农林有机废弃物堆腐生产花卉栽培基质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,农林有机废弃物生产有机生态型栽培基质作为泥炭替代基质是废弃物资源化及花卉优质、高效生产的有效途径。
     论文通过菇渣、小麦秸秆和园林绿化废弃物的单组分好氧堆腐试验,研究三种农林有机废弃物在实际堆腐过程中的理化性质变化,采用相关性分析确定针对不同单一废弃物的腐熟度判定指标;测定堆腐产物的主要理化性质并找出障碍因素,添加基质水分调理剂调节小麦秸秆基质的吸水性;添加天然复合有机酸调节园林绿化废弃物基质的pH值和EC值及铜元素含量;分别以菇渣、园林绿化废弃物、小麦秸秆三种堆腐产物为主要原料研发百合栽培基质,最终提出花卉栽培基质的理想指标范围和测定方法。研究结果如下:1.堆腐腐熟度指标的确定
     堆腐开始后,3种材料温度均迅速升高,短时间内又较快下降,不同材料温度上升的快慢及达到的最高温度差异很大;园林绿化废弃物和菇渣堆制前吸水特别困难,堆腐较短时间后吸水就变得很容易,小麦秸秆失水较快,腐解过程中需要不断加水;3种材料在堆腐过程中的pH值变化曲线不一致,EC值均表现为先升高后降低;NH4+-N都是先升高后降低;N03--N含量总体上呈先升高、后降低、再升高的趋势;3种材料的腐殖酸和胡敏酸含量呈现先降低、后升高的趋势,富里酸一直处于下降趋势;胡敏酸和富里酸比值变化呈先下降后上升的趋势,充分说明了不稳定成分的分解及后期物料的腐熟稳定;最终GI都达到或超过80%。根据相关性分析,G1、温度、富里酸三个判定指标可用于评估农林有机废弃物腐熟度。2.基质的理化指标分析
     菇渣基质和园林绿化废弃物基质的各项物理指标与泥炭基质差异不显著,均在理想范围内。而小麦秸秆基质大小孔隙比为1.71,超出理想指标范围(0.25-0.67),由于蜡质的存在小麦秸秆基质表面有一定的水分张力,导致吸水、保水性能都比较差,同时其通气孔隙较大,渗透系数最高,水分很容易下渗。
     泥炭及3种替代基质的有机质含量都比较丰富,全量及有效营养元素含量没有规律性,但营养元素一般在栽培中通过添加营养液的形式补充,其含量高低不足以说明基质的优劣。除园林绿化废弃物基质外,其它3种基质的pH值和EC值均符合植物生长的理想指标范围,而园林绿化废弃物基质的pH值高达7.65,EC值高达2.02ms·cm-1,铜元素含量高达106.93 mg·kg-1。
     3.基质水分调理剂对小麦秸秆基质通透性、吸水性的改良
     浓度为2%和4%的基质水分调理剂均能有效提高小麦秸秆基质的通透性和吸水性;通过新几内业凤仙的扦插生根情况,2%基质水分调理剂处理下新几内业凤仙的成活率、根系长度、根系体积、根系表面积、根系活性及SOD酶、POD酶活性最高。
     4.天然复合有机酸对园林绿化废弃物基质pH值、EC值和有效铜含量的改良
     添加天然复合有机酸可使园林绿化废弃物基质的pH值下降1-2个单位,浓度为4%和6%时能使pH值控制在5.00-6.50的理想范围内;通过天然复合有机酸的化学络合作用,EC值控制在理想范围(0.12-1.20 ms·cm-1)内,且随着天然复合有机酸剂量的增高EC值不断下降;4%处理下,基质有效铜百分含量最低,铜不易释放,新几内亚凤仙吸收铜含量也最低。
     5.百合栽培试验效果
     通过4种栽培基质对百合生长指标影响可以看出,(菇渣+蛭石)、(园林绿化废弃物+蛭石)与(泥炭+蛭石)对照处理栽培的百合均生长健壮,切花品质优良,其中以(菇渣+蛭石)的效果最佳,生长速率较快,(小麦秸秆+蛭石)由于性质不稳定,不适合百合栽培。(菇渣+蛭石)与(园林绿化废弃物+蛭石)均可完全替代(泥炭+蛭石)用于百合栽培,小麦秸秆基质需要混配结构相对稳定的材料才能替代泥炭基质使用。
Currently, agro-forestry organic waste compost as growth media for peat substitution is an effective way to waste recycle and high quality ornamental plants.
