基于多速率的无线移动Ad Hoc网络的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线移动Ad Hoc网是一种特殊的无线移动通信网络,其中每个节点的地位平等,不需要中心控制节点,可以任意移动并具有报文转发能力,网络通信依靠节点之间的相互协作,以多跳方式完成,因而不依赖于任何固定设施。由于无线移动Ad Hoc网具有的诸多优良特性,可以应用于民用和军事领域,例如,抢险救灾、多媒体会议、视频点播及军事战场数字化通讯等。
     通过使用不同的调制和编码方法,Ad Hoc网的MAC层采用的IEEE802.11无线接入标准在物理层支持多种传输速率。因此,利用自适应速率调整算法,网络节点可以根据信道质量选择不同的传输速率,从而提高网络的通信能力。研究多速率传输问题对Ad Hoc网络的发展具有重大的意义。本文对无线移动Ad Hoc网上的多速率问题进行了深入研究,具体的研究内容包括多速率多播路由时延的最小化、基于多速率传输的调度问题、基于模糊Petri网的多速率路由选择、基于网络编码的无线局域网中继算法。
     主要研究成果如下:
     (1)多速率无线移动Ad Hoc网中的多播路由时延的最小化
     针对物理层提供的多速率传输特性,研究了无线移动Ad Hoc网多播路由时延的最小化问题。其主要思想是依据关键路径高速率优先的原则,上游节点将对数据包的一次低传输速率传输换为先高后低的多次不同速率的传输,从而缩短关键路径时延,使得多播时延达到最小化。首先将该问题模型化为一个最优化问题,然后提出了一个分布式多播路由时延的最小化(Distributed Minimizing Delay Multicast Routing,DMDMR)算法,并且证明了该算法能够取得最优值。大量模拟实验结果表明,与上游节点对数据包只进行一次传输的经典技术相比,DMDMR算法最高可降低21%的多播时延。
     (2)基于多速率传输的无线移动Ad Hoc网中的调度问题
     主要研究无线移动Ad Hoc网中的多速率调度问题。首先将它模型化为一个优化问题,然后根据是否考虑节点缓冲区因素提出了两个多速率条件下的调度算法HRFWICB(Highest Rate First without Considering Buffer)和HRFWCB(Highest Rate First with Considering Buffer),它们的基本思想是在保证数据流基本公平性的前提下,优先调度高速率数据流来降低包的传输时间和时延。实验结果证明,同经典的Luo算法及最大势包优先算法(Greatest Potential Packet First,GPPF)相比,HRFWICB和HRFWCB算法能够明显地降低包的传输时间和时延。
     (3)基于模糊Petri网的无线移动Ad Hoc网多速率路由问题
     针对多速率环境下的无线移动Ad Hoc网,研究了期望介质访问时间路由问题,其基本思想是根据链路包的丢失率和传输速率来选择从源节点到目的节点期望传输时间最短的路径。首先用模糊Petri网进行建模,接着提出期望介质访问时间路由算法(Expect Media Visiting Time,EMVT)。因此,候选路由尽可能多地包含了高传输速率和低包丢失率的链路,可以充分利用物理层多速率能力来提高网络吞吐量。模拟实验表明,期望介质访问时间路由算法比最小跳数路由算法和仅仅考虑链路传输速率路由算法相比,可以较大地提高了网络吞吐量并降低时延。
     (4)基于网络编码的无线局域网中继算法
     网络编码是21世纪信息领域的一项新技术,它既可提高网络吞吐量又可节省能量消耗。目前的研究成果主要是基于单速率传输,但随着无线网络技术和设备的不断更新,无线局域网MAC层协议已经开始支持多速率传输。本文将网络编码同无线局域网中多速率传输性质相结合,提出基于网络编码的中继算法(Relay Algorithm Based on Network Coding,RABNC),并且分析了其相对传统中继算法的时间减少率。通过模拟实验表明,RABNC算法相对传统的中继算法最高可以节省17%的传输时间。
A Wireless Ad Hoc Networks is a set of nodes that can communicate with others in a multi-hop fashion without any assistance of fixed infrastructures and every node can move freely and relay data for others. Its main advantage is that it can be rapidly deployed without base station. The Wireless Ad Hoc Networks can be applied where pre-deployment of network infrastructure is difficult or impossible, for example, mobile meeting, disaster areas, and armies on the march.
