体间,栽培群体中,群体间的遗传变异与群体内的遗传变异没有明显差异。从单倍型分析显示蜡梅的栽培起源为多地多次起源。
     AFLP结果表明309个条带(98.41%)具有多态性。核基因水平表明遗传多样性程度最高的群体是重庆静观(CCQ)栽培群体(h=0.1518),遗传多样性最低的是四川峨眉山(CEMS)栽培群体(h=0.0724)。野生群体遗传多样性水平略高于栽培群体(野生群体的h=0.2834;栽培群体的h=0.2383)。AMOVA分析同样揭示在蜡梅野生群体中,遗传变异大部分存在于各个群体间,栽培群体中,群体间的遗传变异与群体内的遗传变异没有明显差异。
     21个蜡梅群体间的分化指数分别为0.7478(cpDNA)和0.6187(AFLP)。PCoA分析、Neighbor-Joining分析、UPGMA分析和Structure计算结果揭示所有腊梅群体由两个不同基因池组成,形成了两个种内谱系。13个栽培群体中有8个与野生的重庆巫溪(WWX)和浙江临安(WLA)共有相同基因池,而广西阳朔(CYS)、江西抚州(CJXF).湖南湘潭(CXT)、福建福州(CFZ)和安徽合肥(CHF)5个栽培群体与其余6个野生群体具有相同基因池。综合cpDNA和AFLP,可以推测蜡梅可能是多地、多次的起源。浙江临安所在的中国东部为现代栽培蜡梅的一个可能起源地,重庆巫溪、四川万源、贵州贵阳所在的中国西南地区为现代栽培蜡梅的另一个可能起源地。这一结果与蜡梅现在的栽培中心结果相吻合。江西抚州(CJXF).湖南湘潭(CXT)和安徽合肥(CHF)的栽培群体的地理位置位于西部重庆和东部浙江之间的我国中部地区,具有多个单倍型,包括特有单倍型,该地区是否存在另外的野生群体,值得深入研究。
     上述研究也揭示蜡梅在栽培过程中受到的奠基者效应、人工选育和克隆繁殖等因素影响不明显,未经历明显的遗传瓶颈,加上商业、文化上的广泛交流,使栽培群体保持较高的遗传多样性。
     基于上述分析,本研究对中国特有的观赏植物蜡梅的就地保护和迁地保护提出要重视重点群体的就地保护,并对重点栽培群体的所有成员进行遗传普查,建立基因档案,以便对一些特殊个体进行重点保存和利用。并提出不同的群体中拥有各自的特异单倍型,是栽培蜡梅选育优质基因和优良品种的重要资源库,可以为蜡梅的栽培育种提供基础。
Wintersweet (Calycanthaceae, Chimonanthus praecox), widely cultivated in many provinces in china, is a Chinese endemic winter-flowering plant which has a long history of cultivation. In this study, cpDNA sequences and AFLP (Amplified Fragment Length Polymorphism) markers were applied to study the domestication of Ch.praecox firstly. Then phylogenetic trees of Chimonanthus were constructed based on ITS and cpDNA sequences. With the combination of morphology data, we finally discussed the intragenic relationships in Chimonanthus and some taxonomic recommendations were given. There are2main conclusions of our research:
     1. Phylogeny and species defined of Chimonanthus
     Samples including species of Chimonanthus and Calycanthus floridus were all surveyed by ITS and cpDNA fragments. The molecular phylogenetic tree of ITS revealed that Chimonanthus were divided into two lineages:Ch.praecox and Ch.campanulatus had obvious relationship and the support rate is very high; Ch.zhejiangensis, Ch.salicifolius, Ch.nitens and Ch.grammatus were clustered together. The latter was also divided into two subgroups:Ch.salicifolius and Ch.grammatus had close relationship, Ch.zhejiangensis and Ch.nitens had close relationship. cpDNA sequence supports the relationship of Ch.praecox and Ch.campanulatus. The united data of ITS and cpDNA established Ch.praecox and Ch.campanulatus are sister group and suggest both species come from a common ancestor, the similar characteristics of flowering, flower color, leaf crumple odorless also showed the close relationship in both species.
     The analysis of relationships among the populations of Ch. praecox shows WBK, WSLJ and WYCH were formed a sub branch; it revealed those geographically close populations maybe from the same ancestor and gene communication more easily than other groups. CWH and WWX formed another sub branch showed some individuals of CWH were introduced from WWX. The other groups showed parallel branches. Regardless of the populations of the cultivated or wild, it need for further study of population genetics.
