钢筋均匀分布的混凝土构件破坏面统一模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土作为一种传统复合材料,已经使用了一百五十多年了。在各种灾害作用下,钢筋混凝土建筑结构的破坏大都由拉、压、弯、剪、扭的不同组合引起。近百年来,许多研究者提出了众多计算方法及破坏理论,但是,这些理论模型多是把拉、压、弯、剪、扭分开来描述的,少数是把它们部分的组合起来描述。能把拉、压、弯、剪、扭完全组合在一起的计算只是非常个别的,由于引入了变形协调条件,使计算过程比较繁琐,甚至无法取得解析解,需要借助计算机进行大量的迭代计算而缺乏直观性,很难被工程界接受。一个成熟的能够被工程界接受的理论应该是充分利用塑性力学、断裂力学和组合材料力学的研究成果,不仅理论上应该是统一的、而且形式上是简明的。因此,依照这个标准,钢筋混凝土破坏理论目前还未成熟,但是要想取得一点进展又是十分艰难的。本文对钢筋分布比较均匀混凝土构件在复合受力下的破坏机理进行了较为全面、详细的分析和比较,特别对钢筋分布比较均匀混凝土构件的破坏做了以下几个方面的研究:
     首先,本文参考了较为成熟的Nielsen模型,采用经典弹塑性理论中的von Mises准则来考虑钢筋的销栓作用,采用混凝土Willam-Warnke五参数破坏模型对原拉断的Mohr-Coulomb混凝土破坏模型进行修正,进一步完善了钢筋均匀分布混凝土构件在轴力、弯矩、剪力、扭矩共同作用下的破坏统一理论。在新模型的基础上建立了钢筋均匀分布的混凝土薄壁构件在复合受力情况下的承载力统一表达式。
     其次,根据钢筋均匀分布的混凝土薄壁构件的特点推导出箱形截面下的破坏统一模型,将新模型以及原Nielsen模型的计算结果与现有大量的箱形截面试验数据进行对比分析,得出新模型的优缺点。并且根据上述的比较结果,归纳出新的破坏统一模型在实际应用中的限制条件。
     再次,作为模型的进一步拓展,本论文又进行了下述工作:(1)根据箱形截面的成果推导出环形截面的破坏统一模型。(2)考虑了平面内多向配筋情况下钢筋混凝土等效均质板的破坏统一模型,其破坏屈服条件可通过双向配筋板求取。(3)通过理论推导对比分析了钢筋混凝土等效均质板在单轴应力加载与单轴应变加载两种情况下承载力的不同。
     总之,论文改进的钢筋均匀分布的混凝土构件在轴力、弯矩、剪力、扭矩共同作用下的破坏统一模型更为合理,而且具有较大的工程参考意义。
As a traditional composite material, the reinforced concrete has been used in structures for over one hundred and fifty years. The failures of reinforced concrete structures are mainly caused by different combinations of tension, compression, bending, shear and torsion. During the last one hundred years, many researchers have put forward many computational methods and failure theories. But, most of these models separate the actions of tension, compression, bending, shear and torsion. Only several models can describe different combination actions to some extent. A few can describe the full combination actions, because the computation process is very complex or even can not obtain analytical solutions when the deformation compatibility conditions are introduced. It needs to use computers to carry on a lot of iterations, which is less of intuitiveness. A mature theory should fully use the research contributions from plastic mechanics, fracture mechanics, compound material mechanics and should be expressed in simple way, which means that a perfect theory should be unified and expressed with simplicity. So, it can be concluded that the theory of reinforced concrete has not been mature yet. It is also recognized that any a little contribution to make the theory of reinforced concrete more mature is very difficult. In the present dissertation, based on existing material failure criteria, the failure mechanism of evenly distributed reinforced concrete members under generalized loading combination is analyzed fully and specifically. The following aspects are studied especially for the failure of evenly distributed reinforced concrete members:
     Firstly, according to the existing popular Nielsen failure model, the dowel action of reinforcement is considered by means of von Mises criterion and the Willam and Warnke five-parameter failure model is also introduced to adjust the original concrete failure model, which is so-called Mohr-Coulomb with tension cut-off. The original unified failure models of evenly distributed reinforced concrete members under combined actions of compression, tension, bending, shear and torsion are further improved, and the unified expression of evenly distributed reinforced concrete thin-walled members is derived under the generalized loading condition.
