现代竹结构房屋的试验研究与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类使用竹材的历史十分悠久,竹材是人类使用最早的建筑材料之一,近年来,随着人们环保意识的增强,竹材及其竹制品在结构方面的用途获得了稳步增长。竹子因其生长快和加工简便等优点,有望取代了生长缓慢的普通阔叶木材,成为一种有着广泛应用前景的可再生原料。竹子具有较强的力学性能,低成本,可再生性,分布广泛等特点,使其在发展中国家的国民经济建设中扮演着重要的角色。而且,由于竹子生长快且根系发达,竹子是良好的碳的储存库,具有涵养水源、保持水土的作用。在北美,大部分的住宅采用的都是轻型木结构。造价低廉的轻型木结构住宅曾经而且将来还将继续占据了住宅市场的主导地位。我国的森林资源十分的匮乏,这就严重的影响了木结构住宅的推广应用,因此需要寻找一种木材的替代品。
     轻型竹结构房屋在我国属于新兴的建筑结构形式,因此迫切需要开展这方面的研究工作。本文的研究工作由湖南大学现代竹木及组合结构研究所实施,结合“长江学者和创新团队发展计划教育部创新团队项目”(IRT0619)、“美国蓝月基金项目”(710082)及“国家自然科学基金”(50938002)对现代竹结构房屋的试验研究和工程应用进行了系统的研究,主要研究内容和结论如下:
     本文介绍了现代竹结构住宅的试验、设计和建造,详细介绍了平台式竹结构住宅的基础、墙体、楼盖、屋盖等方面的特点。轻型竹结构住宅充分的利用了竹材的轻质高强、加工性能好和较好的耐久性能的优点,主要解决了现代竹结构住宅在抗震性能、防潮、防蚁和室内空气品质等方面的一些技术难题。
     本文对六榀5m和6m跨度的竹结构屋架进行了检验性试验和全跨破坏性试验,并分析了屋架的主要破坏形式及影响其承载力的一些主要因素。传统的屋架设计方法通常假定节点为铰接或刚接,忽略了节点的半刚性,这种假定不符合屋架的实际受力特性。本文通过考虑屋架结点的半刚性特性,对比分析了不同节点模型状态下的承载力和变形性能,半刚性节点模型的分析结果和实验结果吻合得较好。
     本文选择了能够反映实际“单户竹结构房屋”特点的底层一个长宽高为3.66m×2.44m×2.6m的房间进行模拟地震振动台试验和推覆试验。在每个水准和试验阶段结束前后进行白噪声扫频。本文主要研究了模型结构房屋在不同的地震水准作用下的动力特性、加速度反应、位移反应、底梁板与墙骨柱的竖向相对位移以及地脚螺栓内力的变化。竹结构模型房屋在经历振动台试验后,未经任何修复与加固即进行推覆试验直至破坏。模型结构薄弱部位为剪力墙中墙面板边缘的钉连接,通过加密板边缘的钉子,可以提高结构的抗震能力和整体刚度,保证水平地震作用较好地传递。本文的试验未考虑装饰层的影响,因此本文的研究是偏于保守和安全的。
     不同于传统的钢结构和混凝土结构,竹结构住宅缺乏相关方面的理论研究,尤其极端荷载条件下的结构反应,如地震或风荷载下。本文介绍了竹结构住宅的抗震性能特点,并对竹结构房屋的抗侧力系统进行了理论分析。总之,本文的研究目的在于研究轻型竹结构房屋的抗震性能,为其在国内的设计和推广应用提供依据。
Because of its high growth rate and relatively easiness in processing, bamboo is a promising renewable resource that could potentially substitute for slow growing hardwood. Bamboo's good mechanical properties, low costs, abundant availability in developing countries and possible use in a multitude of applications show the potential of this versatile resource for income generation through commercialization of the resource. Moreover, because of its rapid growth and extensive root network, bamboo as a plant is a good carbon arrestor, erosion controller and water table preserver. The majority of residential construction in North America is light-frame wood construction. This type of construction has been, and will very likely continue to be, the most economical and widely used method for building one and two-family residential structures. Being lack of forest resources in China, we must seek an alternative resource.
