高电压FACTS变电站的高频电磁兼容研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子技术的迅速发展为新型电气设备的涌现提供了机遇,继而推动现代电力系统的技术创新与进步。在过去的二十年间,电气科学家与工程师们提出了灵活交流输电系统(FACTS)的概念与技术,并研制了一系列的FACTS控制装置。所有的FACTS设备均是通过控制电力电子器件的开关过程,以有效实现电力系统的潮流控制、电压调节、提高系统暂态稳定性以及抑制系统低频振荡等功能。然而,大功率电力电子器件的频繁开关操作将产生很陡的瞬态脉冲,经近场耦合和远场辐射而形成较严重的高频传导和辐射骚扰,对电网设备及附近的电子单元造成电磁环境污染。另一方面,为实现电力系统运行的智能监测、故障诊断与自动控制,在现代化变电站的二次侧越来越多地安装了各种电子通讯与保护单元。FACTS设备产生的电磁骚扰将会严重影响这些非常敏感的二次电子单元,甚至导致其发生功能性故障或永久损坏。目前随着FACTS装置的高压大容量化,其电磁骚扰程度也愈加严重。因此,需要通过测试分析对FACTS变电站的电磁环境进行重新评估,并采取有效的电磁抗扰性措施以保证二次系统单元的安全与可靠运行。
     本文提出采用综合性的策略研究FACTS变电站的电磁兼容问题。研究内容主要包括以下几个方面:测量传感器的建模与数字化校正技术,电磁骚扰测量系统的建立,电磁骚扰的特征提取方法,高频电磁骚扰机制的仿真建模,电磁骚扰抑制方法与抗扰性试验措施,等。
     一般电磁场天线的幅频特性并不平坦,必须建立其等效传递函数以对测量数据进行数字化校正,才能正确归算出实际的电磁骚扰强度。本文提出了两种新的基于频域传递函数建模的数字化校正算法:一种是改进的复向量拟合法,它通过增加一阶导数信息以及将系数矩阵右乘一个对角阵来实现;另一种算法是极点置换法,它通过将一个给定极点的密切相关传递函数的零点置换为目标函数的初始极点来实现。仿真和应用结果表明,两种方法都具有较高的拟合准确度。
     现场测量的天气情况与标准校核条件可能存在较大差别,有必要研究不同天气因素对电磁天线测量特性的影响。基于实验研究、数字信号处理方法、改进的复向量拟合法以及人工神经网络,本文提出了一种定量分析、预测天气因素对电磁天线测量特性影响的一般方法。其中,实验测量和数字信号处理方法用以获取各种天气条件下的天线响应特性;改进的复向量拟合法用以获取天线频域特性的等效传递函数;BP神经网络用以建立天气因素与天线频域特征参数之间的非线性映射关系。实验与分析结果表明,利用该方法能够分析天气因素的具体影响,并可根据天气因素变化对电磁天线的频域特征参数作出有效预测。
     基于路-场传感器、光纤传输、数字存储示波器以及终端屏蔽单元等,本文建立了先进的电磁骚扰测量系统,并对多个FACTS变电站的电磁环境进行了现场测量,获得了宽频带的辐射骚扰与传导骚扰时域波形。通过分析一个工频周期内静态无功补偿器(SVC)的瞬态冲击脉冲特征,给出了电磁骚扰的幅值以及频率分布范围,积累了大量第一手的电磁骚扰原始数据。
     在时、频域内系统建立了电磁骚扰信号的特征提取与表征方法。提出基于双正交数字滤波器和基于Hough变换的两种瞬时频率估计算法,可分别应用于瞬时频率缓变和大幅度变化的电磁骚扰信号,具有较快的瞬时频率跟踪速度与较高的计算准确度。更进一步,通过引入短时傅立叶变换、Wigner分布、平滑伪Wigner分布及重排平滑伪Wigner分布等时频分析技术,在三维空间内建立了基于时频分析的电磁骚扰特征提取方法,以更加形象地描述电磁骚扰的非平稳时变特征,获取更丰富的电磁骚扰信息,为深入分析FACTS变电站的高频电磁骚扰机制和评估电磁环境提供了直接依据。
     为分析SVC的高频电磁骚扰机制,基于晶闸管的动态开关特性,本文提出了SVC传导骚扰的仿真建模方法。以非线性时变电阻作为晶闸管宏模型的内核,建立了含晶闸管控制电抗器支路、晶闸管开关电容器支路的SVC仿真模型。SVC传导骚扰的仿真结果与现场实测数据相比具有相似性,表明晶闸管的动态开关特性是导致高频骚扰的主要机制。为分析负荷随机变化对传导骚扰的影响,进一步建立了含可变负载的SVC传导骚扰仿真模型,可预测各种负荷条件下的电磁骚扰水平。
     根据FACTS设备的具体拓扑结构,基于现场测量和理论分析,本文有针对性地给出了抑制高频电磁骚扰的具体方法,包括接地、屏蔽、滤波、安装铁氧体磁环等,以减小对二次系统电子单元的影响。参照国际电磁兼容标准IEC61000-4系列,并综合国内外的最新研究结果,提出了有效的电磁抗扰性试验建议,对完善相关试验标准提供了有价值的参考依据。
     本文研究结果进一步丰富了电力系统电磁兼容研究的理论和方法,对FACTS设备的工程设计和大规模应用有重要意义。
The rapid development of power electronics technology creates feasible and exciting opportunities to develop novel electrical equipment for better utilization of the existing power systems. During the last decade, a great number of control devices incorporating specifically the concept of "Flexible AC Transmission Systems" (FACTS) technology have been proposed and implemented all over the world. Almost all the FACTS elements are based on controlled switching of the power electronic devices to effectively realize power flow control, voltage regulation, enhancement of transient stability and mitigation of low-frequency system oscillations. However, very steep transient pulses are generated due to frequent switching of the large power electronic devices, hence resulting in considerable high-frequency conducted and radiated emissions through near-field coupling and far-field radiation, which causes electromagnetic contamination to both the power grids and the victim electronic devices positioned nearby. In the mean time, more and more electronic units have also been