     PCoA analysis of the external morphological characters the show that Ch.zhejiangensis and Ch.nitens overlap and difficult to distinguish. Ch.nitens distribute in Hunan, Fujian, Guangxi, Guizhou and other provinces but Zhejiang province hasn't distributed, Ch.zhejiangensis only distributed in Longquan, zhejiang province. Combined with the features of morphological, molecular and geographical distribute, we induced Ch.zhejiangensis is the most eastern boundary group and only is the kind of ecological type (ecotype) of Ch.nitens rather than independent taxa. Therefore, we supports Ch.zhejiangensis merge into Ch.nitens, as the synonym of Ch.nitens. Ch.zhejiangensis, Ch.nitens and Ch.grammatus had called by a joint name as the Ch.nitens complex; the small variations may be caused by environmental factors. ITS and morphological data of this paper also showed Ch.grammatus had some differences at the molecular level, as well as leaf size, shape and tepals with Ch.zhejiangensis and Ch.nitens and not support merge into Ch.nitens. It needs to be further study by increasing the gene fragment.2. Domestication of Ch. praecox based on cpDNA sequences and AFLP.
     cpDNA sequence (psbA-trnH, trnS1-G1and rrnS2-G2) and AFLP(EcoRI-CAA (FAM)/MseI-TC,oRI-TTT (FAM)/Mse-AGG andoRI-CAA (FAM)/MceI-TA) were used in13cultivated populations and8wild populations of Ch. praecox.9polymorphic sites classified into9haplotypes were detected in these three fragments for282individuals of21populations. The whole haplotype network is a star-style topology with haplotype A (highest frequency) as a radiating center, deriving from it are the other eight haplotypes (B, C, D, E, F, G, H and I). There were7haplotypes (77.8%of total) in wild populations and only2(12.5%) harbored haplotype diversity, while6haplotypes were in cultivated populations and8(61.5%) harbored haplotype diversity. Results of haplotype network showed that4haplotypes (A, B, C and D) in cultivated populations shared with wild populations,5derived haplotypes is peculiar to populations,4shared haplotypes found in different wild populations. The wild populations has a high haplotype diversity and nucleotide diversity:/ht=0.819, πT=0.0011; AMOVA analysis showed that the gene flow (Nm) was0.52and there was obvious genetic differentiation in the cultivated populations. The genetic variation of cultivated populations was49.19%among populations and50.81%within the populations. In the wild populations, the genetic variation among populations was78.12%and gene flow (Nm) was only0.14. The cpDNA sequence suggested that most genetic variance occurred among populations in wild populations and in cultivated populations the two statistical numbers were similar. Results of haplotype network showed that Ch. praecox might experience multiple origin events.
     315bands were amplified in282individuals by3pairs of AFLP markers and309bands were polymorphic (98.41%). The highest genetic diversity occurred in CCQ cultivated population (h=0.1518) and the lowest in EMS cultivated population (h=0.0724).Genetic diversity in wild populations were a little higher than cultivated populations (h in cultivated populations were0.2383; in wild populations were0.2834). AMOVA analysis results keep consistent to cpDNA sequence. In all of populations of Ch. praecox, strong differentiation among21populations was found suggested that genetic variance occurred among populations (cpDNA:0.7478and AFLP:0.6187)。
     Results of PCoA analysis, Neighbor-joining and UPGMA analysis and Structure calculation revealed that all populations by two different genes pools and formed two intraspecific lineages.8of13cultivated populations with WWX and WLA shared the same gene pool,5cultivated populations of CYS,CJXF,CXT,CFZ and CHF the remaining six wild populations shared the same gene pool. cpDNA and AFLP data suggests Ch.praecox may be multiple origins. One origination center of modern cultivated C. praecox is hypothesized to eastern China where Zhejiang LA is; while southwest China is another origination center including Chongqing Wuxi, Sichuan Wanyuan and Guizhou Guiyang. It consistent with the modern cultivation center of Ch. praecox. Cultivated populations of CJXF, CXT and CHF with some endemic haplotypes located in central China. It worthy of further study to know whether there were wild population existences.
     The study also reveals Ch. praecox is not experienced obvious genetic bottleneck for founder effect, artificial breeding and clonal propagation in the cultivation process insignificant, and the commercial, cultural intercourse make cultivated populations of Ch. praecox maintain higher genetic diversity.
     Based on the above analysis, this study suggests the important populations of Ch. praecox should pay attention to in situ conservation, the major cultivated populations should carry out the genetic screening to all members and establish a genetic profile in order to conservation and use some special individuals. The specific haplotype in different populations is an important repository to breeding fine varieties and quality gene and provide the basis for the cultivation and breeding of Ch. praecox.
引文
Althoff DM, Gitzendanner MA, Segraves KA (2007) The utility of amplified fragment length polymorphisms in Phylogenetics:a comparison of homology within and between genomes. Systematic Biology 56,477-484.
    Anthony, Combes, Astorga, et aL (2002) The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers. Theoretical and Applied Genetics 104,894-900.
    APG. (1998) An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85,531-553.
    APG. (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APG Ⅱ. Botanical Journal of the Linnean Society 141,399-436.
    APG. (2009) An update of the Angiosperm Phylogeny Group classification for the orders and
    families of flowering plants:APG Ⅲ. Botanical Journal ofthe Linnean Society 161(2),105-121.
    Avise J C, Arnold J, Ball R M, Bermingham E, Lamb T, Neigel E, Reeb C A, Saunders N C. (1987) Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18:489-522.
