园林绿化废弃物堆腐过程中H_2S和NH_3的释放和控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市园林绿化面积的不断的扩大,园林绿化废弃物所造成的城市污染问题也越来越受到人们的关注。高温好氧堆腐技术处理园林绿化废弃物是实现资源化、无害化的一种有效方式。但是园林绿化废弃物堆腐过程中释放的恶臭气体难以达到国家规定的排放标准,成为制约堆腐化处理工艺规模化、产业化发展的重要因素。针对这一问题,我们以北京市香山公园春季修剪的剪枝和枯落物为堆腐原料,对其堆腐过程中产生的H2S和NH3气体展开研究,设置箱式高温好氧堆腐试验,探究园林绿化废弃物堆腐过程中H2S和NH3气体的释放规律,与不同物料C/N比、温度、pH值、通风状况和添加生物除臭菌剂等影响因子之间的关系,研究控制H2S和NH3气体释放的策略。研究结果如下:
     (1)不同物料C/N比影响堆腐过程中高温期的出现天数和持续时间,C/N为30的处理高温期的出现天数最短,在堆腐第3d就达到了65℃的最高堆温,55℃以上的堆温持续时间最长,持续了12d;影响堆腐过程中pH和EC值的变化和产品的最终pH和EC值。C/N为30的处理pH和EC值在整个堆腐过程中变化幅度明显,C/N为40的处理堆腐产品pH值最低,C/N为30的处理堆腐产品的EC值最低。
     (2)不同物料C/N比影响堆腐过程中C/N比的下降率、堆腐产品的C/N比和T值。C/N比为20的处理堆腐产品的C/N最低,C/N为30的处理C/N下降率最大,T值最小,且小于0.6。影响堆腐产品的种子发芽率指数。C/N为20的处理种子发芽率指数为78.88%,表明未腐熟;C/N为30的处理为98.47%,表明腐熟完全;C/N为40的处理为81.82%,表明基本腐熟。
     (3)不同物料C/N比影响堆腐过程中H2S气体和氨气的释放浓度和累积释放量。物料C/N比越低,两种气体释放量越大。H2S气体的释放规律是堆腐升温期先升高后下降,高温期前期上升,后期略有下降,降温期再上升,累积释放量的规律是高温期>降温期>升温期,因此对H2S气体的控制措施可集中在高温期和降温期进行;氨气的释放规律是堆腐升温阶段不断升高,高温期先达到最高峰值后逐渐下降,降温期下降并趋于平缓,累积释放量的规律是高温期>升温期>降温期,对氨气的控制措施可集中在升温期和高温期进行。
     (4)不同通风时间影响堆腐物料的腐熟情况和H2S气体和氨气的释放浓度和累积释放量,通风时间长,不利于物料的升温,达到完全腐熟所需的时间较长,且易造成H2S气体和氨气的集中释放;通风时间短,物料升温效果较好,达到完成腐熟所需的时间短,且H2S气体和氨气释放缓慢,累积释放量低。
     (5)添加生物除臭菌剂既可降低园林绿化废弃物堆腐过程中H2S气体的释放浓度和累积释放量,同时可提高堆腐产品的腐熟质量。
     (6)回归分析可得,园林绿化废弃物堆腐处理过程中物料的pH值与H2S气体的释放浓度呈显著正相关,与氨气的释放浓度呈显著负相关。因此,要使堆腐过程中H2S和氨气的释放量最低,则必须调节物料pH值。
As the increasing of city's landscaping area, people are more and more paying attention to city pollution caused by the landscaping wastes. Using high-temperature aerobic composting technology to dispose landscaping wastes is an effective way to achieve resource recovery and safety disposal. But the obnoxious gas generated by composting process by landscaping wastes can't meet the regulated effluent standard of the country, which are becoming important factors in holding back the development of mass-production and industrialization of composting technology. To solve this problem, we conducted researches on H2S and NH3discharged by the landscaping wastes composting process, performed the box-type thermophilic aerobic composting experiments, explored the discharge rules of H2S and NH3during the process of landscaping wastes composting and the relationship with impact factors C/N, temperature, pH, ventilation, and biological deodorization bacteria, and studied ways to control H2S and NH3discharge. These activities were performed in Beijing Fragrant Hill Park using prunings and litter as composting target. The results are as follows:
     (1) Different C/N have impact on megathermal period days and duration. The megathermal period is the shortest when C/N is30, and the highest temperature65℃of the compost is appeared at the third day, and it has the longest duration period of12days at the temperature of above55℃. The C/N can also affect the pH and EC rangeability and the final value of pH and EC of the compost. The rangeability of pH and EC is obvious when C/N is30during the composting period and it has the lowest EC in dealing with the composting products, and the pH is the lowest when C/N is40.