utilised in the secondary side of nowadays power substations to realize online monitoring and diagnosis, data acquisition and communication, automation control and protection of the power system operation. Unfortunately, these electronic units are normally quite vulnerable to electromagnetic disturbances, and sometimes can not withstand the emission levels generated from the FACTS equipment, subsequently rendering malfunctions or even being damaged. Furthermore, the case may become even worse if higher power FACTS equipments are installed. So the electromagnetic environment within substations employing FACTS equipments needs to be re-evaluated and thereafter some immune measures should be taken to guarantee all the secondary electronic units function properly.
     A comprehensive strategy is adopted in this dissertation to address the prominent electromagnetic compatibility (EMC) issues in FACTS-based substations. The research work mainly concentrates on the following several aspects: Equivalent modelling and digital rectifying technology for transducers and antennas, establishment of on-site measurement system, feature extraction methodology for electromagnetic interference (EMI) data, modelling and simulation scheme of high-frequency EMI mechanisms, EMI suppressing methods and electromagnetic susceptibility test measures within FACTS-based substations, etc.
     Due to non-flat amplitude-frequency characteristics of the antennas used in EMC measurement, it is desired to establish the equivalent transfer functions of the antennas so as to make digital correction to the measured data, from which the actual electromagnetic emissions can be traced back. Two digital rectifying algorithms based on frequency domain transfer function are proposed, one is Improved Vector Fitting Method which is achieved by introduction of the first-order derivative and also right-multiplication to the coefficient matrix by a diagonal matrix, the other one is called Poles Replacement Method which is achieved by replacing the initial poles of the target transfer function with the zeroes derived from another relative transfer function whose starting poles are manually preset. Simulation results show the proposed algorithms both render good performance in fitting accuracy.
     The weather conditions of on-site measurement may differ a lot from the standard calibration condition of an antenna, so it is necessary to analyze the impact of weather factors, such as temperature, humidity and atmosphere pressure, on the measurement accuracy of the antenna. Based on experimental study, digital signal processing, improved vector fitting method and artificial neural network (ANN), a comprehensive scheme is presented to quantitatively analyze and effectively predict the impact of weather factors on an antenna's frequency-domain characteristics. Analysis and experimental verification indicate that, the proposed scheme can address the concrete impact from weather factors, and thereby realize reliable prediction of the antenna's specific frequency-domain parameters with regards to variation of weather conditions.