     The IEEE 802.11 wireless media access standard in Wireless Ad Hoc Networks supports multiple data rates at the physical layer by employing different modulation and channel coding schemes. Nodes can utilize auto rate adaptation algorithm by automatically adapting the transmission rate to best match the channel conditions, and achieves better network performance. Research on multiple transmission rates is very important for the advancement of Wireless Ad Hoc Networks. This thesis studies four multi-rate issues for Wireless Ad Hoc Networks, including minimizing delay multicast routing in multi-rate Wireless Ad Hoc Networks, scheduling based on multi-rate transmission in Wireless Ad Hoc Networks,multi-rate routing in Wireless Ad Hoc Networks based on fuzzy petri net,relay algorithm based on network coding in wireless local network.
     The main results of the thesis are as follows:
     (1) Minimizing Delay Multicast Routing in Multi-rate Wireless Ad Hoc Networks: According to the multi-rate capacity at PHY layer, the optimal multicast delay in Wireless Ad Hoc Networks is studied. The main idea is replacing a lower rate transmission of upstream node with some transmissions from high to low to minimizing the multicast delay according to critical path based on the priority principle of high rate. Firstly, this problem is formulated as an optimization problem. Moreover, a Distributed Minimizing Delay Multicast Routing (DMDMR) algorithm is present and proved to be an optimal algorithm. The simulation results show that DMDMR algorithm can decrease of up to 21% over the multicast delay than the classic technique that the upstream node broadcast a packet only once.
     (2) Scheduling Based on Multi-rate Transmission in Wireless Ad Hoc Networks: This paper studies the multi-rate scheduling in Wireless Ad Hoc Networks. Firstly, we formulate it as an optimization problem. Moreover, the Highest Rate First without Considering Buffer (HRFWICB) algorithm and the Highest Rate First with Considering Buffer (HRFWCB) algorithm are present. Their main idea is scheduling prior the flow with higher transmission rate to decrease the transmission time and delay subject to that the minimum channel allocation for each flow is guaranteed. Finally the simulations are performed to compare our algorithms with Luo algorithm and Greatest Potential Packet First (GPPF) algorithm. The results show the algorithms can greatly decrease the transmission time and delay.
     (3) Multi-rate Routing in Wireless Ad Hoc Networks Based on Fuzzy Petri Net: This paper studies the expect media visiting time routing to improve throughput in multi-rate Wireless Ad Hoc Networks. The main idea is to select a path with the minimum except media visiting time based on the packet loss rate and the transmission rate of a link. Firstly, the problem is formulated as an optimization problem. Moreover, the Expect Media Visiting Time (EMVT) routing algorithm is present. As a consequence, the candidate route may contain a lot of high transmission rate and low packet loss ratio links. Simulation results show that EMVT algorithm can increase throughput and decrease delay over the Minimum Hop Amount routing algorithm and the routing algorithm which only considered the transmission rate.
     (4)Relay algorithm Based on Network Coding in wireless local network: The network coding is a new technology in the field of information in 21st century. It could enhance the network throughput and save the energy consumption. The present achievement is mainly based on the single rate. However, with the development of wireless network and equipment, wireless local network MAC protocols have already supported the multi-rate transmission. This paper proposes a Relay Algorithm Based on Network Coding (RABNC) and analyzes the transmission time gain of the algorithm over the traditional relay algorithm. The simulation results show that our algorithm could achieve the transmission time decrease of up to 17% over the traditional relay algorithm.
引文
[1] C.-K.Toh. Ad Hoc Mobile Wireless Networks: Protocols and Systems. Prentice Hall, 2002.
    [2] Z.J.Haas. Wireless Ad hoc Networks. IEEE Journal on Selected Areas in Communications, 1999; 17(8), pp: 13 29-1330.