     Light frame bamboo is a new structural style in China. Therefore, there are many research work need to do in this field. The projects described in this paper were conducted at the Institute of Bamboo, Timber and Composite Structures (IBTCS) of Hunan University. Supports to various phases of the projects are provided by the Program for Changjiang Scholars and Innovative Research Team Project by the Ministry of Education of China (Project No. IRT0619), Blue Moon Fund (Project No.710082) and National Natural Science Foundation (Project No.50938002). The main research achievements are summarized as followings:
     This paper introduces the experiments, design and construction of modern bamboo single family house. Foundation, wall, floor, and roof are discussed in detail. The design and construction of the bamboo house is based on the properties of bamboo, including high strength/weight and stiffness/weight ratios, prefabrication, better durability etc. Fire proof, moisture, anti-seismic design, indoor air quality and some other crucial techniques were solved about the bamboo single family house.
     Six full-scale model trusses with two types of configuration and sizes were tested to failure under gradually increased vertical load. The failure of the model trusses was caused by lateral buckling of the top chords. Tests show that the model glue-laminated bamboo trusses have adequate stiffness and strength. An analytical procedure is developed to model the truss behavior with considering the joints as semi-rigid using fictitious members. The analytical results agree with the test results favorably well.
     The model for shake table tests is a first floor room unit of a typical two story lightweight frame glubam house,2.44m by3.66m in plan and2.6m in height. Before and after each seismic test, the dynamic properties of the specimen were estimated by simulated ambient vibration tests. For this purpose, the specimen was excited by a low level white noise. The natural periods, structural responses and associated modal damping rations were determined through transfer functions of the story acceleration response of the specimen and the base motion. After shake table testing, pushover test was conducted on the specimen without repair. The weakness site of the house is the nails around the shear wall panels. A further increase in strength was achieved in the shear walls which were reinforced by nail connectors around the wall perimeter. Moreover, stucco and plaster panels were considered in this test, therefore, the research results were underestimated.
     This paper presents experimental and analytical studies on bamboo houses, which unlike conventional steel or timber, lack proper understanding. This paper introduces the anti-seismic performance characteristics of bamboo houses, meanwhile, the load reisistant frame system are analysed. In short, this study aims to study the aseismatic performance of light bamboo structure, and provides the basis of design and application.
引文