     Based on circuit and field transducers, optical fibre transmission, digital oscilloscope and shielded terminal unit, an advanced data acquisition system is established to implement on-site measurements of the electromagnetic emissions generated from FACTS equipments within several different substations, which demonstrates that the measurement system can realise effective acquisition of both the conducted and radiated wide-bandwidth interference. The switching bursts of the EMI waveforms within a power cycle are analyzed to present in details the frequency and amplitude range of the electromagnetic emissions, which facilitates accumulation of large amount of first-hand EMI data.
     A systematic methodology for feature extraction and expression of the electromagnetic emissions is established in both time- and frequency-domains. Two novel algorithms to accurately track the instantaneous frequency of EMI signals are proposed, with one based on bi-orthogonal digital filters and the other one on Hough transform, which can respectively cope with low and fast frequency-varying EMI signals accurately. Further, with the utilization of short-time Fourier transform, Wigner-Ville distribution, smoothed pseudo Wigner-Ville distribution and rearranged smoothed pseudo Wigner-Ville distribution, a feature extraction scheme based on time-frequency analysis is presented, and more detailed and useful information of the electromagnetic emissions can be obtained through 2-D and 3-D displays, which presents fundamental reference for characterizing the interfering mechanisms and effectively evaluating the electromagnetic environment.
     Based on the dynamic switching characteristics of the thyristors, a modelling and simulation methodology is established to investigate on the high-frequency EMI mechanisms in substations operational with Static Var Compensator (SVC) devices. With a nonlinear time-varying resistor as the kernel of the high-frequency macro model for thyristors, a concrete simulation model of SVC including a Thyristor-switched Capacitor (TSC) element and a Thyristor-controlled Reactor (TCR) element is further proposed. The conducted emissions by simulation are correlated well with that from on-site measurements, which indicates the dynamic switching process of the thyristors is the main cause and principal mechanism of the high-frequency conducted interference. Specifically, a SVC simulation model incorporating randomly varying loads is also established to predict the EMI levels under different loadings.
     Referring to the topologies of FACTS equipment, and based on on-site measurement as well as theoretical analysis, pertinent measures for EMI suppression are put forward, such as earthing, shielding, filtering and installation of ferrite rings so as to reduce coupling impacts on the electronic units of the secondary side. With combination of the state-of-the-art achievement of FACTS-based EMI research, a correlation is made to the present EMC standards IEC 61000-4 series and concrete recommendations of changes for immunity tests are presented to ameliorate the IEC standards.