     Secondly, according to the features of evenly distributed reinforced concrete thin-walled members, the unified failure model on the box section members is derived. Then, the theoretical analysis results of both new model and Nielsen model will be compared with a large amount of experimental results so as to obtain the advantages and disadvantages of the new unified failure model. According to the comparing results, the limitations on application will be defined for the new unified failure model.
     Thirdly, on the basis of the unified failure model on box section, more research works have been extended, such as: (1) the unified failure model on annular sections, (2) the failure model of equivalent flat slab reinforced in arbitrary direction with different reinforcements, which can be considered into orthogonal reinforcement case, (3) the comparison and analysis of carrying capacity between uniaxial stress condition and uniaxial strain condition is conducted, which shows an important difference.
     In conclusion, the new unified failure model of evenly distributed reinforced concrete members under combination of axial force, shearing force, bending moment and torsion is more reasonable and meaningful for the application of unified failure theories in reinforced concrete structures.
引文
[1]. Navier C L. Resume des lecons donnees a l'ecole des ponts et chaussees sur l'application de la mecanique a l'establissement des constructions et des machines[M]. Paris: Firmin Didet, 1826.
    [2].刘西拉.结构工程学科的现状与展望[M].北京:人民交通出版社,1997.
    [3].刘西拉.结构工程学科的进展与前景[M].北京:中国建筑工业出版社,2007.
    [4].沈殷,李国平,陈艾荣.钢筋混凝土结构抗剪分析方法的发展[C]//上海市公路学会第六届年会学术论文集. 2003:166-171.
    [5]. Ritter W. Die Bauweise Hennebique[M]. Zurich: Schweizerishe Bauzeitung, 1899.
    [6]. M?rsch F, Wayss. Der Eisenbetonbau, seine Anwendung und Theorie[M]. Germany: Neustadt a. d. Haardt, 1902.
    [7]. Whitney C S. In Plastic theory of reinforced concrete design[C]// ASCE Transaction 1942: 251-282.
    [8].车惠民,邵厚昆,李霄萍.部分预应力混凝土:理论·设计·工程实践[M].成都:西南交通大学出版社,1992.
    [9]. M.C.波里山斯基.按破坏阶段计算钢筋混凝土受弯构件中的弯起钢筋和箍筋[M].国立建筑工程出版社,1946.
    [10]. M.C.波里山斯基.受弯构件抵抗切力作用的新数据[C]//“现代钢筋混凝土建筑问题”论文集.国立建筑工程出版社,1952.
    [11].К.В.萨赫诺夫斯基.钢筋混凝土结构学[M].北京:高等教育出版社,1957.
    [12]. Clark A P. Cracking in Reinforced Concrete Flexural Members[M]. ACI Journal, 1956.
    [13]. Siess C P, Viest I M. Studies of slab and beam highway bridges: part V. tests of continuous right I-beam bridges[M]. University of Illinois Engineering Experiment Station, 1953.
    [14].管品武,徐泽晶,王博.钢筋混凝土构件抗剪承载力分析方法比较[J].世界地震工程,2002,18 (3):95-101.
    [15].陈惠发,A.F.萨里普.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [16].徐秉业,刘信声.结构塑性极限分析[M].北京:中国建筑工业出版社,1985.
    [17]. Ph.G.霍奇.结构塑性分析[M].北京:科学出版社,1965.
    [18]. Hsu T T C. Toward a unified nomenclature for reinforced-concrete theory[J]. Journal of Structural Engineering, 1996: 275-283.
    [19]. Nielsen M P. Om Forskydningsarmering i Jernbetonbjaelker(On Shear Reinforcement in Reinforced Concrete Beams)[J]. Bygningsstatiske Meddelelser, 1967, 38 (2): 33-58.
    [20]. Lampert P, Thurlimann B. Torsion Tests of Reinforced Concrete Beams[R]. 6506-2, ETH Zurich: Institute fur Baustatik, 1968.
    [21]. Baumann T. Zur Frage der Netzhewehrung von Flachentragwerken[J]. Der Bauingenieur, 1972, 47 (6): 367-377.
    [22]. Collins M P. Torque-twist characteristics of reinforced concrete beams[J]. Inelasticity and Non-linearity in Structural Concrete, 1973: 211-231.
    [23]. Collins M P, Mitchell D. Shear and torsion design of prestressed and non-prestressed concrete beams[J]. PCI Journal, 1980, 25(4): 32-100.