    [3]陈林星,曾曦,曹毅.移动Ad Hoc网络自组织分组无线网络技术.电子工业出版社,2006.
    [4]王金龙,王呈贵,吴启晖,龚玉萍. Ad Hoc移动无线网络.国防工业出版社,2004.
    [5]郑少仁,王海涛,赵志峰,米志超,黎宁. Ad Hoc网络技术.人民邮电出版社,2005.
    [6] http://www.ieee802.org/11/.
    [7] http://portal.etsi.org/bran/.
    [8] http://www.bluetooth.org/.
    [9] 802.11 work groups. Part ll: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. 1997.
    [10]黄开枝,冉崇森.无线局域网MAC标准.电信快报,1998, 7: 23-26.
    [11]于宏毅等.无线移动自组织网.人民邮电出版社,北京, 2005.
    [12] C.K.Toh, M.Delwar and D.Allen. Evaluating the Communication Performance of an Ad hoc Wireless Network. IEEE Trans on Wireless Communications, vol.1, No.3, July 2002.
    [13] Z.J.Haas. Design Methodologies for Adaptive and Multimedia Networks. IEEE Communications Magazine, 2001, 39(11).
    [14] IEEE802.11a. Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5GHz Band. Supplement to IEEE802.11 Standard, Sep.1999.
    [15] IEEE802.11b. Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer Extension in the 2.4GHz Band. Supplement to IEEE802.11 Standard, Sep.1999.
    [16] A.Kamerman. AveLAN: A high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, Summer, 1997:118-133.
    [17] G.Holland, N.H.Vaitlya. A rate-adaptive MAC protocol for multi-hop wireless networks. Proc.of ACM MobiCom, Rome, Italy, July, 2001:236-250.
    [18] B Sadeghi, V Kanodia. A Sabharwal, E Knightly. Opportunistic media access for multirate ad hoc networks. In Proc ACM MOBICOM'02, Atlanta 2002.pp:24-35.
    [19] Y.Kim, J.Yu and S.Choi. SP-TPC:a self-protective energy efficient communication strategyfor IEEE802.11 WLANs. In Proc.IEEE VTC'04, 2004-Fall, pp: 26-29.
    [20] D.Qiao, S.Choi, A.Jain. et al. Miser:An optimal low-energy transmission strategy for IEEE802.11a/h. Proc.of ACM MobiCom, San Diego, USA, Sept, 2003,161-175.
    [21] T.Mo, C.W.Bostian. A throughput optimization and transmitter power saving algorithm for IEEE802.11b links. Proc. of IEEE WCNC, New. Orleans, USA, March, 2005, 57-62.
    [22] J-H.Chang, L.Tassiulas. Routing for maximum system lifetime in wireless ad hoc networks. Proc. of the 37th Annu. Allerton Conf. on Communication, Control, and Computing, Monticello, Sep.1999:22-31.
    [23] D.Kim, J.J.Garcia-Luna-Aceves, K.Obraczka et al. Routing mechanisms for mobile ad hoc networks based on the energy drain rate. IEEE Transactions on Mobile Computing. 2003, 2(2):161-173.
    [24] D.M.Blough, P.Santi. Investigating upper bounds on networks lifetime extension for cell-based energy conservation techniques in stationary ad hoc networks. Proc. of ACM Mobicom, Atlanta USA, 2002:183-192.
    [25] Li Z, Das A, Gupta A K, et al. Full Auto Rate MAC Protocol for Wireless Ad hoc Networks. IEEE Proceedings Communications, 2005, 152 (3):311-319.
    [26] Awerbuch E, Holmet D, Rubens H. High Throughput Route Selection in Multi-Rate Ad Hoc Wireless Networks. Wireless on Demand Network Systems. Berlin: Springer, 2004:253-270.
    [27] Yang G, Xiao M, Chen H, et al. A Novel Cross-layer Routing Scheme of Ad hoc Networks with Multi-rate Mechanism. Proc.of International Conference on Wireless Communications, Networking and Mobile Computing, 2005.