     The research work of this dissertation further develops and enriches both the theories and methodologies for power system EMC study, which possesses practical significance for engineering design and wide application of the FACTS equipment.
引文
[1]IEC 61000-4-1,Testing and measurement techniques-overview of IEC 61000-4series[S]
    [2]湖北省电磁兼容学会.电磁兼容性原理及应用[M].北京:国防工业出版社,1996
    [3]邬雄,张文亮.电力系统电磁环境问题[J].高电压技术,1997,23(4):33-35
    [4]何彬.电磁兼容与电力系统自动化[J].电力系统自动化,1994,18(3):11-18
    [5]何彬.电力系统二次设备的电磁兼容问题[J].中国电力,1998,31(4):46-50
    [6]贺景亮.电力系统电磁兼容[M].北京:水利电力出版社,1993
    [7]卢铁兵.变电站瞬态电磁环境数值预测方法的研究[D].保定:华北电力大学电力系,2001
    [8]黄海,张辉,华栋.变电站内的电磁干扰及电磁兼容问题[J].电力建设,2002,23(2):32-33
    [9]项云玮.变电站系统的电磁兼容研究[J].机电工程技术,2004,33(1):44-45
    [10]张卫东.变电站开关操作瞬态电磁干扰问题的研究[D].保定:华北电力大学电力系.2003
    [11]Hingorani N.Flexible AC transmission[J].IEEE spectrum,1993,30(4):40-45
    [12]何大愚.柔性交流输电系统概念研究的新进展[J].电网技术,1997,21(2):9-14
    [13]何大愚.柔性交流输电技术及其控制器研制的新发展-TCP,ST,IPC(TCIPC)和SSSC[J].电力系统自动化,1997,21(6):1-6
    [14]Edris A.FACTS Technology development:an update[J].IEEE Power Eng.Rev.,2000,20(3):4-9
    [15]Tihanyi L.Electromagnetic compatibility in power electronics[M].New York:IEEE Press,1995
    [16]纪勇,李向荣.基于GTO的±20Mvar STATCOM的现场运行及改进[J].电力系统自动化,2003,7(4):61-65
    [17]Wiggins C M,Thomas D E,Nickel F S,et al.Transient electromagnetic interference in substations[J].IEEE Transactions on Power Delivery,1994,9(4):1869-1884
    [18]张卫东,崔翔.光纤瞬态磁场传感器的研究及其应用[J].中国电机工程学报,2003,23(1):88-92
    [19]Gavazza R J,Wiggins C M.Reduction of interference on substation low voltage wiring[J].IEEE Transactions on Power Delivery,1996,11(3):1317-1329
    [20]Stewart M,Siew W H,Walker K.Conducted immunity requirements for equipment operational during high voltage network switching operations[J].IEE Proc.on Generation,Transmission and Distribution,2001,148(5):391-396
    [21]Stewart M,Siew W H,Walker K.Radiated immunity requirements for equipment operational during high voltage network switching operations[J].IEE Proc.on Generation,Transmission and Distribution,2001,148(6):610-614
    [22]吴桂芳,陆家榆,邵方殷.特高压等级输电的电磁环境研究[J].中国电力,2005,38(6):24-27
    [23]何彬.电力系统二次设备的电磁兼容问题[J].中国电力,1998,31(4):46-50
    [24]崔翔.电力系统电磁兼容研究进展[J].电力系统自动化,2003,27(4):1-5
    [25]卢铁兵,崔翔.变电站空载母线波过程的数值分析[J].中国电机工程学报,2000,20(6):39-42
    [26]李清泉,李彦明,牛亚民.变电站开关操作引起的瞬变电磁场及其防护[J].高电压技术,2001,27(4):35-37
    [27]刘帆,陈柏超,卞利钢.变电站二次电缆屏蔽层接地方式探讨[J].电网技术,2003,27(2):63-67
    [28]莫付江,阮江军,陈允平.浪涌抑制与电磁兼容[J].电网技术,2004,28(5):69-72
    [29]Guo T,Chen D Y,Lee F C.Separation of the common-mode-and differential-mode-conducted EMI noise[J].IEEE Transactions on Power Electronics,1996,11(3):480-488
    [30]Antonini G,Cristina S,Orlandi A.EMC characterization of SMPS devices:circuit and radiated emissions model[J].IEEE Transactions on Electromagnetic Compatibility,1996,38(3):300-309
    [31]Teulings W,Schanen L J.A new technique for spectral analysis of conducted noise of a SMPS including interconnects[C].28th Annual IEEE Power Electronics Specialists Conference,St.Louis,USA,June 22-27,1997,:1516-1521