    [24]. Vecchio F, Collins M P. Stress-strain characteristics of reinforced concrete in pure shear[C]// IABSE Colloquium on Advanced Mechanics of Reinforced Concrete. Delft: IABSE, 1981: 211-225.
    [25]. Hsu T T C. Softened Truss Model Theory for Shear and Torsion[J]. ACI Structural Journal, 1988,85 (6): 624-635.
    [26]. Hsu T T C. Unified Theory of Reinforced Concrete [M]. Boca Raton, FL: CRC Press, 1993.
    [27]. Pang X-B, Hsu T T C. Fixed Angle Softened Truss Model for Reinforced Concrete[J]. ACI Structural Journal, 1996, 93 (2): 197-207.
    [28]. Nielsen M P. Limit Analysis and Concrete Plasticity[M]. Englewood Cliffs, NJ: Prentice-Hall, 1984.
    [29]. The joint ACI-ASCE committee 426 on shear and diagonal tension of the committee on masonry and concrete of the structural division. The shear strength of reinforced concrete members[J]. Journal of the structural division proceedings, 1973, 70(7): 1019-1187.
    [30]. Elfgren L. Reinforced concrete beams loaded in combined torsion, bending and shear[R]. 71:3, Goteborg: Division of Concrete Structures, Chalmers University of Technology, 1972.
    [31]. Collins M P, Mitchell D. A rational approach of shear design-the 1984 Canadian code provision[J]. ACI Journal, 1986: 925-933.
    [32]. Robinson J R. Essais a l'Effort Tranchant de Poutres a Ame Mince en Beton Arme[J]. Annales des Ponts et Chaussees, 1961, 131(2): 225-255.
    [33]. Leonhardt F, Walther R. The Stuttgart Shear Tests, Library Translation No.111[C]// London: Cement and Concrete Association, 1964.
    [34]. Placas A, Regan P E. Shear Failure of Reinforced Concrete Beams[J]. ACI Journal Proceedings, 1971, 68(6): 763-773.
    [35]. Nielsen M P, Braestrup M W, Jensen B C. Concrete Plasticity-Beam Shear-Shear in Joints Punching Shear[M]. Technical University of Denmark, Copenhagen: Danish Society for Structural and Engineering, 1978.
    [36]. Robinson J R, Demorieux J M. Essai de Traction-Compression sur Modeles D'Ames de Poutre en Beton Arme-PartⅠ[M]. Paris: Instututde Recherches Appliquees du Beton Arme, 1968.
    [37]. Robinson J R, Demorieux J M. Resistance Ultime du Beton de I'Ame de Poutres en Double -Te en Beton Arme -PartⅡ[M]. Paris: Institutde Recherches Appliquees du Beton Arme, 1972.
    [38]. Hsu T T C, ZHANG Li-Xin. Tension stiffen in reinforced concrete member element[J]. ACI Journal, 1996: 108-115.
    [39].徐增全.钢筋混凝土薄膜元理论[J].建筑结构学报,1995,16(05):10-19.
    [40]. Hsu T T C. The reinforced concrete general method(Ⅰ)[M]. Beijing, 1991.
    [41]. Hsu T T C. The reinforced concrete general method(Ⅱ)[M]. Beijing, 1991.
    [42]. Al-Nahlwi K A, Wight J K. Beam analysis using concrete tensile strength in truss models[J]. ACI Structural Journal, 1992: 284-289.
    [43]. Ramirez J A, Breen J E. Evaluation of a modified truss model approach for beams in shear[J]. ACI Structural Journal, 1991, 88(5): 562-572.
    [44]. Hsu T T C, Mo Y L. Softening of concrete in torsional members-theory and tests[J]. ACI Journal, 1985, 82(3): 290-303.
    [45]. Hsu T T C, Mo Y L. Softening of concrete in torsional members-design recommendations[J]. ACI Journal, 1985, 82(3): 443-452.
    [46]. Belarbi A, Hsu T T C. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete [J]. ACI Structural Journal, 1994, 91(4): 465-474.
    [47]. Pang X-B, Hsu T T C. Behavior of reinforced concrete membrane elements in shear[J]. ACI Structural Journal, 1995, 92(6): 665-679.
    [48]. Hsu T T C. Torsion of Reinforced Concrete[M]. New York: Van Nostrand Reinhold Co., 1984.