    Avise JC, Giblin-Davidson C, Laerm J, Patton JC, Lansman RA (1979) Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis. Proceedings of the National Academy of Sciences 76,6694.
    Avise JC, Walker DE (1998) Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London. Series B:Biological Sciences 265,457.
    Badr A, Sch R, et aL (2000) On the Origin and Domestication History of Barley (Hordeum vulgare). Molecular Biology and Evolution 17,499-510.
    Bena G, JubierM F,Olivieri I,Lejeune B. (1998) Ribosomal external and internal transcribed spacers:combined use in the phylogenetic analysis of Medicago (Leguminosae). Journal of Molecular Evolution 46:299-306.
    Beutler E, Gelbart T, Han JH, Koziol JA, Beutler B (1989) Evolution of the genome and the genetic code:selection at the dinucleotide level by methylation and polyribonucleotide cleavage. Proceedings of the National Academy of Sciences 86,192-196.
    Bremer B, Bremer K, Chase M, et al. (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅲ. Botanical Journal of the Linnean Society 161(2),105-121.
    Broyles SB, Wyatt R (1993) The consequences of self-pollination in Asclepias exaltata, a self-incompatible milkweed,80(1):41-44.
    Buckler I, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure, and domestication of grasses. Genetic Resources and Crop Evolution 77,213-218.
    Cai Z, Guisinger M, Kim HG (2008) Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. Journal of Molecular Evolution 67 (6):696-704
    Caicedo AL, Schaal BA (2004) Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Molecular Ecology 13,1871-1882.
    Candolle A D (1882) The Origin of Cultivated Plants. Appleton. New York.
    Chang T T. (1976) The origin, evolution, cultivation, dissemination, and diversification of Asian and African rice. Euphytica,25:435-441.
    Chen SC, Zhang L, Zeng J, Shi F, Yaang H, Mao YR, Fu CX (2012) Geographic variation of chloroplast DNA in Platycarya strobilacea (Juglandaceae), Journal of Systematics and Evolution,50(4): 374-385.
    Clement M, Posada D, Crandall KA (2000) TCS:a computer program to estimate gene genealogies. Molecular Ecology 9,1657-1659.
    Clegg MT, Gaut BS, Learn GH (1994) Rates and patterns of chloroplast DNA evolution. Proceedings of the National Academy of Sciences of the United States of America,91(15):6795-6801
    Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theoretical and Applied Genetics 104,358-366.
    Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology 4,129-134.
    Doebley J (1989a) Molecular evidence for a missing wild relative of maize and the introgression of its chloroplast fenome into Zea Perennis. Evolution 43,1555-1559.
    Doebley JF, Gaut S, Smith D (2006) The Molecular Genetics of Crop Domestication. Cell 127, 1309-1321.
    Doyle J (1991) DNA protocols for plants-CTAB total DNA isolation. Molecular techniques in taxonomy,283-293.
    Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S,Thierer T. (2010) Geneious In:Biomatters Ltd.
    Drummond AJ, Rambaut A (2007) BEAST:Bayesian evolutionary analysis by sampling trees. Bmc Evolutionary Biology 7,214.
    Dumolin-Lapegue S, Pemonge MH, Petit RJ (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Molecular Ecology 6,393-397.
    Edwards SV, Fertil B, Giron A, Deschavanne PJ (2002) Genomic schism in birds revealed by phylogenetic analysis of DNA strings. Systematic Biology 51,599-613.
    Ehrich D (2006) AFLPDAT:a collection of r functions for convenient handling of AFLP data. Molecular Ecology Notes 6,603-604.
    Felsenstein J (1985) Confidence limits on phylogenies:An approach using the bootstrap. Evolution 39,783-791.
    Felsenstein J (1993) PHYLIP:phylogenetic inference package, version 3.5c.
    Flora of China, http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=106698
    Fu Y X, Li W H (1993) Statistical tests of neutrality of mutations, Genetics,133 (3):693-709.
    Fuller DQ (2007) Contrasting Patterns in Crop Domestication and Domestication Rates:Recent Archaeobotanical Insights from the Old World. Annals of Botany 100,903-924.
    Fuller DQ, Qin L, Zheng Y, et al. (2009) The domestication process and domestication rate in rice:spikelet bases from the lower Yangtze. Science 323,1607-1610.
    Golding GB (1987) The detectiong of deleterious selection using ancestors inferred from a phylogenetic history. Genetic Resources and Crop Evolution 49,71-82.
    Gong W, Chen C, Dobes C, Fu CX (2008) Phylogeography of a living fossil:Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Molecular Phylogenetics and Evolution 48(3):1094-1105.
    Gugerli F, Senn J, Anzidei M, et al. (2001) Chloroplast microsatellites and mitochondrial nadl intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (Pinus cembra), Siberian stone pine(Pinus sibirica), and Siberian dwarf pine(Pinus pumila). Molecular Ecology 10,1489-1497.
    Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology Notes 8,513-525.