     Through aerobic composting experiment with spent mushroom (SM), wheat straw (WS) and garden waste (GW), physical and chemical properties dynamic changes were added up and maturity were determined by correlation analysis. Subsequently, main physical and chemical parameters were analyzed and limited factors for waste compost as growth media were found. Water absorption of wheat straw were improved by watering amendments and pH value, EC value and copper content were decreased by natural organic acids. In addition, three kinds of compost were used for growing ornamental plants. Finally, the ideal values and determination methods of growth media were put forward as professional standard.
     The findings are summarized as follows:
     1. Maturity parameters evaluation for agro-forestry organic waste compost
     The temperature began with rise rapidly and then decline quickly. The speed of temperature rise and the maximum temperatures varied widely among different materials. Water was added to wheat straw frequently due to its rapid dehydration. The pH value curve was inconsistent. The EC and ammonium nitrogen values firstly increased and then decreased. The nitrate nitrogen value first increased, then decreased, and then increased. The humus and humic acid contents first decreased and then increased, and fulvic acid content decreased instantly. The germination indexes (GI) reached or exceeded 80 percents. The Gl, temperature and fulvic acid values were regarded as maturity evaluation parameters for agro-forestry organic waste compost.
     2. Physical and chemical properties of growth media
     The physical indicators differences between spent mushroom compost (SMC)and garden waste (GWC) were not significant in the ideal range. The porosity ratio (PR) of wheat straw compost (WSC) is 1.71 exceeding to the ideal target range (0.25-0.67) due to the presence of wax.
     The pH value of GWC was 7.65, EC value was 2.02 ms·cm-1 and copper content was 106.93 mg·kg-1. The above three parameters all exceeded the ideal values.
     3. Effect of watering amendments on permeability and water absorption of WSC
     The permeability and water absorption of WSC were improved by watering amendments with concentration of 2% and 4%. And rooting parameters of Impatiens hawkeri were improved by watering amendments with concentration of 2%.
     4. Effect of natural organic acids on pH value, EC value and available copper contents of GWC
     The pH value was decreased by one to two units with natural organic acids and was 5.00 to 6.50 with concentration of 2% and 4%. And rooting parameters of Impatiens hawkeri were improved by watering amendments with concentration of 2%. By chemical complexation of natural organic acids, the EC value was controlled in the ideal range (0.12-1.20 ms·cm-1). With the increased dose of natural organic acids, the EC values decreased. The available copper contents were lowest in GWC and Impatiens hawkeri with natural organic acids of 2% concentration.
     5. Effect of SWC, WSC and GWC on growth of Lilium Siberia.
     Lilium Siberia had high quality and cut flowers in SWC and vermiculite (SWCV), GWC and vermiculite (GWCV), peat (control) and vermiculite (PV). However, the unstable WSC and vermiculite (WSCV) was not suitable for Lilium Siberia. As PV substitution, SWCV and GWCV can be used for lily cultivation; while stable alternative was needed to WSCV for growth Lilium Siberia.
引文
1. 鲍士旦.土壤农化分析(第3版)[M].北京:中国农业出版社,2005.
    2. 鲍艳宁,周启星,颜丽.畜禽粪便堆肥过程中各种氮化合物的动态变化及腐熟度评价指标[J].应用生态学报,2008,19(2):374-380.