    [49]. Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete elements subjected to shear[J]. ACI Journal, 1986, 83 (2): 219-231.
    [50]. Vecchio F J, Collins M P. Predicting the response of reinforced concrete beams subjected to shear using the modified compression field theory[J]. ACI Structural Journal, 1988, 85(4): 258-268.
    [51]. Vecchio F J. Disturbed stress field model for reinforced concrete:formulation[J]. Journal of Structural Engineering, 2000, 126(9): 1070-1077.
    [52]. Vecchio F J. Disturbed stress field model for reinforced concrete: implementation[J]. Journal of Structural Engineering, 2001, 127(1): 12-20.
    [53]. Vecchio F J, Lai D, Shim W, et al. Disturbed stress field model for reinforced concrete: validation[J]. Journal of Structural Engineering, 2001, 127(4): 350-358.
    [54]. "David" X-B, Hsu T T C. Fixed Angle Softened Truss Model for Reinforced Concrete[J]. ACI Structural Journal, 1996, 93(2): 197-207.
    [55]. Hsu T T C. Stresses and crack angles in concrete membrane elements[J]. Journal of Structural Engineering, 1998, 124(12): 1476-1484.
    [56]. ZHANG Li-Xin, Hsu T T C. Behavior and analysis of 10MPa concrete membrane elements[J]. Journal of Structural Engineering, 1998, 124: 24-34.
    [57]. CHEN Gan-wei. Plastic analysis of shear in beams, deep beams, and corbels[R]. 237, Lyngby: Department of Structural Engineering, Technical University of Denmark, 1988.
    [58]. Park R. Capacity design of ductile RC building structures for earthquake resistance[J]. The Structural Engineering, 1992, 70 (16): 279-289.
    [59]. Priestley M j N, Park R. Strength and Ductility of concrete bridge columns under seismic loading[J]. Structural Journal of ACI, 1987, 84(1): 61-76.
    [60]. Watson S, Zahn F A, Park R. Confined reinforcement for concrete columns[J]. Journal of Structural Engineering of ASCE 1994, 120(6): 1798-1824.
    [61]. Paulay T, Priestley M J N.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社,1999.
    [62]. Ghee A B, Priestley M J N, Paulay T. Seismic shear strength of circular reinforced concrete columns[J]. ACI Structural Journal, 1989, 86(1): 45-59.
    [63].康谷贻.钢筋混凝土构件抗扭强度的塑性解[J].天津大学学报, 1987, (01): 26-36.
    [64].康谷贻,巩长江.单调及低周反复荷载作用下异形截面框架柱的受剪性能[J].建筑结构学报1997, (05): 22-31.
    [65]. Ichinose T. A shear design equation for ductile R/C members[J]. Earthquake Engineering and Structural Dynamics, 1992, 21(3): 197-214.
    [66].管品武.钢筋混凝土框架柱塑性铰区抗剪承载力试验研究及机理分析[D].长沙:湖南大学,2001.
    [67].江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [68].朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [69]. Nilsson, Arthur H. Nonlinear analysis of reinforced concrete by the finite element method[J]. ACI Journal, 1968, 65(9): 757-766.
    [70]. Franklin H A. Nonlinear analysis of reinforced concrete frames and panels[D]. Berkeley, CA: University of California, Berkeley, 1970.
    [71]. Zienkiewiez O C, Owen D R H, Phillips D V, et al. Finite element methods in the analysis of reactor vessels[J]. Nuclear Engineering and Design, 1972, 20(2): 507-541.
    [72].Bazant Z P, Nilson A H. State-of-the-art report on finite element analysis of reinforced concrete[M]. New York: ASCE, 1982.
    [73].董哲仁.钢筋混凝土非线性有限元法原理与应用[M].北京:中国水利水电出版社,2002.
    [74]. Bazant Z P, Cedolin L. Fracture Mechanics of Reinforced Concrete[J]. Journal of the Engineering Mechanics Division, ASCE, 1980, 106(6): 1287-1306.
    [75]. Bazant Z P, Tsubaki T. Slip-Dilatancy Model for Cracked Reinforced Concrete[J]. Journal of the Structural division, ASCE, 1980, 106(9): 1947-1966.
    [76]. Dei Poli S, Di Prisco M, Gambarova PG. Cover and stirrup effects on the shear response of dowel bar embedded in concrete[J]. ACI Structural Journal, 1993, 90(4): 441-450.