     (2) Different C/N of composts have impact on the decline of C/N during the composting process, the product's C/N, and the value of T. The compost's C/N is the lowest when the C/N is20, and it has the largest rangeability and smallest value of T, which is less than0.6, when C/N is30. It also affects the seeds' germination index. It has a germination index of78.88%for the seeds when C/N is20, indicating not decomposed yet; it has a germination index of98.47%when C/N is30, indicating totally decomposed; it has a germination index of81.82%when C/N is40, indicating mainly decomposed.
     (3) Different C/N have an effect on release concentration and cumulative release amount of H2S and ammonia during the decomposting process. The lower C/N for the compost, the more H2S and ammonia discharged. The rules of the H2S discharge are that rise at the beginning then decline at the warming up phase, rise at the beginning then slightly decline in the megathermal period, and rise to the highest in the catathermal period. The laws of the accumulative release amount is megathermal period> catathermal period> warming up phase, so the H2S control measures can be concentrated in the megathermal period and catathermal period. The rules of ammonia discharge are that rise continuously at the warming up phase, rise to the peak then decline gradually during the megathermal period, and decline to flat during the catathermal period. The laws of the accumulative release amount is megathermal period> warming up phase> catathermal period, and ammonia control measures can be concentrated in the megathermal period and warming up phase.
     (4) Different ventilation time affect the product's condition of composting and the release concentration and accumulative release amount of H2S and ammonia. If the ventilation time is long, it will cause the discharge of H2S and ammonia at the same time and take longer time to achieve totally decomposed; if the ventilation time is short, it will take shorter time to become totally decomposed and make the discharge of H2S and ammonia a slower pace with a low accumulative release.
     (5) Adding biological deodorization bacterium agent can not only lower H2S accumulative release during landscaping wastes decomposting process, but also reduce the total discharge amount to a level lower than samples without handling.
     (6) The pH is positively correlated with the release concentration of H2S and negatively correlated with the release concentration of ammonia during the landscaping wastes decomposing disposal process. Therefore, the ph value must be adjusted to make the emission of H2S and NH3reach the lowest point.
引文
毕东苏.垃圾堆肥厂臭气的生物脱臭技术综述[J].安徽农业科学2007,35(27):8626-8625.
    鲍士旦.土壤农化分析(第3版)[M].北京:中国农业出版社,2005:25-183.
    陈东旭,刘金元,范运湘.臭气控制[J].市政技术,2002,113(4):29-34.
    陈荣,张玉婕,刘强等.城市生活垃圾发酵恶臭及生物法应用研究[J].环境卫生工程,2008,12(16):14-17.
    董阳,方海兰,郝瑞军,等.矿化垃圾和绿化植物废弃物在盐碱土上利用的效果[J].中国土壤与肥料,2009(6):67-73.
    范海荣,华珞,傅桦,等.城市垃圾堆肥的生态效应与对策研究[J].土壤,2004,36(5):498-505.
    龚沛光.大气污染[M].北京:气象出版社.1985,10-19.
    高伟,陈同斌,郑国砥,等.城市污泥堆肥过程中H2S的释放动态及其控制策略[J].环境科学学报,2005,25(11):1470-1475.
    姜安玺,赵玉鑫,徐桂芹等.生物过滤法云除H2S和NH3技术探讨[J].黑龙江大学自然科学学报,2003,20(1):92-95.
    黄利斌,李荣锦,王成.国外城市有机地表覆盖物应用研究概况[J].林业科技开发,2008(6):1-8.
    简保权.猪粪堆肥过程中NH3和H2S的释放特点及除臭微生物的筛选研究[D].武汉:华中农业大学,2006.
    蒋建国,王伟,吴学龙,等.粪渣污泥处理处置过程恶臭气体的产生及控制[J].环境卫生工程,2001,9(1):3-5.
    李国学.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    李季,彭生平.堆肥手册.全国第一期堆肥技术与工程培训班教材(内部资料).北京,2004.
    李季,彭生平.堆肥工程实用手册[M].北京:化学工业出版社,2005:63-96.
    刘楷,白登明.污水处理系统臭气污染问题的研究[J].环境污染治理技术与设备,2004,15(5):38-42.