    3. 常景玲,李慧.预处理对作物秸秆纤维素降解的影响[J].江苏农业科学,2006(4):177-179.
    4. 常庆瑞,李岗,冯立孝.乾县试区土地农业生产潜力估算与分析[J].干旱地区农业研究,1993,11(增刊):106-112.
    5. 陈丽君.曲周县农村固体废弃物资源化利用潜力分析与评价[D].北京:中国农业大学,2007.
    6.程刚,耿冬梅,马梅荣,等.生活垃圾接种堆肥中试研究[J].哈尔滨工业大学学报,2004,36(10):1417-1419.
    7.高丽红.无土栽培固体基质的种类及理化特性[J].温室园艺,2000,10(7):23.
    8.官家发.高温堆肥发酵工艺处理城市生活垃圾过程中的部分微生物学问题[J].四川环境,2000,19(3):21-22.
    9.顾希贤,许月蓉.垃圾堆肥微生物接种试验[J].应用与环境生物学报,1995,1(3):274-278.
    10.顾卫兵,乔启成,杨春和,等.有机固体废弃物堆肥腐熟度的简易评价方法[J].江苏农业科学,2008(6):258-294.
    11.国家环境保护总局污染控制司.城市固体废物管理与处理处置技术[M].北京:中国石化出版社,2001,246-247.
    12.冯春,杨光,杜俊,等.污水污泥堆肥重金属总量及形态变化[J].环境科学研究,2008,21(1):97-102.
    13.伏小勇,许生辉,杨柳,等.城市污泥中重金属消解方法的比较试验研究[J].中国给水排水,2008,24(15):97-99.
    14.冀宏,赵黎明,汪虹.食用菌产业在农业循环经济中的作用与实践[J].食用菌,2007(2):1-3.
    15.贾传兴,彭绪亚,袁荣焕,等.生物可降解度判定生活垃圾堆肥处理的稳定性[J].中国给水排水,2006,22(5):68-70.
    16.郝瑞军,方海兰,郝冠军,等.园林废弃物堆肥对黑麦草产量及养分吸收的影响[J].园林科技,2010(3):25-28.
    17.何岩.芬兰的泥炭及利用[J].腐植酸.1992(2):6-8.
    18.何志刚,孙军德.复合微生物菌剂在牛粪堆肥中的试验研究[J].安徽农业科学,2007,35(16):4922-4933.
    19.胡菊,秦莉,吕振宇,等.VT菌剂接种堆肥的作用效果及生物效应[J].农业环境科学学报,2006,25(增刊):604-608.
    20.黄国锋,钟流举,张振钿,等.有机固体废弃物堆肥的物质变化及腐熟度评价[J].应用生态学报,2003,14(5):813-818.
    21.黄得扬,陆文静,王洪涛,等.高效纤维素分解菌在蔬菜—花卉秸秆联合好氧堆肥中的应用[J].环境科学,2004,25(2):145-149.
    22.江胜德.现代园艺栽培介质:选购与应用指南.北京:中国林业出版社,2006.
    23.荆延德,亓建中,张志国.花卉栽培基质研究进展[J].浙江林业科技,2001,21(6):68-71.
    24.荆延德,张志国.栽培基质常用理化性质“一条龙”测定法[J].北方园艺,2002(3):18-19.
    25.荆延德,张志国.主成分分析和聚类分析在花卉栽培基质配方选择中的应用.土壤通报,2004, 35(5):588-591.
    26.康红梅,张启翔,唐菁.栽培基质的研究进展[J].土壤通报,2005,36(1):124-127.
    27.乐学义,卢其明,肖雄狮,等.造纸黑液木质素在肥料中的应用[J].再生资源研究,2000,15(3):32-35.
    28.李承强,魏源送,樊耀波,等.不同填充料污泥好氧堆肥的性质变化及腐熟度[J].环境科学,2001,22(3):60-65.