[1]A.P.Arena. Life cycle assessment of energy and environmental implications of the implementation of conservation technologies in school buildings in Mendoza Argentina. Building and Environment,2003,38(2):359-368
    [2]中国建筑材料科学研究院,绿色建材与建材绿色化,北京:化学工业出版社,2003,54-59
    [3]曲格平.能源环境可持续发展研究,北京:中国环境科学出版社,2003,120-121
    [4]王晓欢,费本华,赵荣军,周海宾.木结构建筑节能发展与研究现状.建筑节能,2008,36(3):24-28
    [5]汪光焘.建设节约型社会必须抓好建筑“四节”.土木工程学报,2005,38(4):1-4
    [6]《木结构设计手册》编辑委员会,木结构设计手册.北京:中国建筑工业出版社,第三版,2005,40-45
    [7]王珏.应县木塔扭、倾变形张拉复位的数字化模拟和安全性评价:[扬州大学硕士学位论文].扬州:扬州大学,2008,5-10
    [8]杨毅,张新培.轻型士结构住宅设计与施工.住宅科技,2007(1):42-46
    [9]周海宾,费本华.世界木结构房屋研究的最新进展.木材工业,2006,20(4):1-4
    [10]江雪梅.轻型木结构体系的研究:[河北理工大学硕士学位论文].唐山:河北理工大学.2005,15-20
    [11]John W. van de Lindt, Matthew A. Walz. Development and application of wood shear wall reliability model. Journal of Structural Engineering,2003, 129(3):405-413
    [12]何敏娟.木结构设计.北京:中国建筑工业出版社,,2008,14-28
    [13]梁超,金雯昊.冬奥场馆安装百米跨度木屋架.国际木业,2001,(1):31
    [14]Yue Li, Bruce R. Ellingwood. Reliability of woodframe residential construction subjected to earthquakes. Structural Safety,2007(29):294-307
    [15]朱君道,谈福生.上海松园别墅木结构住宅.建筑结构,2005,35(12):85-87
    [16]W.K.Yu, K.F.Chung. Column buckling of structural bamboo. Engineering Structures,2003(25):755-768
    [17]Ihak Sumardi, Yoichi Kojima. Effects of strand length and layer structure on some properties of strandboard made from bamboo. Journal of Wood Science, 2008(54):128-133
    [18]张齐生,姜树海.重视竹材化学利用开发竹炭应用技术.南京林业大学学报(自然科学版),2002,26(1):1-4
    [19]李坚,刘一星.木材科学.哈尔滨:东北林业大学出版社,1994,2-8
    [20]于文吉,江泽慧.竹材特性研究及其进展.世界林业研究,2002,15(2):50-55
    [21]吴旦人.竹业学基础.长沙:湖南科学技术出版社,1999,56-61
    [22]Chen Chiaming, Chen Hochin. Bonding moso bamboo with copolymer resins made of biomass residue extracts with phenol and formaldehyde. Forest Products Journal,2000,50(9):70-74
    [23]Rahim Sudin, Narayan Swamy, et al. Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. Journal of Materials Science, 2006,(41):6917-6924
    [24]K.F.Chung, W.K.Yu. Mechanical properties of structural bamboo for bamboo scaffoldings. Engineering Structures,2002,(24):429-442
    [25]Khosrow Ghavami. Bamboo as reinforcement in structural concrete elements. Cement&Concrete Composites,2005,(27):637-649
    [26]傅万四.竹质OSB削片技术及工艺学研究:[东北林业大学博士学位论文].哈尔滨:东北林业大学,2007:36-39
    [27]程秀才.竹材的弯曲性能及浸渍塑化研究:[南京林业大学硕士学位论文].南京:南京林业大学.2004,5-6
    [28]张齐生.中国竹材工业化利用.北京:中国林业出版社.1995,36-37
    [29]徐有明.竹材性质及其资源开发利用的研究进展.东北林业大学学报,2003.31(5):71-77
    [30]杨宇明.西双版纳竹楼的发展.竹子研究汇刊,2003,22(4):75-80
    [31]单炜,李玉顺.竹材在建筑结构中的应用前景分析.森林工程,2008,,24(2):62-65
    [32]W.K. Yu, K.F. Chung. Axial buckling of bamboo columns in bamboo scaffolds. Engineering Structures,2005,27(1):61-73
    [33]徐金梅,赵荣军,费本华.我国竹材材性与加工利用研究新进展.木材加工机械,2007,(3):39-42
    [34]王越平,高绪珊.天然竹纤维与几种纤维素纤维的性能测试与比较.针织工业.2005,(11):58-60
    [35]张齐生,姜树海.重视竹材化学利用开发竹炭应用技术.南京林业大学学报(自然科学版),2002,26(1):1-4
    [36]张齐生,孙丰文.我国竹材工业的发展展望.林产工业,1999,,26(4):3-5
    [37]魏洋,吕清芳.现代竹结构抗震安居房的设计与施工.施工技术.2009,38(11):52-54
    [38]吕清芳,魏洋.新型抗震竹质工程材料安居示范房及关键技术.特种结构,2008,25(4):6-10
    [39]赵仁杰.竹材人造板工艺学.北京:中国林业出版社,2002,10-17