    李琳,刘俊新.挥发性有机污染物与恶臭的生物处理技术及其工艺选择[J].环境污染治理技术与设备,2001,2(5):41-47.
    刘更另.中国有机肥料[M].北京:中国农业出版社,1991:38-59.
    罗泉达.C/N比值对猪粪堆肥腐熟的影响[J].闽西职业技术学院学报,2008,10(1):113-115.
    卢迎红.沈阳市北部污水处理厂污泥及恶臭污染现状及防治对策.环境保护科学,1999,25(3):13-15.
    李玉红,王岩,李清飞.不同原料配比对牛粪高温堆肥的影响.河南农业科学,2006(11):65-68.
    栾亚宁.农林有机废弃物堆腐生产花卉栽培基质及行业标准研究[D].北京:北京林业大学,2011:14-14.
    李志强,刘绪宗,王建利.生物脱臭技术[J].中国给排水,1999,15(9):52-54.
    吕子文,方海兰,黄彩娣.美国园林废弃物的处置及对我国的启示[J].中国园林,2006:91-92.
    彭清涛.恶臭污染及其治理技术[J].现代科学仪器,2000(5):44-46.
    秦莉,沈玉君,李国学,等.不同C/N比对堆肥腐熟度和含氮气体排放变化的影响[J].农学环境科学学报,2009,28(12):2668-2673.
    孙克君,阮琳,林鸿辉.园林有机废弃物堆肥处理技术及堆肥产品的应用[J].中国园林,2009(4):12-14.
    索琳娜,金茂勇,张宝珠.农林有机废弃物生产花木栽培基质技术和前景[J].北方园艺,2009(4):108-112.
    尚秀华,谢耀坚,彭彦.农林废弃物的腐熟处理及其在育苗中的应用[J].桉树科技,2008(2):49-54.
    孙向阳,栾亚宁,王惠,等.DB 11/T 770-2010,花卉栽培基质[S].北京市地方标准,2010:05-06.
    沈玉君,陈同斌,刘洪涛,等.堆肥过程中臭气的产生和释放过程研究进展[J].中国给水排水,2011,27(11):105-105.
    田赟,汪海燕,孙向阳,等.添加竹醋液和菌剂对园林废弃物堆肥理化性质的影响[J].农业工程学报,2010(8):272-278.
    吴长功,鲁玉玲(译).硫化氢的处理技术[J].国外环境科学技术,1994(3):38-39.
    吴春秀,王连生,费学宁.恶臭污染控制技术新进展[J].天津建设科技,2006,16(5):53-55.
    王惠.外源添加物在园林绿化废弃物堆腐过程中的应用[D].北京:北京林业大学,2010.
    汪恒英.接种对堆肥进程的影响及堆肥产物功能化研究[D].安徽师范大学,2004.
    汀建飞,于群英,陈世勇,等.农业固体有机废弃物的环境危害及堆肥化技术展望[J].安徽农业科学,2006,(18).
    吴卫红,米锋,张大红,等.园林绿化废弃物资源化利用产业发展模式——以北京市为例[J].世界
    林业研究,2010(5):77-80.
    王岩,王文亮,霍晓婷.家畜粪尿的堆肥化处理技术研究[J].堆肥材料的发酵特性和氨气挥发.河南农业大学学报,2002,36(3):284-287.
    徐灵,王成端,姚岚.污泥堆肥过程中主要性质及氮素转变[J].生态环境,2008,17(2):602-605.
    殷峻.生物滤塔处理恶臭气体及微生物学机理[D].杭州:浙江大学,2004.
    于鑫,北京市园林绿化废弃物再利用调查及堆肥试验研究[D].北京林业大学,2010.
    翟崇志.微生物过滤法净化恶臭污染[J].重庆环境科学,2000,22(3):35-39.
    张骅.以园林绿化废弃物为原料的栽培基质对草花生长的研究[D].北京:北京林业大学,2011.
    郑国砥,高定,陈同斌,等.污泥堆肥过程中氮素损失和氨气释放的动态与调控[J].中国给水排水,2009,25(11):121-124.
    中国建设报.北京园林绿化废弃物资源化.广西城镇建设,2010:111.
    中国预防医学科学院环境卫生与卫生工程研究所.GB7959—87,粪便无害化卫生标准[S].北京:中国标准出版社,1988:1.
    张萍.促进碳平衡的生态学思考[J].环境保护,2008(12B):35-35.
    周肖红.绿化废弃物堆肥化处理模式和技术环节的探讨[J].中国园林,2009(4):07-11.