    [77]. Dulacska H. Dowel action of reinforcement crossing cracks in concrete[J]. ACI Journal, 1972, 69 (12): 754-757.
    [78]. El-Ariss B. Behavior of beams with dowel action[J]. Engineering Structures, 2007, 29(6): 899-903.
    [79].贺小岗,关国雄.钢筋销栓模型及其在深梁分析中的应用[J].工程力学, 2001, 18(01): 96-102.
    [80].陈惠发,A.F.萨里普.土木工程材料的本构方程.第一卷,弹性与建模[M].武汉:华中科技大学出版社,2001.
    [81].陈惠发.土木工程材料的本构方程.第二卷,塑性与建模[M].武汉:华中科技大学出版社,2001.
    [82].俞茂宏.工程强度理论[M].北京:高等教育出版社,1999.
    [83]. Kotsovos M D. A mathematical description of the strength properties of concrete under generalized stress[J]. Magazine of Concrete Research, 1979, 31(108): 151-158.
    [84]. Willam K J, Warnke E P. Constitutive models for the triaxial behavior of concrete[C]// Bergamo, Italy: International association of bridge and structural engineers seminar on concrete structures subjected to triaxial stresses, 1974.
    [85].陈惠发,A.F.萨里普.混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004.
    [86].中华人民共和国建设部.混凝土结构设计规范[M].北京:中国建筑工业出版社,2002.
    [87]. European Committee for Standardization. Eurocode 2: Design of concrete structures -Part 1: General rules and rules for buildings[M]. London: British standard publisher, 2002.
    [88].贡金鑫,魏巍巍,胡家顺.中美欧混凝土结构设计[M].北京:中国建筑工业出版社,2007.
    [89]. Rahal K N. Combined torsion and bending in reinforced and prestressed concrete beams using simplified method for combined stress-resultants[J]. ACI Structural Journal, 2007, 104(4): 402-411.
    [90]. Rahal K N. Membrane Elements Subjected to In-Plane Shearing and Normal Stresses[J]. ASCE Structural Journal, 2002, 128(8): 1064-1072.
    [91]. Rahal K N. Shear strength of reinforced concrete: Part II—Beams subjected to shear, bending moment, and axial load[J]. ACI Structural Journal, 2000, 97(2): 219-224.
    [92]. Rahal K N. Shear strength of reinforced concrete: Part I—Membrane elements subjected to pure shear[J]. ACI Structural Journal, 2000, 97(1): 86-93.
    [93]. Rahal K N, Collins M P. Simple model for predicting torsional strength of reinforced and prestressed concrete sections[J]. ACI Structural Journal, 1996, 93(6): 658-666.
    [94].刘继明,史庆轩,李志军等.钢筋混凝土箱形构件双向压弯剪反复扭矩作用的性能研究[J].建筑结构, 2007, 37(07): 20-24.
    [95].李志军.箱形截面钢筋混凝土双向压弯剪构件受扭性能试验研究[D].西安:西安建筑科技大学,2005.
    [96].赵嘉康,张连德,卫云亭.钢筋混凝土压弯剪扭构件的抗扭强度研究[J].土木工程学报, 1993, 26(01): 20-30.
    [97].徐艳秋,许克宾,刘凤奎.复合受力下混凝土箱梁抗扭承载力计算方法与试验研究[J].中国公路学报, 2000, 13 (03): 36-40.
    [98].中国建筑科学研究院.钢筋混凝土构件试验数据集[M].北京:中国建筑工业出版社, 1985.
    [1].高红,郑颖人,冯夏庭.材料屈服与破坏的探索[J].岩石力学与工程学报, 2006, 25(12): 2515-2522.
    [2].刘西拉,籍孝广.混凝土本构模型的研究[J].土木工程学报, 1989, 22(03): 55-62.
    [3]. Argyris J H, Faust G, Szimmat J, et al. Recent developments in the finite element analysis of prestressed concrete reactor vessels[J]. Nuclear Engineering and Design, 1974, 28(1): 42-75.
    [4]. Eibl J, Ivanyi G. In studie zum tragund verformoungs-verhalten von stahlbeton[R]. Heft 260,Berlin, Deutscher: Ausschuss für Stahlbeton, 1976.
    [5]. Paul B. Macroscopic criteria for plastic flow and brittle fracture[M]. New York: Academic Press, 1968.
    [6]. Drucker D C, Prager W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10: 157-165.