    [32]Youssef M,Roudet J,Marechal Y.Near field characterization of power electronics circuits for radiation prediction[C].28th Annual IEEE Power Electronics Specialists Conference,St.Louis,USA,June 22-27,1997,:1529-1534
    [33]Rico J J,Madrigal M,Acha E.Dynamic harmonic evolution using the extended harmonic domain[J].IEEE Transactions on Power Delivery,2003,18(2):587-594
    [34]汪东艳,张林昌.电力电子装置电磁兼容性的研究进展[J].电工技术学报,2000,15(1):47-51
    [35]和军平,姜建国,陈斌.电力电子装置传导电磁干扰特性测量的新方法[J].电力电子技术,2001,35(5):32-35
    [36]吴维宁,张文亮,吴峡.电力系统中电子设备抗干扰技术研究与应用[J].电力自动化设备,2001,21(6):20-22
    [37]吕庆敏.浅谈电力电子技术领域中若干的研究热点[J].电力电子技术,2001,35(1):61-62
    [38]孟进,马伟明,张磊,等.基于IGBT开关暂态过程建模的功率变流器电磁干扰频谱估计[J].中国电机工程学报,2005,25(20):16-20
    [39]孟进,马伟明,张磊,等.开关电源变换器传导干扰分析及建模方法[J].中国电机工程学报,2005,25(5):49-54
    [40]裴雪军,康勇,熊健,等.PWM逆变器共模传导电磁干扰的预[J].中国电机工程学报,2004,24(8):83-88
    [41]和军平,陈为,姜建国.开关电源共模传导干扰模型的研究[J].中国电机工程学报,2005,25(8):50-55
    [42]李庆民,徐国政,Siew W.基于静态同步补偿器的变电站中电磁辐射测试分析J].中国电机工程学报,2003,23(11):33-38
    [43]李庆民,徐国政,Siew W.基于SVC的变电站中电磁辐射测试分析[J].清华大学学报,2004,43(3):1-4
    [44]Siew W H,Li Q M,Stewart M.Measurement of electromagnetic emissions from FACTS equipment operational within substations-part Ⅰ[J].IEEE Transactions on Power Delivery,2005,20(2):1-7
    [45]Stewart M,Siew W H,Li Q M.Conducted emissions from FACTS equipment operational within substations-part Ⅱ[J].IEEE Transactions on Power Delivery,2005,20(2):8-13
    [46]Li Q M,Siew W H,Stewart M.Radiated emissions from FACTS equipment operational within substations-part Ⅲ[J].IEEE Transactions on Power Delivery,2005,20(2):14-22
    [47]Li Q M,Siew W H,Stewart M,et al.Digital compensation method for high frequency current probes[J].Measurement Science and Technology,The Institute of Physics Publishing,2002,(13):529-532
    [48]Li Q M,Siew W H,Stewart M,et al.Digital correction method for an H field sensor in power system EMC measurements[J].IEEE Transactions on Power Delivery,2004,19(3):952-956
    [49]胡德文.非线性与多变量系统相关辨识[M].北京:国防科技大学出版社,2001
    [50]Gustavsen B,Semlyen A.Rational approximation of frequency domain responses by vector fitting[J].IEEE Transactions on Power Delivery,1999,14(5):1052-1061
    [51]马伟明,涂昌期.AC/DC变流装置产生的电磁干扰分析[J].海军工程大学学报,2000,24(3):1-4
    [52]Scheich R.Roudet J.EMI conducted emission in differential mode emanating from a SCR:phenomena and noise level prediction[J].IEEE Trans on Power electronics,1995,10(2):105-110
    [53]Klotz F,Petzoldt J,Volker H.Experimental and simulative investigations of conducted EMI performance of IGBTs for 5-10kVA converters[C].27th Annual IEEE Power Electronics Specialists Conference,Baveno,Italy,June 23-27,1996,:1986-1991
    [54]Mahdsvi J,Roudet J,Scheich R,et al.Conducted RFI emission from an AC / DC converter with sinusoidal line current[C].Industry Applications Society Annual Meeting,Toronto,Canada,Oct.2-8,1993,:1048-1053
    [55]Garlick W G.EMC analysis for power electronic equipment[C].IEE Colloquium on Predicting and Assessing EMC in the Power Electronics Arena,London,UK,Feb.15,1994,:5/1-5/7