    29.李斗争,张志国.设施栽培基质研究进展[J].北方园艺,2005(5):7-9.
    30.李国学.用水芹菜种子发芽特性评价污泥堆肥的腐熟度和生理毒性[J].中国农业大学学报,1999(4):109-116.
    31.李国学,李玉春,李彦富.固体废弃物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报,2003,22(2):252-256.
    32.李季,彭生平.堆肥工程实用手册[M].北京:化学工业出版社,2005:82-85.
    33.李谦盛,郭世荣,李式军.利用工农业有机废弃物生产优质无土栽培基质[J].自然资源学报,2002,17(4):515-519.
    34.李谦盛,郭世荣,李式军.基质EC值与作物生长的关系及其测定方法比较[J].中国蔬菜,2004(1):70-71.
    35.李庆康,王志明,袁灿生,等.利用有效微生物菌群进行鸡粪处理的研究[J].农业环境保护,2001,20(4):217-220.
    36.李天林,沈兵,李红霞.无土栽培中基质培选料的参考因素与发展趋势(综述).石河子大学学报(自然科学版),1999,3(3):250-258.
    37.李晓强,卜崇兴,郭世荣.菇渣复合基质栽培对蔬菜幼苗生长的影响[J].沈阳农业大学学报,2006,37(3):517-520.
    38.李晓强,郭世荣,卜崇兴,等.菇渣复合基质在甜椒育苗上的使用效果研究[J].上海农业学报,2007,23(1):48-51.
    39.李学梅.食用菌菌渣的开发利用[J].河南农业科学,2003(5):4042.
    40.李延强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报,2004,15(6):1083-1087.
    41.李用芳,李学梅,李鹤宾.香菇木屑菌渣营养成分分析及在平菇菌种生产中的应用[J].微生物学杂志,2001,21(3):59-60.
    42.黎德荣.食用菌废料的综合利用[J].广西园艺,2005,16(5):55-56.
    43.连兆煌,李式军.无土栽培原理与技术[M].北京:中国农业出版社,1993.
    44.刘福生,彭同江,张宝述.膨胀蛭石的利用及其新进展[J].非金属矿,2001,24(4):5-8.
    45.刘庆华,刘庆超,王奎玲,等.几种无土栽培代用基质缓冲性研究初报[J].北方园艺,2008,24(2):272-275.
    46.刘盛萍,付子豪,俞志敏,等.生物废弃物好氧处理过程中的物质变化[J].安徽农业科学,2007,35(14):4273-4274,4276.
    47.刘士哲.现代实用无土栽培技术[M]..北京:中国农业出版社,2001:1-25,169-189.
    48.刘卫星,顾金刚,姜瑞波,等.有机固体废弃物堆肥的腐熟度评价指标[J].土壤肥料,2005,(3):3-7.
    49.刘悦秋,刘克锋,石爱平,等.生活垃圾堆肥优良菌剂的筛选[J].农业环境科学学报,2003,22(5):597-601.
    50.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    51.陆欣.土壤肥料学[M].北京:中国农业大学出版社,2002.
    52.栾亚宁,孙向阳,刘克林.几种泥炭基质物理性质比较研究.中国农学通报,2008,24(9):137-140.
    53.罗泉达,黄惠珠,郑长焰,等.猪粪堆肥的腐熟度指标福建农林大学学报,2009,38(1):84-87.
    54.吕子文,方海兰,黄彩娣.美国园林绿化废弃物的处置及对我国的启示[J].中国园林,2007,23(8):90-94.
    55.马明广,周敏,蒋煜峰,等.不溶性腐殖酸对重金属离子的吸附及研究[J].安全与环境学报,2006,6(3):68-71.
    56.毛羽,张无敌.无土栽培基质的研究进展[J].农业与技术,2004,24(3):83-88.
    57.戚俊,刘素梅,徐辉,栾亚宁,等.食用菌菌糠在园艺栽培基质中的应用j.第九届全国食用菌学术研讨会摘要集,2010.