    [28] A.Boukerche and S.Rogers. Gps query optimization in mobile and wireless ad hoc networking. In proceedings of the 6th IEEE Symposium on Computers and Communications,3-5 July, 2001, Hammamet, Tunisia, 2001:198~203.
    [29] Yongho S, Jaewoo P, Yanghee C. Multi-rate Aware Routing Protocol for Mobile Ad hoc Networks. Proceedings of IEEE Vehicular Technology Conference. 2003:1749-1753.
    [30] Zhu H, Cao G. rDCF: A Relay-enabled Medium Access Control Protocol for Wireless Ad Hoc Networks. IEEE Transactions on Mobile Computing, 2006, 5(9):1201-1204.
    [31] Zeng W, Tan H, Suda T. A Relay Based MAC Protocol to Support Multi-rate Feature in Mobile Ad hoc Networks. Proc.of The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services. 2005:145-154.
    [32] H.Deng, W Li and D.P.Agrawal. Routing security in wireless ad hoc networks. IEEE Communication Magazine, Oct.2002, 40(10):70-75.
    [33] J.-P.Hubaux, L.Buttyan and S.Capkun. The quest for security in mobile ad hoc networks, Proc.of ACM/MobiHOC, 2001, 146-155.
    [34] Nokia. Wireless Broadband Access-Nokia Rooftop Solution. Nokia Network References, http://www..nokia.com/ , 2001.
    [35]李腊元,李春林.计算机网络技术.北京:国防工业出版社. 2001:372-386.
    [36] Charles Chien, Mani B. Adaptive radio for Multimedia Wireless Links. IEEE Journal on Selected A reasin Communications.1999, 17(5):158-180.
    [37] LiLa yuan, LiC hunLin. The QoS routing algorithm for ATM networks. Computer Communications, 2001, 24(3):416-421.
    [38]张远,刘洛馄,郭虹,卢欣.移动自组网中的QoS保障及解决思路.数据通信2004, 12 (6):3640.
    [39]桂超,严冰,孙宝林.提高Ad Hoc网络系统安全的一种构想.微型计算机应用,2006, 25 (1):845-848.
    [40]王炫,李建东,张文柱.支持多速率传输的动态ad hoc路由协议.电子与信息学报, 2006, 28(10):1907-1911.
    [41]杨卫华.无线Ad Hoc网络体系结构与路由协议研究.清华大学, 2003.
    [42] IEEE 802.11g, Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE 2003.
    [43] IEEE802.11e. Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications Amendment8: Medium Access Control(MAC) Quality of Service Enhancements. Standard, Jan.2005.
    [44] IEEE802.11e. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Spectrum and Transmit Power Management Extensions in the 5GHz band in Europe. Standard, May.2003.
    [45] IEEE802.11i. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 6: Medium Access Control (MAC) Security Enhancements. Standard, Apr.2004.
    [46] IEEE802.11j. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 7: 4. 9GHz-5GHz Operation in Japan. Standard, Aug. 2004.
    [47] C.A.Petri. Kommunikation mit Automaten. Bonn: Institute fur Instrumentelle Mathematik, Schriften des llM Nr3,1962.英文译本见:Communication with Automata, New york: Griffiss Air Force Base.Tech.Rep.RADCTR-65-377,Vol.1,1966.
    [48] Peterson J L. Petri nets. Computing Surveys 1977, 9(3), 223-252.
    [49]袁崇义. Petri网原理与应用.电子工业出版社,2005.
    [50]蒋昌俊. Petri网理论与方法研究综述.控制与决策, 1997, 12(6): 631-636.
    [51]蒋昌俊. Petri网的行为理论及其应用.北京:高等教育出版社, 2003.
    [52]蒋昌俊.矢量文法与PN机.中国科学,1995, (12).
    [53]焦李成.神经网络系统理论.西安电子科技大学出版社,1990.
    [54] Peterson J L, Petri nets theory and the modeling of systems. Prentice-Hall, Inc. Englewood Cliffs, N. J., 1981.
    [55] Berthelot G. Checking properties of nets using transformations. In: Rozenberg G, ed. LNCS 254, New York: Springer-Verlag, 1985.