    Han TH, van Eck HJ, De Jeu MJ, Jacobsen E (1999) Optimization of AFLP fingerprinting of organisms with a large-sized genome:a study on Alstroemeria spp. Theoretical and Applied Genetics 98,465-471.
    Hare MP (2001) Prospects for nuclear gene phylogeography. Trends in Ecology and Evolution 16, 700-706.
    Harlan (1971) Agricultural Origins:Centers and Noncenters, Science,174:468-474.
    Harris H (1966) Enzyme polymorphism in man. Proc. R. Soc. Lond.164,298-310.Genetics 54, 577-594.
    Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature,405,907-013
    Hoggard GD, Kores P J,MolvrayM, Hoggard R K. (2004) The phylogeny of Gaura (Onagraceae) based on ITS, ETS, and trnL2F sequence data. American Journal of Botany,91 (1):139-148.
    Holder K, Montgomerie R, Friesen V L. (1999) A test of the glacial refugium hypothsis using patters of mitochondrial and nuclesr DNA sequence variation in rock ptarmigan (Lagopusmutus). Evolution 5396):1936-1950.
    HsingM H,Liu C L, Tsai L C, Hou R J, Liu K L, Linacre A,Lee J C. (2005) Characterization of the polymorphic repeat sequence within the rDNA IGS of Cannabis sativa. Forensic Science International,152:23-28.
    Hubby JL, Leqontin RC (1966) A molecular approach to the study of genic heterozygosity in natural populations. I. the number of alleles at different loci in Drosophila pseudoobscura.
    Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Sallie J. Herman, Fourcade HM,. Kuehl JV, McNeal JR, Leebens-Mack J, Cui LY (2005) Methods for obtaining and analyzing whole chloroplast genome sequences, Methods in Enzymology,395:348-384.
    Kimura M (1983) The Neutral Theory of Molecular Evolution Cambridge University Press., New York.
    Kimura (1968) Evolutionary rate at the molecular level, nature,217:624-626.
    Kovach WL (1999) MVSP-A multivariate statistical Package for Windows, ver.3.1 Kovach Computing Services, Pentraeth, Wales, UK.
    Kress WJ, Prince LM, Williams KJ (2002) The phylogeny and a new classification of the gingers (Zingiberaceae):evidence from molecular data. American Journal of Botany 89, 1682-1696.
    Lee J K, Baldwin B G, Gottlieb L D. (2002) Phylogeny of S tephanom eria and related genera (Compositae2Lactuceae) based on analysis of 18S226S nuclear rDNA ITS and ETS sequences. American Journal of Botany,89 (1):160-168.
    Li W, Olmstead R (1997) Molecular Evolution. Sunderland, MA:Sinauer Associates
    Liu J, Qi ZC, Zhao YP, Fu CX, Qiu YX (2012) Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales-Influences of gene partitions and taxon sampling, Molecular Phylogenetics and Evolution,64(3):545-562
    Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice. Oryza sativa. Proceedings of the National Academy of Sciences,103,9578-9583.
    Lu B R, Zheng K L, Q ian H R, Zhuang J Y. (2002) Genetic differentiation of wild relatives of rice as referred by the RFLP analysis.Theory Apply Genetic,106:101-106.
    Lowe A, Harris S, Ashton P (2004) Ecological genetics:design, analysis, and application. Blackwell Publishing, Oxford, United Kingdom
    Lumaret R, Ouazzani N (2001) Plant genetics:Ancient wild olives in Mediterranean forests. Nature 413,700.
    Markos S, Baldwin B G. Higher (2001) 21evel relationship s and major lineages of Lessingia (Compositae, Astereae) based on nuclear rDNA internal and external transcribed spacer (ITS and ETS)sequences. Systems Botany,,26:168-183.
    Matsuoka Y, Vigouroux Y, Goodman MM, et aL (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences 99,6080-6084.
    Micharel DP, Dorian QF (2009) The nature of selection during plant domestication. Nature 457, 843-848.
    Miller A, Schaal B (2005) Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea. Proceedings of the National Academy of Sciences 102,12801.
    Mitton JB, Kreiser BR, Latta RG (2000) Glacial refugia of limber pine(Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Molecular Ecology 9,91-97.
    Moore MJ, Soltis PS, Bell CD et al. (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences,107(10):4623-4628
    Muller MH, Prosperi JM, Santoni S, Ronfort J (2003) Inferences from mitochondrial DNA patterns on the domestication history of alfalfa(Medicago sativa). Molecular Ecology 12, 2187-2199.
    Myers. N (2002) Biodiversity and biodepletion:the need for a paradigm shift-Biodiversity, sustainability and human communities:Protecting Beyond the protected, In:O'Riordan T, Stoll-Kleemann S,46-60, Cambridge University Press.
    Nei M, Kumar S(2000) Molecular Evolution and Phylogenetics. New York:Oxford University Press
    Nei M (1987) Molecular evolutionary genetics Oxford University Press, New York, USA.
    Olsen KM, Schaal BA (1999) Evidence on the origin of cassava:phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences 96,5586-5591.