    [40]郑凯,陈绪和.竹材人造板在预制房屋建造中的应用前景.世界竹藤通讯,2006,4(1):1-5
    [41]赵仁杰,张建辉.竹林资源加工利用的科技创新.竹子研究汇刊,2002,21(4):16-21
    [42]赵仁杰,邓介凡.竹席复合板的研制.林业科技开发,1990(1):10-14
    [43]陈玉和,陈章敏.竹材人造板生产技术.竹子研究汇刊,2008,27(2):5-10
    [44]赵仁杰,刘德桃,张建辉.中国竹帘胶合板模板的科技创新历程.世界竹藤通讯,2003,1(4):1-4
    [45]杜春贵,赵仁杰.两种覆塑竹帘胶合板的分析比较.林产工业,2002,29(5):21-22
    [46]张保良.我国竹胶合板工业的现状和发展前景.林产工业,1995,,22(6):1-3
    [47]吴岩,李玉顺.改性竹材的应用与前景.森林工程,2008,,24(6):68-71
    [48]赵仁杰,陈哲,张建辉.中国竹材人造板的科技创新历程与展望.人造板通讯,2004(2):3-5
    [49]唐永裕.竹碎料板生产技术.竹子研究汇刊,1998.17(1):10-13
    [50]黄祖波.钢竹组合楼板受力性能研究:[东北林业大学硕士学位论文].哈尔滨:东北林业大学,2007,51-53
    [51]周芳纯.竹林的利用.竹类研究,1991(1):236-264
    [52]Janssen, J.J.A. Designing and building with bamboo. Technical Report 20, Technical University of Eindhoven, Eindhoven,2000.25-68
    [53]Y.Xiao. Q.Zhou, B.Shan. Design and construction of modern bamboo bridges. Journal of Bridge Engineering,2010,15(5):533-541
    [54]Y.Xiao, B.Shan. G. Chen, et al. Development of a new type of glulam. In: Proceedings of First International Conference on Modern Bamboo Structures. China,2007,41-47
    [55]G. Chen, Y.Xiao, et al. Design and construction of a two-story modern bamboo house. In:Proceedings of First International Conference on Modern Bamboo Structures. China,2007,215-221
    [56]唐宏辉,陈宏斌,王正.结构用竹集成材制造工艺简介.人造板通讯,2004,(9):15-19
    [57]李玉顺,单炜.压型钢板-竹胶板组合楼板的力学性能试验研究.建筑结构学报,2008.29(1):96-102
    [58]李玉顺,单炜.钢竹组合空心楼板的抗弯性能试验.东北林业大学学报, 2008,36(6):32-33
    [59]中华人民共和国国家标准.人造板及饰面人造板理化性能试验方法(GB/T17657-1999).北京:中国标准出版社,1999:35-36
    [60]中华人民共和国国家标准.混凝土模板用竹材胶合板(LY/T1574-2000).北京:中国标准出版社,2000:2-10
    [61]Cheng Ruixiang, Zhang Qisheng, et al. Improvement of softening treatment technology of bamboo. Wood Science Technology,2006(40):327-335
    [62]唐永裕.竹材资源的工业性开发利用.竹子研究汇刊,1997,16(2):26-33
    [63]马灵飞,韩红.部分散生竹材纤维形态及主要理化性能.浙江林学院学报,1993,10(4):361-367
    [64]吴旦人.竹材防护.长沙:湖南科学技术出版社,1992,39-40
    [65]张齐生,关明杰.毛竹材质生成过程中化学成分的变化.南京林业大学学报(自然科学版),2002,26(2):7-10
    [66]周芳纯.竹材的力学性质.竹类研究,1991(1):212-219
    [67]虞华强.竹材材性研究概述.世界竹藤通讯,2003,1(4):5-9
    [68]王汉坤,喻云水,余雁.毛竹纤维饱和点随竹龄的变化规律.中南林业科技大学学报:自然科学版,2010,,30(2):112—115
    [69]江敬艳.圆竹家具的研究:[南京林业大学硕士学位论文].南京:南京林业大学,2001.34—35
    [70]周芳纯.竹材的物理性质.竹类研究,1991(1):27—44
    [71]叶忠华.毛竹材特性及工业利用分析.林业科技:2002.27(3):39.42
    [72]关锡鸿,冼定国.竹材一种天然的复合材料.复合材料学报,1987,4(4):79.83
    [73]Shupe. T.F., Chow, P. Sorption, shrinkage, and fiber saturation point of kempas (Koompassia malaccensis). Forestry Products Journal,1996,46(10):94-96
    [74]李源哲,张寿槐,白同仁.中国七种竹材的物理力学性质.北京:中国林业科学研究究院,1986:1—20
    [75]吴冬梅.竹胶合板变形和表面应变及相关因素影响的研究:[中南林学院硕士学位论文].株洲:中南林学院,2005,23—24
    [76]刘志坤.竹材资源的有效利用.浙江林学院学报.1994(3):281—285
    [771杨瑞珍.胶合竹材力学性能及螺栓连接件性能的研究与应用:[湖南大学硕士学位论文].长沙:湖南大学,2009,.25-26
    [78]张心安.湿热条件下竹材增强单板层积材力学性能的研究:[南京林业大学硕士学位论文].南京:南京林业大学,2005,65—68
    [79]程瑞香.木材与竹材粘接技术.北京:化学工业出版社,2006,128—130
    [80]周芳纯,张春霞.竹材力学性质测定报告.竹类研究,1991.10(1):7-12
    [81]姜志宏,孟志康.毛竹含水率.竹子研究汇刊,1995,14(2):58-67
    [82]姜志宏,俞友明.竹质人造板的平衡含水率.竹子研究汇刊,1996,15(3):45-52
    [83]喻云水.湿状态下竹胶合板模板力学性能与数值模拟研究:[中南林业科技大学博士学位论文].长沙:中南林业科技大学,2006,25-45
    [84]朱一辛,关明杰.竹材增强杨木单板层积材冲击性能的研究.南京林业大学学报(自然科学版),2005,,29(6):99-102