    58.邱瑞宇.以粒径分布,碳氮比,固态氮为树皮堆肥腐熟度指标的探讨[J].台湾中华农业化学杂志,1991,29(4):445-448.
    59.邱卫华,陈洪章.木质素的结构、功能及高值化利用[J].纤维素科学与技术,2006,14.
    60.任顺荣,院多本华夫,前川孝昭.畜禽废弃物高温好氧堆腐过程中气体产生与变化[J].农业环境科学学报,2004,23(2):355-358.
    61.石春芝,蒲一涛,郑宗坤,等.垃圾堆肥接种固氮菌对堆肥含氮量的影响[J].应用与环境生物学报,2002,8(4):419-421.
    62.史玉英,沈其荣,娄无忌,等.纤维素分解菌群的分离和筛选[J].南京农业大学学报,1996,19(3):59-62.
    63.司亚平.基质物理性质对番茄穴盘育苗质的影响[J].中国蔬菜,1998(2):30-31.
    64.孙西宁,李艳霞,张增强,等.城市污泥好氧堆肥过程中重金属的形态变化[J].环境科学学报,2009,29(9):1836-1841.
    65.孙先锋,钟海风,谢式云,等.高效堆肥菌种的筛选及在省市污泥堆肥中的应用[J].环境污染治理技术与设备,2006,7(2):108-111.
    66.孙晓华,罗安程,仇丹.微生物接种对猪粪堆肥发酵过程的影响[J].植物营养与肥料学报,2004,10(5):557-559.
    67.孙永明,李国学,张夫道,等.中国农业废弃物资源化现状与发展战略[J].农业工程学报,2005,21(8):169-173.
    68.汤江武,朱利中.不同堆肥条件对种子发芽指数影响的研究[J].浙江农业学报,2008(5):583-586.
    69.田吉林,汪寅虎.设施无士栽培基质的研究现状、存在问题与展望(综述)[M].上海农业学报.2000,16(4):67-92.
    70.王成,郄光发,彭镇华.有机地表覆盖物在城市林业建设中的应用价值[J].应用生态学报,2005,16(11):2213-2217.
    71.王光玉,陈雷,宣世伟,等.生活垃圾好氧堆肥微生物接种的初步研究[J].环境科学与技术,2005,28(2):20-21.
    72.王鸿昌,梁杰,黄子锋,等.东方百合无土栽培基质配方研究初报[J].广东农业科学,2005(2):53.
    73.汪建飞,于群英,陈世勇,等.农业固体有机废弃物的环境危害及堆肥化技术展望[J].安徽农业科学,2006,(18).
    74.夏龙池.农村秸秆综合利用技术研究[J].再生资源研究.1999(4):29.
    75.熊雄,李艳霞,韩杰,等.堆肥腐殖质的形成和变化及其对重金属有效性的影响[J].农业环境科学学报,2008,27(6):2137-2142.
    76.薛智勇,汤江武.备禽废弃物的无害化处理和资源化利用技术进展(上)[J].浙江农业科学,2002.(1):45-47.
    77.席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状[J].环境污染治理技术与设备,2002,3(3):19-23.
    78.谢军飞,李玉娥.不同堆肥处理猪粪温室气体排放与影响因子初步研究[J].农业环境科学学报,2003,22(1):56-59.
    79.熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005(8):40-41.
    80.许修宏,李洪涛,张迪.堆肥微生物原理及双孢蘑菇栽培.北京:科学出版社,2010.
    81.薛智勇,王卫平,朱凤香,等.复合菌剂和不同调理剂对猪粪发酵温度及腐熟度的影响[J].浙江农业学报,2005,17(6):354-358.
    82.杨朝晖,曾光明,蒋晓云,等.城市垃圾堆肥过程中的生物学问题研究[J].微生物学杂志,2005,25(3):57-61.