    Ozkan H, Brandolini A, Schafer-Pregl R, Salamini F (2002) AFLP Analysis of a Collection of Tetraploid Wheats Indicates the Origin of Emmer and Hard Wheat Domestication in Southeast Turkey. Molecular Biology and Evolution 19,1797-1801.
    Palme AE (2002) Chloroplast DNA variation, postglacial recolonization and hybridization in hazel, Corylus avellana. Molecular Ecology 11,1769-1779.
    Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence, Journal of Molecular Evolution,28(1-2):87-97.
    Pan YB, BurnerDM, Legendre B L. (2000) An assessment of the phylogenetic relationship among Sugarcane and related taxa based on the nucleotide sequence of 5S rDN A intergenic spacers. Genetica,108:285-295.
    Parks M, Cronn R, Liston A(2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC biology,7 (1):84
    Petit RJ, Csaikl MU, Bords S, et al. (2002) Chloroplast DNA variation in European white oaks: Phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management 156,5-26.
    Petit E, Balloux F, Goudet J (2001) Set-biased dispersal in a migraatory bat:a characterization using sex-specific demographic parameters. Evolution 55,635-640.
    Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96,129-133.
    Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico:New accelerator mass spectrometry dates and their implications. Proceedings of the National Academy of Sciences 98,2101-2103.
    Posada D (2008) jModelTest:Phylogenetic Model Averaging. Molecular Biology and Evolution 25,1253-1256.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics 155,945-959.
    Qiu Y, Fu C, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Molecular Phylogenetics and Evolution 59,225-244.
    Qiu YX, Sun Y, Zhang XP, et al. (2009) Molecular phylogeography of East Asian Kirengeshoma (Hydrangeaceae) in relation to Quaternary climate change and landbridge configurations. New Phytologist 183,480-495.
    Qiu YX, Zong M, Yao Y, et al. (2009) Genetic variation in wild and cultivated Rhizoma corydalis revealed by ISSRs markers. Planta medica 75,94-98.
    Qiu, Y. X., B. C. Guan, C. X. Fu, and H. P. Comes.2009. Did Glacials and/Or Interglacials Promote Allopatric Incipient Speciation in East Asian Temperate Plants? Phylogeographic and Coalescent Analyses On Refugial Isolation and Divergence in Dysosma Versipellis. Molecular Phylogenetics and Evolution 51:281-293.
    Randal L C, Goertzen L R, Heuvel B V,Ortega F J, Jansen R K. (2000) The comp lete external transcribed spacer of 18S226S rDNA:amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Molecular Phylogenetics and Evolution,14:285-303.
    Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44,559-571.
    Ricarda R, Jess P, Dmitry V G, Julian M, Bozo F, Pahlevani, Amirhossein6; Laia B, Jeffery J M, Yasaman S, Shahin Z, Aleksey K, Peter V B, Paul E B (2013) A worldwide molecular phylogeny and classification of the leafy spurges, Euphorbia subgenus Esula (Euphorbiaceae),Taxon,62(2):316-342.
    Rosas R A, Cameron K, Sosa V, Pell S. (2004) A molecular phylogenetic study of Graptopetalum (Crassulaceae) based on ETS, ITS, rp 116, and trnL2F nucleotide sequences. American Journal of Botany,91(7):1099-1104.
    Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19,2496-2497.
    Schaal B A,Haywood D A, Olsen K M, Rauscher J T, Smith W A. (1998) Phylogeographic studies in plants:problems and pmspects. Molecular Ecology 7:465-474.
    Schneider S (2000) ARLEQUIN, version 2.000:a software for population genetics data analysis (ed. Roessli D). Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland.
    Schonswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C. (2007). Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molecular Phylogenetics and Evolution,42,92-103
    Second G.(1982) Origin of the genetic diversity of cul ivated rice:study of the polymorphism scored at 40 isozyme loci. Japan Journal Genetic,57:25-57.
    SimmondsN W (1979)莫惠栋 在主译,作物改良原理,南京:江苏科学技术出版社 1983,,4-76
    Skrede I, Eidesen PB, Portela RP, Brochmann C.(2006) Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Molecular Ecology,15,1827-1840
    Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47,264-279.
    Smith BD (2001) Documenting plant domestication:The consilience of biological and archaeological approaches. Proceedings of the National Academy of Sciences 98,1324-1326.
    Sonnante G, Stockton T, Nodari RO, Becerra Velasquez VL, Gepts P (1994) Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics 89,629-635.
    Stamatakis A, Hoover P, Rougemont J (2008) A Rapid Bootstrap Algorithm for the RAxML Web Servers. Systematic Biology 57,758-771.
    Stappen J V,Marant S, Volckaert G. (2003)Molecular characterization and phylogenetic utility of the rDNA external transcribed spacer region in Stylosanthes (Fabaceae). Theoretical and Applied Genetics,107:291-298.
    Swofford DL (2002) PAUP*:phylogenetic analysis using parsimony (* and other methods), version 4.0b10, Sunderland, MA, USA:Sinauer Associates.
    Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123,585-595.
    Tandon R, Shivanna KR, Ram HYM (2003) Reproductive biology of Butea monosperma (Fabaceae). Annals of Botany,92,715
    Templeton AR (1998) The detectiong of deleterious selection using ancestors inferred from a phylogenetic histor. Molecular Ecology 7.
    The Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅱ. Botanical Journal of the Linnean Society 141,399-436.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X Windows Interface:Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Research 25,4876-4882.
    Tian X, Li DZ (2002) Application of DNA sequences in plant phylogentic study. Acta Botanica Yunnanica,24:170-184
    Vos P, Hogers R, Bleeker M, et aL (1995) AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research 23,4407-4414.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols a guide to methods and applications Academic Press, San Diego.
    Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences 84,9054-9058.
    Wright S (1931) Statistical methods in biology. Journal of the American Statistical Association 26,155-161.
    Wright S (1978) Evolution and the genetics of populations. University of Chicago Press, Chicago, IL.
    Wright SI, Bi IV, Schroeder SG, et al (2005) The Effects of Artificial Selection on the Maize Genome. Science 308,1310-1314.
    Yamanaka S, Nakamura I, Nakai H, Sato Y I. (2003) Dualorig in of the cultivated rice based on molecular markers of newly collected annual and perennial accessions of wild rice species, Oryza nivara and O. rufipogon. GeneticResources and Crop Evolution,50:529-538.
    Yeh F, Yang RC, Boyle T, Ye ZH (1997) POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.
    Yuan QJ, Zhang ZY, Hu J, et al. (2010) Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae). BMC Genetics 11,29.
    Zeder MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication:the intersection of genetics and archaeology. Trends in Genetics 22,139-155.
    Zhang DQ, Gao LM, Yang YP (2010) Genetic diversity and structure of a traditional Chinese medicinal plant species, Fritillaria cirrhosa (Liliaceae) in southwest China and implications for its conservation. Biochemical Systematics and Ecology 38,236-242.
    Zhou M Q, Zhao K G, Chen L Q. (2007). Genetic diversity of Calycanthaceae accessions estimated using AFLP markers. Scientia Horticulturae,112:331-338.
    Zhou S L, Renner S S, Wen J. (2006). Molecular phylogeny and intra-and intercontinental biogeographyof Calycanthaceae. Molecular Phylogenetics and Evolution,39:1-15.
    Zietkiewicz E;Rafalski A;Labuda D. (1994) Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomics,20:176-183.
    曹洪霞.(2004)蜡梅的栽培与观赏.安徽农学通报,10(2):55.
    陈川.(2011)药用植物玄参的栽培起源、亲缘地理及东亚玄参系统发育研究.浙江大学博士 论文.
    陈龙清.(1998)蜡梅属的物种生物学研究.北京林业大学园林学院博士论文.
    陈龙清.(2003)蜡梅开发市场广阔.中国花卉园艺,1:10-11.
    陈龙清,陈俊愉,郑用琏.(1999).利用RAPD分析蜡梅自然居群的遗传变异.北京林业大学学报,21(2):86-90.
    陈龙清,鲁涤非.(1995)蜡梅品种分类研究及武汉地区蜡梅品种调查.北京林业大学学报,17(1):103-107.
    陈平平.(1995)中国梅花的起源、演化与分类.生物学通报.30(4)10-12
    陈功锡,龚双姣,李菁.(2005).蜡梅群落生态学研究与展望.西北植物学报,25(9):1906-1912.
    陈功锡,李菁,李鹄鸣,李鸣.(1997)湘西北蜡梅群落特征的初步研究.广西植物,17(2):118-126.
    陈志秀,丁宝章.(1987)河南蜡梅属植物的研究.河南农业大学学报,21(4):413-425.
    陈志秀. (1995)蜡梅17个品种过氧化物同工酶的研究.植物研究,15(3):403-411.
    陈培珠,陈静(2001)北京地区蜡梅提早成花繁殖法,中国花卉盆景,8:13.
    程东庆,方浩,潘佩蕾,林美爱,陈宜涛.(2005).浙江蜡梅叶提取物抑菌试验.实用中医药杂志,21(5):314.
    程文亮,刘南祥,华金渭,诸葛华.(2007)柳叶蜡梅药材规范化生产标准操作规程(SOP)的初步研究,25(1):3-6.
    戴思兰,王文奎,黄家平.(2002)菊属系统学及菊花起源的研究进展.北京林业大学学报,24(5/6)230-234.
    戴思兰,陈俊愉,李文彬.(1998)菊花起源的RAPD分析.植物学报,40(11):1053-1059.
    刁军成,伍学洲,丁舸.(2002).山腊梅叶消毒抑菌的实验研究.江西中医药,33(6):35.
    冯菊恩,陈映琦.(1986)苏州蜡梅的调查.上海农业科技,6:3-4.
    葛颂,洪德元(1998)泡沙参复合体(桔梗科)的物种生物学研究Ⅳ等位酶水平的变异和分化,植物分类学报,36,581-589.