    [85]喻云水,杨宝.竹胶合板模板蠕变特性研究.林业科技,2008,33(2):47-50
    [86]C. J. Simonson, M. Salonvaara, T. Ojanen. The effect of structures on indoor humidity possibility to improve comfort and perceived air quality. Indoor Air, 2002,12(4):243-251
    [87]Achilles Karagiozisa, Mikael Salonvaarab. Hygrothermal system performance of a whole building. Building and Environment,2001,(36):779-787
    [88]赵联芳.道路水泥混凝土的环境影响评价.公路交通科技,2004,21(8):138-]41
    [89]动力工程师手册编辑委员会.动力工程师手册.北京:机械工业出版社,1999,36-38
    [90]刘顺妮.硅酸盐水泥的生命周期评价方法初探.中国环境科学1998,18(4):328-332
    [91]国家统计局.2004中国统计年鉴.北京:中国统计出版社.2004,141-145
    [92]杨建新,徐成.产品生命周期评价.北京:国家气象出版社.2002.23-24
    [93]顾道会,朱颖心.中国建筑环境影响的生命周期评价.清华大学学报.2006,46(12):1953-1956
    [94]Xiangang Chen, Xiaoquan Zhang, Yiping Zhang, et al. Changes of carbon stocks in bamboo stands in China during 100 years. Forest Ecology and Management. 2009(258):1489-1496
    [95]Dixon RK, Solomon AM, et al. Carbon pools and flux of global forest ecosystems. Science,1994,263(5144):185-190
    [96]Xiangang Chen, Xiaoquan Zhang, et al. Changes of carbon stocks in bamboo stands in China during 100 years. Forest Ecology and Management,2009 (258):1489-1496
    [97]P. van der Lugt. An environmental, economic and practical assessment of bamboo as a building material for supporting structures. Construction and Building Materials,2006(20):648-656
    [98]肖岩,陈国,单波.竹结构轻型框架房屋的研究与应用.建筑结构学报,2010,31(6):195-203
    [99]费本华,周海宾.轻型木结构住宅建造技术.北京:中国建筑工业出版 社,2009,25-140
    [100]《木结构设计手册》编辑委员会.木结构设计手册.北京:中国建筑工业出版社,2005,45-90
    [101]任海青,周海宾.框架式木结构示范住宅建造实例.建筑技术,2007,38(2):127-129
    [102]任海青,周海宾.现代框架式木结构住宅建造技术探讨.林业科技,2006,31(2):56-59
    [103]周海宾,江泽慧.木结构墙体建造细节对其隔声性能的影响.北京林业大学学报,2007,29(3):159-163
    [104]何敏娟.北美“轻型木结构”住宅建筑的特点.结构工程师.2004(1):1-5
    [105]费本华,周海宾.现代框架式木结构住宅.世界林业研究,2006,19(2):51-54
    [106]Greg C. Foliente, Robert H. Leicester, et al. Durability design for wood construction. Forest Products Journal,2002,52(1):10-19
    [107]任海青,周海宾.木结构住宅常见性能检测和评估.北京:中国建筑工业出版社,2008,15-36
    [108]Jerzy Kwiatkowski, Monika Woloszyn, et al. Influence of sorption isotherm hysteresis effect on indoor climate and energy demand for heating. Applied Thermal Engineering,2011,(31):1050-1057
    [109]M. Steeman, M. De Paepe, et al. Impact of whole building hygrothermal modelling on the assessment of indoor climate in a library building. Building and Environment,2010,(45):1641-1652
    [110]J. Kwiatkowski, M. Woloszyn, et al. Modeling of hysteresis infuence on mass transfer in buildings materials. Building and Environment,2009,44(3):633-642
    [111]肖书博,李念平.现代竹结构房屋室内空气品质的实测与研究.安全与环境学报,2008,8(6):87-90
    [112]Li Chen, Li Jubai, et al. Determination of volatile organic compounds in indoor air by adsorption/one-step thermal desorption/gas chromatography. Journal of Analytical Science,2005,21 (1):42-44
    [113]肖书博.现代竹结构房屋室内空气品质实测与防火性能模拟研究:[湖南大学硕士学位论文].长沙:湖南大学,2008,30-31
    [114]佘立永.装配式现代竹结构房屋设计与研究:[湖南大学硕士学位论文].长沙:湖南大学,2009,49-57
    [115]中华人民共和国国家标准.木结构试验方法标准(GB/T50329-2002).北京:中国建筑工业出版社,2002,29-36
    [116]许晓梁,轻型木桁架承载能力研究:[同济大学硕士学位论文].上海:同济大 学,2006,23-35