    [7]. Bresler B, Pister K S. Strength of concrete under combined stresses[J]. Journal of American Concrete Institute, 1958, 55(9): 321-345.
    [8]. Ottosen N S. A failure criterion for concrete[J]. Journal of the Engineering Mechanics Division, ASCE 1977, 103(4): 527-535.
    [9]. Hsieh S S, Ting E C, Chen W F. An elastic-fracture model for concrete[C]// The third Engineering Mechanics Division Speciality Conference, ASCE. Austin, Texas: The University of Texas, 1979: 437-440.
    [10]. Willam K J, Warnke E P. Constitutive models for the triaxial behavior of concrete[C]// International Association of Bridge and Structural Engineers Seminar on Concrete Structures Subjected to Triaxial Stresses. Bergamo, Italy, 1974: 1-30.
    [11]. Bazant Z P, Cedolin L. Fracture mechanics of reinforced concrete[J]. Journal of the Engineering Mechanics Division, ASCE, 1980, 106(6): 1287-1306.
    [12]. Bazant Z P, Tsubaki T. Slip-dilatancy model for cracked reinforced concrete[J]. Journal of the Structural division,ASCE, 1980, 106(9): 1947-1966.
    [13]. Bazant Z P, Tsubaki T, Belytschko T B. Concrete reinforcing net: Safe design[J]. Journal of the Structural division, ASCE, 1980, 106(9): 1899-1906.
    [14].陈惠发,A.F.萨里普.混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004.
    [15].霍锦锋,刘西拉.钢筋混凝土构件统一理论研究的发展[J].建筑技术开发,2004, 31(6): 1-4.
    [16].霍锦锋.钢筋混凝土构件破坏的统一表达[D].上海:上海交通大学,2004.
    [17].藤智明.钢筋混凝土基本构件[M].北京:清华大学出版社,1999.
    [18].天津大学,同济大学,东南大学.混凝土结构(上册)[M].北京:中国建筑工业出版社,1994.
    [19]. Elfren L, Karlsson I, Losberg A. Torsion-bending-shear interaction for concrete beams[J]. Journal of the Structural division, ASCE 1974, 100(8): 1657-1676.
    [20].陈惠发,A.F.萨里普.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [1].贺小岗,关国雄.钢筋销栓模型及其在深梁分析中的应用[J].工程力学, 2001, 18(01): 96-102.
    [2]. Ashour A F. Tests of reinforced concrete continuous deep beams[J]. ACI Structural Journal, 1997, 94(1): 3-12.
    [3]. Darwin D. Finite element analysis of reinforced concrete structuresⅡ[M]. New York: ASCE, 1993.
    [4]. El-Ariss B. Behavior of beams with dowel action[J]. Engineering Structures, 2007, 29(6): 899-903.
    [5].陈惠发,A.F.萨里普.混凝土和土的本构方程[M].北京:中国建筑工业出版社, 2004.
    [6]. Jeli? I, Pavlovi? M N, Kotsovos M D. A study of dowel action in reinforced concrete beams[J]. Magazine of Concrete Research, 1999, 51(2): 131-141.
    [7]. Vintzeleou E N, Tassios T P. Mathematical models for dowel action under monotonic and cyclicconditions[J]. Magazine of Concrete Research, 1986, 38(134): 13-22.
    [8]. Krefeld W, Thurston C W. Contribution of longitudinal steel to shear resistance of reinforced concrete beams[J]. ACI Journal, proceedings, 1966(3): 325-344.
    [9]. Taylor H P J. Investigation of the dowel shear forces carried by the tensile steel in reinforced concrete beams[R]. Technical Report 431, London: Cement and Concrete Association, 1969.
    [10]. Bauman T, Rusch H. In Versuche zum Studium der Verdubelungswirkung der Biegezugbewehrung eines Stahlbetonbalkens[C]// In Deuscher Ausschuss fur Stahlbeton. Berlin: Wilhelm Ernst und Sohn, 1970.
    [11]. Houde J, Mirza S A. A finite element analysis of shear strength of reinforced concrete beams[C]// American Concrete Institute. Detroit: ACI Special Publication, 1974, 42(1): 103-128.
    [12]. Jimenez R, Gergeley P, White R N. Shear Transfer Across Cracks in Reinforced Concrete[R]. 78-4, Ithaca, NY: Department of Structural Engineering, Cornell University, 1978.