    [56]汪东艳,张林昌.电力电子装置电磁兼容性的研究进展[J].电工技术学报,2000,15(1):47-51
    [57]温郑铨,陈玉燕.适用于Pspice的品闸管开关模型[J].电力电子技术,1995(2):37-42
    [58]Lisik Z,Turowski M.Two dimensional simulation of thyristor transient states from conduction to forward blocking[J].IEE Proceedings G,1991,138(5):574-587
    [59]Liang Y C,Gosbell V J.A versatile switch model for power electronics SPICE2simulations[J].IEEE Trans on Ind.Electron,1989,36(1):86-88
    [60]Gracia F J,Arizti F,Aranceta F J.A nonideal macromodel of thyristor for transient analysis in power electronic system[J].IEEE Trans on Ind.Electron,1990,37(6):514-520
    [61]Geobel H.A unified method for modeling semiconductor power devices[J].IEEE Trans on Power Electronics,1994,9(5):497-505
    [62]温家良,刘正之,傅鹏.一种简化晶闸管宏模型及其在暂态分析中的应用[J].电力电子技术,2002,36(2):66-68
    [63]赵中原,邱毓昌,于永明,等.用品闸管宏模型分析换流阀内电压分布特性[J].电网技术,2003,27(9):33-36
    [64]邹刚,陈祥训,郑健超.一种微观-宏观相结合的晶闸管PSPlCE模型[J].中国电机工程学报,1999,19(7):6-10
    [65]马莉.用PSPICE仿真GTO的瞬态特性[J].电力电子技术,1996,30(4):90-93
    [66]张纯江,王长永,邬伟扬.用PSPICE多瞬态分析法建立GTO仿真模型[J].电力电子技术,1999,33(2):65-67
    [67]何相宁.用PSPICE多瞬态分析法建立新型电力电子器件的模型特性[J].电力电子技术,1995,29(3):62-66
    [68]周勇,吕中宾.IGCT及其逆变电路的PSPICE仿真[J].电力自动化设备,2005,25(6):77-79
    [69]Kuhn H,黄慧.IGCT无吸收和串联工作电路仿真的新型有效的物理模型[J].变流技术与电力牵引,2003,10(5):21-25
    [70]蔡丽娟,邹祖冰.新型功率器件MCT关断模型[J].华南理工大学学报,2004, 32(1):29-32
    [71]孙元章,刘前进.FACTS控制技术综述--模型目标与策略[J].电力系统自动化,1999,23(6):1-7
    [72]姜齐荣,王强,韩英铎.ASVG的建模与控制[J].清华大学学报,1997,37(7):21-25
    [73]黄振宇,倪以信,陈寿孙.UPFC动态模型在电力系统动态分析中的实现[J].电力系统自动化,1999,23(6):26-30
    [74]戚庆茹,焦连伟,严正.统一潮流控制器的动态向量建模与仿真[J].电力系统自动化,2003,27(15):10-14
    [75]王庆红,胡国根.统一潮流控制器的Matlab仿真建模及分析[J].电网技术,2000,24(9):22-25
    [76]张东霞,童陆园,尹忠东.描述可控串补装置暂态特性的数学模型[J].中国电机学报,1999,19(5):30-34
    [77]赵学强,陈陈.晶闸管控制的串联电容补偿模型的综合研究[J].电力系统自动化,1999,23(6):31-35
    [78]李晓露,段献忠.用基频动态等值模型研究TCSC暂态[J].清华大学学报(自然科学版),1999,39(3):24-32
    [79]Hochgraf C,Lasseter R H.STATCOM controls for operation with unbalanced voltage[J].IEEE Trans on Power Delivery,1998,13(2):538-544
    [80]张爱国.SVC装置的Simulink实现和仿真[J].陕西电力,2007,35(5):55-58
    [81]杨吟梅.变电站内电磁兼容问题(二)--变电站内主要干扰源及其特性[J].电网技术,1997,21(3):72-75
    [82]杨吟梅.变电站内电磁兼容问题(四)--抑制电磁干扰的措施[J].电网技术,1997,21(5):67-74
    [83]张重远,梁贵书,崔翔.气体绝缘变电站内电压互感器高频传输函数模型的建立[J].电工技术杂志,2002,21(12):26-28
    [84]Richardson M H,Formenti D L.Parameter estimation from frequency response measurements using rational fraction polynomials[C].Proceedings of the 1st International Modal Analysis Conference,Orlando,USA,Nov.8-10,1982,:167-181
    [85]徐东杰,贺仁睦,高海龙.基于迭代PRONY算法的传递函数辨识[J].中国电机工程学报,2004,24(6):40-43
    [86]Roain Y,Pintelon R,Xu K Q,et al.On the use of orthogonal polynomials in high order frequency domain system identification and its application to modal parameter estimation[C].Proceedings of the 33rd IEEE Conference on Decision and Control,Orlando,USA,Dec.14-16,1994,:3365-3373
    [87]Rolain Y,Pintelon R,Xu K Q,et al.Best conditioned parametric identification of transfer function models in the frequency domain[J].IEEE Trans on Automatic Control,1995,40(11):1954-1960