    [117]Gupta, R., Miller, T.H., Dung, D. Practical solution to wood truss assembly design problems. Practice Periodical on Structural Design and Construction, 2004,9(12):54-60
    [118]黄浩,何敏娟.轻型木桁架体系结构性能试验研究.佳木斯大学学报(自然科学版),2009,27(4),481-485
    [119]Ellegaard, P. Finite-element modeling of timber joints with punched metal plate fasteners. Journal of Structural Engineering,2006,132(3):409-417
    [120]Gupta, R., Gebremedhin, K.G.et al. Analysis of metal-plate-connected wood trusses with semi-rigid joints. Transactions of the ASAE,1992,35(3):1011-1018
    [121]Lee, A.W.C., Bai, X.S. Selected physical and mechanical properties of giant timber bamboo grown in South California. Forest Products Journal, 1994(44):40-47
    [122]Leichti, R., T-Bracing for stability of compression webs in wood trusses. Journal of Structural Engineering,2002,128(3):374-381
    [123]Li, Zhong. Practical approach to modeling of wood truss roof assemblies. Practice Periodical on Structural Design and Construction,1998,3(3):119-124
    [124]Maraghechi, K. Itani, R.K. et al. Influence of truss plate connectors on the analysis of light frame structures. Wood and Fiber Science,1984,16 (3):306-322
    [125]Riley, G.J., Axial and rotational stiffness model of metal plate connected wood truss joints. Transactions of the ASAE,1999.42(3):761-770
    [126]Wolfe, R.W. Strengthen and stiffness of light-frame sloped trusses. Rep.FPL-RP-471. U.S.Department of Agriculture, Forest Products Lab.. Madison, Wis,1986
    [127]Wolfe, R.W., and LaBissoniere, T.G. Structural performance of light-frame roof assemblies. Ⅱ.conventional truss assemblies, Rep.FPL-RP-499, U.S.Department of Agriculture, Forest Products Lab., Madison, Wis,1991
    [128]G.J. Riley, K.G. Gebremedhin. An empirical model for predicting the foundation modulus of wood for metal-plate connector teeth. Transactions of the ASABE, 1999,42(3):755-760
    [129]Donald Breyer and Kenneth Fridley. Design of wood structures ASD/LRFD, New York:McGraw-Hill,2003
    [130]Jim Cheng, Testing and analysis of the toe-nailed connection in the residential roof-to-wall system. Forest Products Journal,2004,54(4):58-65
    [131]Thang Nguyen Dao. New nonlinear roof sheathing fastener model for use in finite-element wind load applications. Journal of structural engineering, 2008,134 (10):1668-1674
    [132]Zhong Li. Practical approach to modeling of wood truss roof assemblies. Practice Periodical on Structural Design and Construction.1998,3(3):119-124
    [133]P.V.Mtenga. System Factors for light frame wood truss assembles. Journal of structural engineering,1995,121(2):290-300
    [134]Mtenga, P.V., Cramer S.M., Peyrot, A.H. et al. System factors for light-frame wood truss assembles. Journal of Structure Engineering,1995,121(2):290-300
    [135]Miles E.Waltz Jr., Thomas E. McLain, et al. Discrete bracing analysis for light-frame wood-truss compression webs. Journal of structural engineering, 2000,126(9):1086-1093
    [136]Eiichi Obataya. Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure. Wood Science Technology, 2007(41):385-400