    [13]. Dulacska H. Dowel action of reinforcement crossing cracks in concrete[J]. ACI Journal, 1972, 69 (12): 754-757.
    [14]. Nielsen M P. Limit analysis and concrete plasticity[M]. Englewood Cliffs, NJ: Prentice-Hall, 1998.
    [15].霍锦锋.钢筋混凝土构件破坏的统一表达[D].上海:上海交通大学,2004.
    [16].霍锦锋,刘西拉.钢筋混凝土环形截面构件破坏的统一表达[J].上海交通大学学报, 2005, (11): 1866-1869.
    [17].中华人民共和国建设部.混凝土结构设计规范[M].北京:中国建筑工业出版社,2002.
    [18]. European Committee for Standardization. Eurocode 2: Design of concrete structures -Part 1: General rules and rules for buildings[M]. London: British standard publisher, 2002.
    [19]. Rahal K N. Combined torsion and bending in reinforced and prestressed concrete beams using simplified method for combined stress-resultants[J]. ACI Structural Journal, 2007, 104(4): 402-411.
    [20]. Rahal K N. Membrane elements subjected to in-plane shearing and normal stresses[J]. ASCE Structural Journal, 2002, 128(8): 1064-1072.
    [21]. Rahal K N. Shear strength of reinforced concrete: Part II—Beams subjected to shear, bending moment, and axial load[J]. ACI Structural Journal, 2000, 97(2): 219-224.
    [22]. Rahal K N. Shear strength of reinforced concrete: Part I—Membrane elements subjected to pure shear[J]. ACI Structural Journal, 2000, 97(1): 86-93.
    [23]. Rahal K N, Collins M P. Simple model for predicting torsional strength of reinforced and prestressed concrete sections[J]. ACI Structural Journal, 1996, 93(6): 658-666.
    [24]. Willam K J, Warnke E P. Constitutive models for the triaxial behavior of concrete[C]// Bergamo, Italy: International association of bridge and structural engineers seminar on concrete structures subjected to triaxial stresses, 1974.
    [25].温斌.统一试验边界的随动型混凝土本构模型及对试验边界条件的认识[D].北京:清华大学, 2003.
    [26]. Imran I, Pantazopoulou S J. Experimental study of plain concrete under triaxial stress[J]. ACI Materials Journal, 1996, 93(6): 589-609.
    [27]. Palaniswamy R, Surendra P S. Fracture and stress-strain relationship of concrete under triaxial compression[J]. Proceedings of ASCE, Journal of Structural Division, 1974, 100(5): 901-916.
    [28]. Smee D J. The effect of aggregate size and concrete strength on the failure of concrete under triaxial compression[J]. Civil Engineering Transactions, the Institution of Engineering, 1967: 339-344.
    [29]. Mills L, Zimmerman R. Compressive strength of plain concrete under multiaxial loading conditions[J]. Proceedings of ACI Journal, 1970, 67(10): 802-807.
    [1].陈伯真,胡毓仁.薄壁结构力学[M].上海:上海交通大学出版社,1988.
    [2]. Oris.H.迪根库布.混凝土箱梁桥[M].北京:人民交通出版社,1981.
    [3]. Leonhardt, Fritz. Long span prestressed concrete bridges in Europe[J]. Journal of Prestressed Concrete Institute, 1965, 10 (1): 62-75.
    [4]. Dallaire G. Designing bridge decks that won't deteriorate[J]. Civil Engineering—ASCE, 1973, 43 (8): 43-48.
    [5].郭金琼,房贞政,郑振.箱形梁设计理论[M].北京:人民交通出版社,2008.
    [6]. HUANG Zhen, LIU Xi-la, YANG Guang. Unified expression for failure of reinforced concrete members in bridge[J]. Journal of Zhejiang University SCIENCE A, 2006, 7(3): 383-390.
    [7]. Dei Poli S, Di Prisco M, Gambarova PG. Cover and stirrup effects on the shear response of dowel bar embedded in concrete[J]. ACI Structural Journal, 1993, 90(4): 441-450.
    [8].贺小岗,关国雄.钢筋销栓模型及其在深梁分析中的应用[J].工程力学, 2001, 18(1): 96-102.
    [9]. Dulacska H. Dowel action of reinforcement crossing cracks in concrete[J]. ACI Journal, 1972, 69(12): 754-757.