    [88]朱明林,朱子述.正交多项式辨识变压器传递函数及其在绕组变形诊断中的应用[J].上海交通大学学报,2001,35(8):1233-1237
    [89]张重远,梁贵书,崔翔.GIS电站内传导干扰计算模型的建立[J].高压电器,2003,39(4):11-13
    [90]张重远,梁贵书,崔翔.气体绝缘变电站内PT的特快速暂态仿真建模[J].中国电机工程学报,2003,23(7):84-87
    [91]Wouter H,Tom D.A discussion of rational approximation of frequency domain responses by vector fitting[J].IEEE Transactions on Power Delivery,2006,21(1):441-443
    [92]Gustavsen B,Semlyen A.Combined phase and modal domain calculation of transmission line transients based on vector fitting[J].IEEE Transactions on Power Delivery,1998,13(2):596-604
    [93]Gustavsen B,Semlyen A.Application of vector fitting to state equation representation of transformers for simulation of electromagnetic transients[J].IEEE Transactions on Power Delivery,2004,19(3):952-956
    [94]王钰,李彦明,邱毓昌.传递函数拟合算法及其在变压器绕组变形诊断中的应用[J].西安交通大学学报,1997,31(11):50-54
    [95]Laub A J,Moore B C.Calculation of Transmission Zeros Using QZ Techniques[J].Automatica,1978,14(6):557-566
    [96]陈淑凤,马蔚宇,马晓庆.电磁兼容试验技术[M].北京:北京邮电大学出版社,2001
    [97]张黎,李庆民,王伟,等.用于传递函数参数辨识的改进复向量拟合法[J].高电压技术,2008,34(8):1542-1546
    [98]Salter M J,Alexander M J.EMC antenna calibration and the design of an open-field site[J].Measurement Science and Technology,1991,2(6):510-519
    [99]胡广书.数字信号处理[M].北京:清华大学出版社,2002
    [100]张延华,姚林泉,郭玮.数字信号处理--基础与应用[M].北京:机械工业出版社,2005
    [101]Cybenko G.Approximation by superposition of a sigmoidal function[J].Math.Contral Siguals Systems,1989,2(4):303-314
    [102]Hecht Niselsen R.Theory of the back propagation neural network[C].Proceedings of the International Joint Conference on Neural Networks,Washington,USA,Jun 18-22,1989,:593-605
    [103]王雪梅,李文申,严璋.BP网络在电力变压器故障诊断中的应用[J].高电压技术,2005,31(7):12-14
    [104]敖磊,吴耀武,娄素华,等.用相似性原理及人工神经网络预测电价[J].高电压技术,2006,32(6):113-117
    [105]赵宇红,唐耀庚,张韵辉.基于神经网络和模糊理论的短期负荷预测[J].高电压技术,2006,32(5):112-115
    [106]毛颖科,关志成,王黎明,等.基于BP人工神经网络的绝缘子泄漏电流预测[J].中国电机工程学报,2007,27(27):9-14
    [107]王伟,李清泉,王向东.基于MATLAB的BPANN油浸电力变压器故障诊断仿真[J].变压器,2007,44(9):47-51
    [108]Schauder C,Gernhardt M,Stacey E,et al.Development of a ±100Mvar static condenser for voltage control of transmission systems[J].IEEE Transactions on Power Delivery,1997,10(3):1486-1496
    [109]Hanson D J,Horwill C,Gemmell B D.A STATCOM-based relocatable SVC project in the UK for National Grid[C].IEEE Power Engineering Society Winter Meeting,New York,USA,Jan.27-31,2002,:532-537
    [110]Sen K K,Keri A J F.Comparison of field results and digital simulation results of voltage-sourced converter-based FACTS controllers[J].IEEE Transactions on Power Delivery,2003,18(1):300-306
    [111]Mehraban A S,Edris A,Schauder C D,et al.Installation,commissioning and operation of the world's first UPFC on the AEP system power system technology [C].Proceedings of 1998 International Conference on Power System Technology,Beijing,China,Aug.18-21,1998,:323-327
    [112]徐国政,李庆民,张市容,等.同态断路器的发展和应用[J].高压电器,1998,34(6):43-47
    [113]Arabi S,Hamadanizadeh H,Fardanesh B B.Convertible static compensator performance studies on the NY state transmission system[J].IEEE Transactions on Power Systems,2002,17(3):701-706