    龚维.(2007)孑遗植物银杏的分子亲缘地理学研究,浙江大学博士论文。
    管毕财.(2008)特有濒危植物八角莲保护遗传学与分子亲缘地理学研究,浙江大学博士论文。
    贺文婷,安晓芹,郭维明.(2007).超声波与复合保鲜剂预处理对素心蜡梅离体小花和花枝 储鲜效应的影响.浙江林学院学报,24(6):661-665.
    胡长玉.(2005).香风茶——柳叶蜡梅.林业实用技术,2:33-34.
    胡长玉,唐欣昀.(2007).野生柳叶蜡梅叶营养成分分析.黄山学院学报,9(3):91-92.
    胡长玉,肖维凤.(2005)柳叶蜡梅的生物学特性及栽培技术.中国林副特产,3:5-6.
    胡宜先,潘佑找,刘孝石. (2005) 蜡梅枝芽特性及扦插繁殖试验.长江大学学报(自科版),2(8):28-29.
    胡根长.(2001)浙江蜡梅大苗移栽技术研究.浙江林业科技,21(1):31-33.
    霍永禄.(2007).蜡梅播种法.中国花卉盆量,10:31.
    江婷,苑金鹏,程传格,李淑娥,王晓,陈立宗.(2005).腊梅花挥发油化学成分分析.光谱实验室,22(6):1329-1332.
    静冬梅,赵子贤,王怀顺,毛秀红.(2005).不同预处理和不同生根粉浓度对素心腊梅生根的影响.园林科技信息,1:15-17.
    李根有,金水虎,楼炉焕,陈征海,孙孟军.(2003)浙江省野生蜡梅数量及群落学研究.北京林业大学学报,25(6):30-33.
    李惠成,张兵.(2006).蜡梅种子油化学成分研究.宝鸡文理学院学报(自然科学版),26(1):43-45.
    李嘉珏.(1998)中国牡丹起源的研究.北京林业大学学报,20(2):22-26.
    李菁,陈功锡,李鸣,李鹄鸣. (1997).湘西北蜡梅群落典型样地的物种多样性特征初探.植物资源与环境,6(2):12-16.
    李密密.(2011)山茶科紫茎属和折柄茶属系统进化研究,浙江大学博士论文。
    李响,周明芹,赵凯歌,陈龙清(2012)山蜡梅复合体的遗传多样性和居群遗传分化研究,
    北京林业大学学报,34(S1):42-45.
    黎或,李双,李国梁.(2007).不同产地蜡梅花总黄酮含量的测定.上海中医药杂志,41(5):77-78.
    刘莉.(2009)关于中国稻作起源证据的讨论与商榷.南方文物.3:25-37.
    刘力,张若蕙,刘洪谔(1995)蜡梅科7树种的叶精油成分及其分类意义.植物分类学报,33(2):171-174.
    刘洪谔,杨逢春,徐耀良.(1999).蜡梅科植物的开花与传粉.北京林业大学学报,21(2):121-123.
    刘洪谔,张若蕙,黄少甫.(1996)8种蜡梅的染色体研究.浙江林学院学报,13(1):28-33.
    刘家栋,翟兴礼,王启明.(2001).蜡梅扦插繁殖技术研究.河南大学学报(自然科学版),31(3):87-88.
    刘茂春.(1984)蜡梅科二新种,浙江林学院科技通讯,1:9-14.
    刘南祥,程文亮,诸葛华.(2006)柳叶蜡梅GAP基地生态环境质量评价.丽水农业科技,4:17-18.
    刘青林.(1996)梅花起源与品种演化问题初探.北京林业大学学报,18(2):78-82.
    刘香芬.(1999)蜡梅的繁殖方法.河北林业科技,2:33.
    芦建国,杜灵娟.(2007).蜡梅品种的RAPD分析.南京林业大学学报(自然科学版),31(5):109-112.
    芦建国,李娜(2011)重庆蜡梅的产业化开发,河北林业科技,25(3):9-11.
    芦建国,张昕欣(2006)蜡梅品种分类研究综述,河北林业科技,5:36-37,40.
    卢毅军,胡中.(2007).三种蜡梅属植物夏冬季光合特性比较.亚热带植物科学,36(4):20-23.
    吕金顺.(2007).蜡梅花头香的富集及其化学成分研究.精细化工,24(4):367-371.
    马德安,于水中.1990).蜡梅的繁殖.中国园林,4:29.
    彭九生,肖忠优,刘光正.(2005)突托蜡梅群落结构与生物多样性初步研究.江西林业科技,1:5-9.
    宋品玉,方国明.(1999)蜡梅及其应用价值和栽培技术.浙江大学学报(农业与生命科学版),25(6):657-660.
    孙彦.(2006)蜡梅在园林中的应用.河南林业科技,26(2):23.
    盛爱武,郭维明.(2000).不同预处液及贮藏方式对蜡梅切花瓶插品质的影响.仲恺农业技术学院学报,13(1):1-4.