    83.杨福明.泥炭沼泽开采迹地的植被再植再生及其恢复人工草地试验[J].中国草地,1991(2):9-13.
    84.杨国清.固体废物处理工程[M].科学出版社.2000,194-195.
    85.杨国义,李芳柏,万洪富,等.猪粪混合堆肥过程中重金属含量的变化[J].生态环境,2003,12(4):412-414.
    86.杨建堂,霍晓婷,王文亮.高产冬小麦铜素吸收分配特点的研究[J].土壤通报,1999,30(3):119-120.
    87.杨兴明,徐阳春,黄启为,等.有机(类)肥料与农业可持续发展和生态环境保护[J].土壤学报,2008,45(5):925-932.
    88.杨延梅,刘鸿亮,杨志峰,等.控制堆肥过程中氮素损火的途径和方法综述.北京师范大学学报(自然科学版),2005,(41)213-216.
    89.杨延梅,席北斗,刘鸿亮,等.餐厨垃圾堆肥理化特性变化规律研究[J].环境科学研究,2007,20(2):72-77.
    90.杨玉荣,穆国俊,魏静.重金属在污泥堆肥过程中的变化[J].农业环境科学学报,2006,25(增刊):226-228.
    91.余群,董红敏,张肇鲲.国内外堆肥技术研究进展(综述)[J].安徽农业大学学报,2003,(01).
    92.曾光明,黄国和,袁兴中,等.堆肥环境生物与控制[M].北京:科学出版社,2006:390-393.
    93.张宝琳,陈炜青.花卉无土栽培基质筛选试验[J].甘肃林业科技,2003,(3):61-65.
    94.张辉,刘维红,杨启银,等.几种微生物在牛粪堆肥中的试验研究[J].江苏农业科学,2006(1):108-113.
    95.张陇利,刘青,徐智,等.复合微生物菌剂对污泥堆肥的作用效果研究[J].环境工程学报,2008,2(2):266-269.
    96.张世超,陈少雄,彭彦.无土栽培基质研究概况[J].桉树科技,2006,23(1).
    97.张德威,牟咏花,徐志豪.几种无士栽培基质的理化性质[J].浙江农业学报:166-171.
    98.张秀丽.秸秆育苗基质对茄果类蔬菜秧苗素质的影响[D].吉林农业大学::硕士论文,2004.
    99.张则有,赵红艳.21世纪泥炭及其腐植酸开发技术与市场分析[J].腐植酸,2000(3):1-9.
    100.张则有.国外泥炭及其腐植酸资源开发与研究[J].腐植酸,1999(3):1-6.
    101.赵书勤,吴星五.城市污水污泥堆肥化技术的研究进展[J].四川环境,2003(06):43-46.
    102.周辉宇,陆文静,王洪涛,等.高效纤维素分解菌生物强化技术在工厂化好氧堆肥中的应用初探[J].农业环境科学学报,2004,24(1):182-186.
    103.朱增勇.秸秆基质的腐熟及番茄黄瓜无十栽培效果的研究[D].山尔农业大学:硕十论文,2002。
    104. Agro, WR. Root Medium physical properties. Hort Technology.1998,8:1-16.
    105. Baird, JV. and Zublena, JP. Soil Facts:Using wetting agents (nonionic surfactants) on soil. North Carolina Cooperative Extension Service Publication.1993:AG-439-25.
    106. Bean, J. and Stentifort, E, Evaluating the potential of an electronic nose for detecting the onset of anaerobic conditions during composting. Waste Management & Research.2000,17:69-377.
    107. Bernai M, Paredes C, Sanchez-Monedero M, Cegarra J. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology,1998,63(1): 91-99.
    108. Bishop P L, Godfrey C. Nitrogen transformations during sludge composting[J]. Biocycle,1983,24, 34-39.
    109. Brodie HL, Gouin FR, Carr LE. What makes good compost[J]. Biocycle Emmaus,1994,35 (7):66-69.
    110. Bunt AC. Media and mixes for container-grown plants.2nd[M]. London:Unwin Hyman,1988:309.
    111.Caron J and Nkonglo V.K.N. Aeration in growing media:recent developments. Acta Hort. 1999,481:545-551.