    [10].刘继明,史庆轩,李志军等.钢筋混凝土箱形构件双向压弯剪反复扭矩作用的性能研究[J].建筑结构, 2007, 37(7): 20-24.
    [11].李志军.箱形截面钢筋混凝土双向压弯剪构件受扭性能试验研究[D].西安:西安建筑科技大学,2005.
    [12].徐艳秋,许克宾,刘凤奎.复合受力下混凝土箱梁抗扭承载力计算方法与试验研究[J].中国公路学报, 2000, 13(03): 36-40.
    [13].赵嘉康,张连德,卫云亭.钢筋混凝土压弯剪扭构件的抗扭强度研究[J].土木工程学报, 1993, 26(01): 20-30.
    [14].中国建筑科学研究院.钢筋混凝土构件试验数据集[M].北京:中国建筑工业出版社,1985.
    [15].刘继明.钢筋混凝土复合受力构件受扭行为和设计方法的研究[D].西安:西安建筑科技大学,2004.
    [16].殷芝霖,张誉,王振东.抗扭[M].北京:中国铁道出版社,1990.
    [17].中华人民共和国建设部.混凝土结构设计规范[M].北京:中国建筑工业出版社,2002.
    [18].天津大学,同济大学,东南大学.混凝土结构(上册)[M].北京:中国建筑工业出版社,1994.
    [19].林咏梅,周小真,张连德.钢筋混凝土双向压弯剪构件在单调扭矩作用下抗扭性能的研究[J].建筑结构学报, 1996, 17(01): 29-39.
    [1]. Turmo J, Ramos G, Aparicio A C. Shear truss analogy for concrete members of solid and hollow circular cross section [J]. Engineering Structures, 2009, 31(2): 455-465.
    [2].胡纫蕾,郭绍宗,江礼璘.高压输电线路钢筋混凝土电杆设计[M].北京:中国工业出版社,1964.
    [3].四川省建筑工程局《钢筋混凝土离心管结构》编写组.钢筋混凝土离心管结构[M].北京:中国建筑工业出版社,1977.
    [4]. American Concrete Institute. Building code requirements for structural concrete and commentary(ACI 318M-05)[M]. ACI Committee 318, Structural building code, 2005.
    [5]. European Committee for Standardization. Eurocode 2: Design of concrete structures -Part 1: General rules and rules for buildings[M]. London: British standard publisher, 2002..
    [6]. Ranzo G, Priestley M J N. Seismic performance of large RC circular hollow columns[C]// 12th world conference on earthquake engineering, 2000: 1-8.
    [7]. Zahn F A, Park R, Priestley M J N. Flexural strength and ductility of circular hollow reinforced concrete column without confinement on inside face[J]. ACI Structural Journal, 1990, 87(2): 156-166.
    [8]. Ghee A B, Priestley M J N, Paulay T. Seismic shear strength of circular reinforced concrete columns[J]. ACI Structural Journal, 1989, 86(1): 45-59.
    [9]. Clarke J L, Birjandi F K. The behaviour of reinforced concrete circular sections in shear[J]. Journal of Structural Engineering, 1993, 71(5): 73-81.
    [10].霍锦锋.钢筋混凝土构件破坏的统一表达[D].上海:上海交通大学,2004.
    [11].霍锦锋,刘西拉.钢筋混凝土环形截面构件破坏的统一表达[J].上海交通大学学报, 2005, 39(11): 1866-1869.
    [12].吕志涛,周明华,陈友文.环形截面钢筋混凝土受弯构件的抗剪强度试验研究[J].南京工学院学报, 1980, (03): 26-31.
    [13].吕志涛,石平府,周燕勤.圆形、环形截面钢筋混凝土构件抗剪承载力的试验研究[J].建筑结构学报, 1995, 16(03): 13-20.
    [14]. Nielsen M P. Limit Analysis and Concrete Plasticity[M]. Englewood Cliffs, NJ: Prentice-Hall, 1984.
    [15]. Johansen K W. Yield line theory[M]. London: Cement and Concrete Association, 1962.
    [16]. Brastrup M W. Yield-line theory and limit analysis of plates and slabs[J]. Magazine of concrete research, 1970, 22(71): 99-106.
    [17]. Nielsen M P. On the strength of reinforced concrete discs[J]. Acta Polytechnica Scandinavica, 1971.
    [18].刘西拉,张国经.环形截面预应力输电杆的非线性分析[J].土木工程学报, 1981, 14(04): 29-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700