    盛爱武,郭维明,孙智华.(1999).蜡梅切花内源激素动态及衰老有关因子的研究.北京林业大学学报,21(2):48-52.
    田欣,李德铢(2002)DNA序列在植物系统学研究中的应用,云南植物研究,24(2):170-184.
    汪洪霞.(2000)快速繁育蜡梅新技术.安徽林业科技,2:22.
    王安虎,夏明忠,蔡光泽,钟伟.(2008)浅议栽培苦荞的地理起源中心.西昌学院学报(自然科学版),22(1)4-7
    王菲彬,芦建国.(2005).蜡梅切花观赏特性的综合评价,林业科技开发,19(5):25-27.
    王建军.(2003)蜡梅习性及园林应用.林业实用技术,2:43.
    王支槐.(1994).腊梅开花过程中的生理变化.西南师范大学学报(自然科学版),19(6):646-650.
    王支槐,黄继承.(1992).预措及保鲜剂延缓腊梅切花衰老的影响.云南农业大学学报,7(3):166-171.
    吴建忠.(1990)蜡梅的种子繁殖和实生选择.中国园林,4:27-28.
    吴志红,汪建平.(2006).柳叶蜡梅的播种繁殖.安徽林业,5:28.
    向胤道,王齐华,李采明.(2005)大巴山区野生腊梅资源的保护与开发利用.资源开发与市场,21(1):61-62.
    肖维凤.(2006).柳叶蜡梅的种子处理及播种育苗.林业实用技术,11:45-46.
    徐年军,白海波,严小军.(2006)山腊梅中挥发油成分分析.分析测试学报,25(1):90-93.
    徐晓霞,姜卫兵,翁忙玲.(2007)蜡梅的文化内涵及园林应用.中国农学通报,23(12):294-298.
    许再富.(1998)
    应俊生(2001)中国种子植物物种多样性及其分布格局,生物多样性,9(4):393-398.
    曾静,眭顺照,余国武,雷兴华,李名扬.(2007)蜡梅的离体培养与植株再生.西南大学学报(自然科学版),29(4):120-123.
    张俊红,黄华宏,童再康,程龙军,梁跃龙,陈奕良.(2010)光皮桦6个南方天然群体的遗传多样性,生物多样性,18(3):233-240.
    张若蕙,刘洪谔.(1998)世界蜡梅.杭州:浙江科学技术出版社。
    张若蕙,沈湘林.(1999)蜡梅科的分类及地理分布与演化.北京林业大学学报,21(2):7-11.
    张若蕙,丁陈森.(1980)中国蜡梅科植物幼苗的形态及蜡梅属一新种,植物分类学报,18(3):328-332.
    张文科(2007)鄢陵蜡梅纵谈,北京林业大学学报,29(S1):146-149.
    章先禄.(1997)蜡梅扦插繁殖技术.上海农业科技,3:41.
    章永萍,章先禄,(1999)蜡梅离体靠接技术.上海农业科技,4:80.
    张韵洁,李德铢. (2011)叶绿体系统发育基因组学的研究进展,植物分类与资源学报,33(4):365-375
    赵天榜. (1993)中国蜡梅.郑州:河南科学技术出版社.
    赵凯歌,江晋芳,陈龙清.(2004)蜡梅品种的数量分类和主成分分析.北京林业大学学报, 26(5)79-83.
    赵冰,张启翔.(2007)中国蜡梅属种质资源的分布及其特点.广西植物,27(5):730-735.
    赵冰,张启翔.(2007)利用AFLP分子标记探讨蜡梅种质资源的遗传多样性.生态学报,27(11):4452-4459.
    赵浩如,戢群芳,王明时,赵守训,王幼鹏.(1993)蜡梅根化学成分的研究.中国药科大学学报,24(2):76-77.
    郑朝宗(2007)浙江种子植物检索手册,浙江科技出版社.
    中国科学院中国植物志编辑委员会.(1979)《中国植物志》,科学出版社,30(2):6-11.
    周芳祥,欧干仔,连雷龙.(2005)柳叶蜡梅的繁育技术与利用.林业科技开发,19(3):78.
    周莉花,郝日明,吴建忠.(2006)蜡梅传粉生物学研究.园艺学报,33(2):323-327.
    周莉花,郝日明,吴建忠,毛志滨.(2003)亮叶蜡梅的传粉生物学初步研究.园艺学报,30(6):690-694.
    周青,黄晓华.(1997)AN对酸雨伤害蜡梅的防护作用.城市环境与城市生态,10(2):15-17.
    周青,黄晓华,王冬燕.(1997)稀土元素La对酸雨损伤蜡梅的影响.生态学杂志,16(6):59-61.
    周志钦,潘开玉,洪德元.(2003)牡丹组野生种间亲缘关系和栽培牡丹起源研究进展.园艺学报,30(6):751-757
    朱华年,朱永胜,胡丰林.(2007)腊梅叶提取物的清除自由基活性及薄层色谱和液质联用分析.安徽农学通报,13(16):30-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700