    112. Chiu, SW., Gao, T., and Chan, C, SS., et al. Removal of spilled petroleum in industrial soils by sincerely yours, pent cordially, compost of mushroom pleurotus pulmonarius. Chemosphere.2009,75:837-842.
    113.Chong C, Cline RA, Rillker DL. Bark- and peat-amended spent mushroom compost for containerized culture of shrubs [J]. Hortscience,1994,29(7):781-784.
    114. De Boodt M and Verdonck. The Physical Properties of the Substrates in Horticulture. Acta Hort, 1972,26:37-44.
    115. De Boodt M, Verdonck,O and Cappaert, I Method for measuring the water release curve of organic substrates. Acta Hort,1974,37:2054-2062.
    116. Emeterio IJ, Victor PG. Relationship between carbon and total organic matter in municipal solid waste and city refuse compost[J]. Bioressource Technology,1992,41:209-223.
    117. Ficnar S. Inhibition of nitrification and nitrogen uptake by peas(Pisum sativum) from urea[J]. Rostlinna-Vyroba,1990,36(3):303-308.
    118. Fonteno WC, and Nelson PV. Physical properties of and plant responses to rockwool-amended media.Journal of the american society for horticultural science,1990,115:375-381.
    119. Foster WJ, Wright R.D, Alley M. M, et al. Ammonium adsorption on a pine-bark growing-medium [J]. J. Am. Soc. Hortic. Sci,1983 (108):548-551.
    120. Gregory Bonito, Omoanghe S. Isikhuemhen, et al. Identification of fungi associated with municipal compost using DNA-based techniques [J]. Bioresource Technology,2010,101:1021-1027.
    121.Groenier J S,et al.Shredding Small Trees To Create Mulch for Erosion Control[R].Missoula:Department of Agriculture Forest Service,Missoula Technology and Development Center,2004.
    122. Hamoda MF, Qdais H A A, Newham J. Evaluation of municipal solid waste composting kinetics [J]. Resources, Conservation and Recycling,1998,23:209-220.
    123. Hankin.L, Poincelot RP, Anagnostakis SL. Microorganisms from composting leaves:ability to produce extracellular de-gradative enzymes [J]. Microbial Eco,1976,2:296-308.
    124. Haug RT. Engineering principles of sludge composting [J]. J Water Pollut Control Fed,1979,51: 2189-2206.
    125. Hellmann B, Zelles L, Palojarvi A, et al. Emission of climate -relevant trace gases and succession of microbial communities during open-window composting [J]. Applied and Environmental Microbiology,1997,63(3):1011-1018.
    126. Jeffrey S, Buyer DP., Roberts P. M., et al. Analysis of fungal communities by sole carbon source utilization profiles [J]. Journal of Microbiological Methods,2001,45 (1):53-60.
    127. Juteau P,Larocque R.,Rho D.,et al. Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost bio-filter [J]. Applied and Environmental Microbiology.1999,52 (6):863-868.
    128. Kiyohiko Nakasaki, Hideki Yaguchi, Yasushi Sasaki, et al. Effects of pH control on composing of garbage [J]. Waste Management Research,1993,11:117-125.
    129. Kowalchuk GA., Naoumenko ZS, Derikx PJL, et al. Molecular analysis of ammonia-oxidizing bacteria of the beta subdivision of the class proteobacteria in compost and composted materials [J]. Applied and Environmental Microbiology,1999,65 (2):396-403.
    130. Linda C S.Impact of mulches on landscape plants and the environ-mant-a review[J].Journal of Environmental Horticulture 2007,25 (4):239-249
    131. Lou X F, Nair J. The impact of landfilling and composting on greenhouse gas emissions-A review [J]. Bioresource Technology,2009,100(16):3792-3798.