    Alix C M. Retrofits curb biosolids composting odors [J]. Biocycle,1998,39(6):37-37.
    Australian Standard. As 4454-2003 Composts, soil conditioners and mulches[S]. Australian Standard,2003.
    Bishop P L, Godfrey C. Nitrogen transformations during sludge composting [J]. Biocycle,1983,24, 34-39.
    Carolina provide valuable insights on equipment inbestments, processing strategies and Markets[R].2005:22-26
    Cary O, Kurt F, Susan B. How much does it cost to run a county yard trimmings recycling system. Pennsylvania county analyzes operations at its ten sites that grind, screen and compost more than 100,000 cubic yards of leaves, grass and brush with $2 million worth of equipment [J]. Biocycle,2005:45-52.
    Dominic H, Josef B, Enzo F, et al.. Comparison of compost standards within the EU, North America and Australasia[M]. The Waste and Resources Action Programme,2002:37.
    Elwell,David L,Keener. Odorous emissions and odor control in composting swine manure/sawdust mixes using continuous and intermittent aeration[J]. Transactions of the American Society of Agricultural Engineers,2001,44 (5):1307-1316.
    Emerson D. Yard Trimmings And Brush Management. Analyzing costs and revenues. Latest trends in yard trimmings composting. Report from facilities in Iowa, South Dakota,New Jersey and North The Composting Council And CWC. Development of Lands cape Architect Specifications for Compost Utilization[R].1997.
    Emeterio IJ,Victor PG. Relationship between carbon and total organic matter in municipal solid waste and city refuse compost[J].Bioressource Technology,1992,41:209-223.
    Golueke C G.Principles of biological resource recovery [J].Biocycle,1981,22:36-40.
    Haug R T.The Practical Handbook of Compost EnGIneering[M].London,Tokyo:Lewis Publishers, 1993.
    Herr C E W,Nieden A,Stilianakis N l,et al..Health effeets assoeiated with exposure to resideniial organic dust[J].Ameriean Journal of hidustrial Medicine,2004,46(4):381-385.
    Hort C,Gracy S,Platel V,et al..Evaluation of sewage sludge and yard waste compost as a biofilter media for the removal of ammonia and volatile organic sulfur compounds (VOSCs)[J]. Chem Eng J,2009,152(1):44-53.
    Jan B, et al..EPA530-R-94-003. Composting Yard Trimmings and Municipal Solid Waste [R]. Environmental Protection Agency,1994.
    Krogmann U,Qu M, Boyles L S,et al.. Biosolids and sludge management[J]. Water Environ Res, 1997,69 (4):531-550.
    Komilis D P, Ham R K, Park J K. Emission of volatile organic compounds during composting of municipal solid wastes[J]. Water Res,2004,38(7):1707-1714.
    Mathur S P. Bioconversion of waste materials to industrial products [M].New York:Composting Processes,1991:147-186.
    Moller P, Dijksterhuis G. Differential haman electrodermal responses to odours[J]. Neroscience Letters,2003,346(3):129-132.
    Morel T L, Colin F, Germon J C, et al. Methods for the evaluation of the maturity of municipal refuse compost [C]. GASSER J K R. In Composting of Agricultural and Other Wastes. London and New York:Elsevier Appled Science Publishers,1982:56-72.
    Park K J,Choi MH,Hong J H. Control of Composting Odor Using Biofiltration[J]. Compost Sci Util,2002(10):356-362.
    Sabine Peters, Stefanie Koschinsky, Frank Schwieger, at al. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Applied and Environmental Microbiology, 2000,66(3):930-936.
    United States Environmental Protection Agency Office of Solid Waste.EPA 30-s-06-001.Municip-al Solid Waste In the United States:Facts and Figures for 2005,United States [R/OL].Environmen-al Protection Agency,2006.
    Wang P, Changa C M, Wat son M E, et al..Maturity indices for composted dairy and pig manures [J].Soil Biology and Biochemistry,2004,(36):767-776.
    Zucconi F, Foret Mand de Bertoldi M, Monaco A, et al. Biological evaluation of compost maturity [J]. Biocycle,1981,22:27-29.
    Zucconi F, Monaco A and Foret Mand de Bertoldi M. Phytotoxins during the stabilization of organic matter. In:Gasser J K R. composting of agicultural and other wastes [M]. London and New York:Elsevier Applied Science Publications.1985:73-85.
    ① http://www.forestry.gov.cn/portal/sbj/s/2653/content-420901.html.
    ②http://www.yuanlin365.com/news/153197.shtml.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700