    [114]Boualem B.Estimating and interpreting the instantaneous frequency of a signal-part 1:Fundamentals[J].Proceedings of the IEEE,1992,80(4):520-538
    [115]许辉群,桂志先.地震信号的瞬时信息及其应用[J].内蒙古石油化工,2006,16(10):52-54
    [116]李山有,武东坡,金星,等.地震信号瞬时参数实时计算方法[J].地震工程与工程振动,2004,24(5):13-16
    [117]牛发亮,黄 进.基于电磁转矩复解析小波变换的感应电机转子故障[J].电工技术学报,2005,20(7):100-105
    [118]李天云,赵妍,李楠.基于EMD的Hilbert变换应用于暂态信号分析[J].电力系统自动化,2005,29(4):49-52
    [119]刘毅华,赵光宙.希尔伯特-黄变换在电力系统故障检测中的应用研究[J].继电器,2006,36(14):4-6
    [120]张义辉,尹项根,陈德树.基于富氏滤波测频算法的改进研究[J].电网技术,1998.22(3):65-67
    [121]Sidhu T S.Accurate measurement of power system frequency using a digital signal processing technique[J].IEEE Transactions on Instrumentation and Measurement,1999,48(1):75-80
    [122]Boualem B.Estimating and interpreting the instantaneous frequency of a signal-part 2:Fundamentals[J].Proceedings of The IEEE,1992,80(4):540-568
    [123]李钢虎,李亚安,王军,等.Wigner-Hough变换在水下目标信号检测中的应 用[J].兵工学报,2006,27(1):121-125
    [124]葛哲学,陈仲生.Matlab时频分析技术及其应用[M].北京:人民邮电出版社,2006
    [125]陈平.信号瞬时频率的估计方法及其应用[D].济南:山东大学电气工程学院,2007
    [126]飞思科技产品研发中心.辅助信号处理技术与应用[M].北京:电子工业出版社,2005
    [127]袁鹏,司文荣,李军浩,等.局部放电脉冲的Wigner时频分布特性研究[J].高压电气,2008,44(6):524-526
    [18]徐政.基于晶闸管的柔性交流输电控制装置[M].北京:机械工业出版社,2005
    [129]温郑铨,陈玉燕.适用于PSpice的品闸管开关模型[J].电力电子技术,1995,29(2):37-42
    [130]王兆安,张明勋.电力电子设备设计和应用手册[M].北京:机械工业出版社,2002
    [131]王毅,石新春,李和明,等.基于统一离散时域建模法的品闸管串联运行暂态仿真[J].电力系统自动化,2004,28(18):41-44
    [132]Lasseter R H,S Lee Y.Digital Simulation of Static Var system transients[J].IEEE Transactions on Power Apparatus and Systems,1982,PAS-101(10):4171-4177
    [133]Lima A C S D,Wanderley S S,Stephan R M.Modelling a Static Var Compensator using EMPT[C].Proceedings of the 38th Midwest Symposium on Circuits and Systems,Rio de Janeiro,Brazil,Aug.13-16,1995,:219-222.
    [134]Eminoglu U,Asun S A,Alcinoz T.Application of SVC on dynamic load for different load types[C].39th International Universities Power Engineering Conference,Glasgow,UK,Sept.6-8,2004:251-255
    [135]马伟明.电力电子系统中的电磁兼容[M].武汉:武汉水利电力大学出版社,2000
    [136]陈穷.电磁兼容性工程设计手册[M].北京:国防工业出版社,1993
    [137]刘鹏程.电磁兼容原理及技术[M].北京:高等教育山版社,1993
    [138]钱照明,程肇基.电力电子系统电磁兼容设计基础及干扰抑制技术[M].杭州: 浙江大学出版社,2000
    [139]周卫平,夏立,侯新国,等.电力电子系统电磁干扰的抑制[J].中原工学院学报,2003,14(1):141-144
    [140]Deane J H B,Hamill D C.Improvement of power supply EMC by chaos[J].Electronics Letters,1996,32(12):1045-1046
    [141]汪剑鸣,许镇琳.利用混沌提高dc/dc变换器的EMC性能[J].电子科技大学学报,2006,33(5):586-589
    [142]郝琇,翁存海.电力电子设备的电磁干扰对策[J].船电技术,2000,20(3):52-57
    [143]张志华.EMI专用元件的选择和使用[JJ.安全与电磁兼容,1994,6(1):26-31
    [144]姜晓鸿.系统内电磁兼容性(EMC)问题的建模及其优化设计[J].系统工程与电子技术,1996,18(6):22-27
    [145]吴维宁,张文亮,吴峡.电力系统中电子设备抗干扰技术研究与应用[J].电力自动化设备,2001,21(6):20-22
    [146]杨玉岗.现代电力电子的磁技术[M].北京:科学出版社,2003
    [147]金立军,刘卫东,钱家骊.铁氧体磁环抑制GIS特快速暂态过电压[J].高电压技术,2002,28(7):1-3
    [148]李庆民,吴明雷,张国强.铁磁性材料在抑制GIS高频暂态应用中的仿真分析方法[J].电工技术学报,2005,20(11):30-34
    [149]刘卫东,金立军,钱家骊,等.铁氧体磁环抑制GIS的VFTO的可能性[J].电工技术学报,2002,17(4):22-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700