    132. Mankin KR Fynn RP Nutrient uptake response of New Guinea impatiens to light, temperature, and nutrient solution concentration. American Society for Horticultural Science.1996,121(5) p. 826-830.
    133. McDonald SJ, Dernoeden PH, Bigelow CA. Dollar spot and gray leaf spot severity as influenced by irrigation, chlorothalonil, paclobutrazol, and a wetting agent. Crop Science,2006,46: 2675-2684.
    134. Michael R.Evans, Sreenivas Kondum, Robert H.Stamps.source variation in physical and chemical properties of coconut coir dust [J]. Horsciences.1996,31 (6):965-967.
    135. O'-Brien T, Barker AV. Evaluation of fresh and year-old solid waste composts for production of wild flower and grass sods on plastic [J]. Compost Science and Utilization,1995,3 (4):69-77.
    136. Polat E, Uzun HI, and Topcuoglu B, et al. Effects of Spent Mushroom Compost on Quality and Productivity of Cucumber (Cucumis sativus L.) Grown in Greenhouses. The African Journal of Biotechnology,2009,8:176-180.
    137. Poole RT, Conover CA. Change in pH and soluble salts of container mixes [J].Proc. Fla. St.Hort. Soc.1983,96:260-261.
    138. Prasad S., Kumar U. Greenhouse management for horticultural crop production. India:Agrobios. 1999:135-180.
    139. Puustjarvi, V & Robertson, RA. Physical and Chemical Properties. In:Peat in Horticulture (eds. D.W. Robinson & J.G.D. Lamb) 1975:23-38.
    140. Recycled Organics Unit.A literature review on the composting of composite wood products (Sceond Edition)[R].Sydney,Australia:The University of New South Wales,2007.
    141. Salman M, El-Eswed B, Khalili F. Adsorption of humic acid on bentonite [J]. Appl Clay Sci,2007, 38:51-56.
    142. Sommer SG, Moller HB. Emission of greenhouse gases during composting of deep litter from pig production-effect of straw content [J]. Journal of Agricultural Science, Cambridge,2000, 134:327-335.
    143. Sonsteby N,Mage.Effects of bark mulch and npk fertilizer on yield,leaf nutrient status and soil mineral nitrogen during three years of strawberry production[J].Acta Agriculturae Scandinavica,2004,54 (3):128-134
    144. Sweeten JM. Composting manure and sludge. In proceedings of the national poultry waste management symposium [M]. Ohio State:University Columbus,1998.
    145. Tang JC, Kanamori T, Inoue Y, et al. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method [J]. Process Biochemistry,2004,39:1999-2006.
    146. Tuomel A.,Vikman M. Hatakka A. Biodegradation of lignin in a compost environment a review [J]. Bioresource Technology,2000,72 (2):169-183.
    147. Urrestarazu, M., Guillen, C, Mazuela, P.C., Carrasco, G. Wetting Agent effect on physical properties of new and reused rockwool and coconut coir waste [J]. Scientia Horticulturae,2008, 116:104-108.
    148. Vuorinen AH., Saharinen M. H. Evolution of micro-biological and chemical parameters during manure and straw co-composting in a drum composting system [J]. Agriculture Ecosystems and Environment,1997,66 (1):19-29.
    149. Wever G, Van der B, Straatsma G. Potential of adapted mushroom compost as a growing medium in horticulture [J]. Acta Hort,2005,697:171-177.
    150. Zucconi F, Foret Mand de Bertoldi M, Monaco A, et al. Biological evaluation of compost maturity [J]. Biocycle,1981,22:27-29.
    151. Zucconi F, Monaco A and Foret Mand de Bertoldi M. Phytotoxins during the stabilization of organic matter. In:Gasser J K R. composting of agicultural and other wastes [M]. London and New York:Elsevier Applied Science Publications.1985:73-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700