    [137]Robert Leichti. T-Bracing for stability of compression webs in wood trusses. Journal of structural engineering,2002,128(3):374-381
    [138]潘汉明,周福霖.广州新电视塔整体结构振动台试验研究.工程力学,2008,25(11):78-85
    [139]Lu Xilin, Zhang Huiyun, et al. Shaking table testing of a U-shaped plan building model. Canadian Journal of Civil Engineering,1999,26(6):746-759
    [140]Lv Xilin. Application of identification methodology to shaking table tests on reinforced concrete columns. Engineering Structures,1995.17(7):505-511
    [141]吕西林,程海江.两层轻型木结构足尺房屋模型模拟地震振动台试验研究.土木工程学报,2007,40(10):41-49
    [142]熊海见,倪春.三层轻木混凝土混合结构足尺模型模拟地震振动台试验研究.地震工程与工程振动,2008,,28(1):91-98
    [143]Andre Filiatrault, David Fischer, Bryan Folz, et al. Seismic evaluation of an asymmetric three-story woodframe building. Proceeding of the 2001 structural congress and exposition.2001.21-23
    [144]吕西林.上海浦东机场航站楼结构模型模拟地震振动台试验研究.地震工程与工程振动,2009,29(3):21-31
    [145]程海江.轻型木结构房屋抗震性能研究:[同济大学博士学位论文].上海:同济大学,2007,64-96
    [146]Bryan Folz, Andre Filiatrault, et al. Seismic analysis of wood frame structures.Ⅰ: Model formulation. Journal of Structural Engineering,2004,130(9):1353-1370
    [147]尹华伟.结构静力弹塑性分析方法的研究和改进,工程力学,2003,20(4):45-49
    [148]Daniel Howard Bredel. Performance capabilities of light-frame shear walls sheathed with long OSB panels:[Master degree thesis]. Virginia:Polytechnic Institute and State University,2003,70-71
    [149]Kevin Bradish. The performance of wood frame shear walls under earthquake loads:[Master degree thesis]. Oregon:Oregon State University,2005,23-56
    [150]Hongyong Mi, Chun Ni, et al. racking performance of tall unblocked shear walls. Journal of Structural Engineering,2006,132(1):145-152
    [151]Andre Filiatrault, David Fischer, et al. Seismic testing of two-story woodframe house:influence of wall finish materials. Journal of Structural Engineering,2002, 128(10):1337-1345
    [152]Erol Varoglu, Erol Karacabeyli, et al. Midply wood shear wall system: performance in dynamic testing. Journal of Structural Engineering,2007,133(7): 1035-1042
    [153]陈松来.轻型木结构房屋剪力墙和楼屋盖设计.低温建筑技术,2008.(1):69-71
    [154]李青纯.轻型木结构开洞剪力墙侧向力作用下力学性能研究:[同济大学硕士学位论文].上海:同济大学,2009,20-26
    [155]David W.Dinehart, Harry W. Shenton. Comparison of static and dynamic response of timber shear walls. Journal of Structural Engineering,1998,124(6): 686-695
    [156]Frank Lam, Helmut G.L.Prion. Lateral resistance of wood shear walls with large sheathing panels. Journal of Structural Engineering,1997,123(12):1666-1673
    [157]Ming He, Frank Lam. Influence of cyclic test protocols on performance of wood-based shear walls. Canadian Journal of Civil Engineering,1998,25(3): 539-550
    [158]Eric D. Cassidy, William G. Davids. Performance of wood shear walls sheathed with frp reinforced OSB panels. Journal of Structural Engineering,2006,132(1): 153-163
    [159]李硕,何敏娟.轻型木楼盖抗水平力研究进展.结构工程师,2010,26(3):176-180
    [160]何敏娟,周楠楠.都江堰向峨小学轻型木结构设计与施工.施工技术,2010,39(3):88-92
    [161]康加华,熊海贝.都江堰向峨小学木结构校舍结构设计简介.结构工程师,2010,26(3):7-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700