    [56] Y.Souissi, On liveness preservation by composition of nets via a set of places. LNCS 524, 1991, 277-295.
    [57] Ferrarini L, Narduzzi M, Solet M T. A new approach to modular liveness analysis conceived for large controllers’design. IEEE Transaction on Robotics and Automation, 1994, 10(2): 169-183.
    [58] ZhouM C, DiCesare F, Rudolph D. Design and implementation of a Petri net based supervisor for a flexible manufacturing system. IFACJ. Automatica, 1992, 28(6), 1199-1208.
    [59] Kees van Hee,Natalia Sidorova ,et al. Soundness and separability of workflow nets in the stepwise refinement. Proc the 24th International Conference on Application and Theory of Petri Nets. Eindhoven , The Netherlands, 2003, 337-356.
    [60] Esparza J, Silva M. On the analysis and synthesis of free choice systems. In: Rozenberg G, ed. Lecture Notes in Computer Science,Vol 483. New York: Springer-Verlag, 1990, 243-286.
    [61] Ferrarini L. An incremental approach to logic controller design with Petri nets. IEEE Transaction on Systems, Man, and Cybernetics, 1992, 22(3): 461- 472.
    [62] Ferrarini L. On the reachability and reversibility problems in a class of Petri nets. IEEE Transaction on Systems , Man , and Cybernetics, 1994, 24(10): 1474-1482.
    [63] M.Hack, Petri net languages, Computation Structures Group Memo 124. Project MAC, Massachusetts Institute of Thechnology, Cambridge, Massachusetts, June, 1975.
    [64] Jiang CJ. A PN Machine Theory of Discrete Event Dynamic System. Beijing: Science Press, 2000.
    [65] Murata T. Petri net: Properties, analysis and applications. Proceedings of the IEEE, 1989, 77(4): 541-580.
    [66] Murata T, Koh J Y. Reduction and expansion of live and safe marked graphs. IEEE Trans. On Circuit Syst, 1980, 27(1): 68-70.
    [67] Zhou M C, Leu M C. Modeling, and performance analysis of a flexible PCB assembly station using Petri nets. Trans A SMEJ Electron Packag, 1991, 113(4), 410-416.
    [68] Marko M?kel?. Model Checking Safety Properties in Modular High-level Nets. //Science (S0302-9743), In: Proc the 24th International Conference on Application and Theory of Petri Nets. Eindhoven, The Netherlands, 2003, 201-219.
    [69] Looney C G. Petri fuzzy nets for rule-based decision making. IEEE Transactions on system,man, and cybernetics-part A, 1998, 18(1):178-183.
    [70] S.Chen, J.S.Ke, J.Chang. Knowledge representation using fuzzy Petri nets. IEEE Trans. on Knowledge and Data Engineering, 2(1990)3, 311-319.
    [71] A.J.Bugarin, S.Baron. Fuzzy reasoning supported by Petri nets. IEEE Trans. on Fuzzy Systems, 2(1994)2, 135-150.
    [72] D.Andren, J.C.Pascal, R.Valette. Fuzzy Petri net-based programmable logical controller. IEEE Trans. on Syst Man, and Cybern, 27(1997)6, 952-961.
    [73] W.Pedrycz, F.Gomide. A generalized fuzzy Petri net model. IEEE Trans. on Fuzzy Systems, 4(1992)2,295-301.
    [74] Sun Jing, Qin Shiyin and Song Yonghua. Fault diagnosis of electric power systems based on fuzzy petri nets. IEEE Transactions on Power Systems, vol. 19, 2053-2059, 2004.
    [75] Gao Meimei, Wu Zhiming. Fuzzy reasoning petri net and its application to fault diagnosis. ACTA Automatica Sinica, vol. 26, 676-680, 2000.
    [76] R.L.Shen. Reinforcement learning for high-Level fuzzy petri nets. IEEE Transactions on Systems, Man and Cybernetics - part b: Cybernetics, vol. 33, pp. 351-362, 2003.
    [77] L.V.Utkin, S.V.Gurov, and I.B.Shubinsky. Analysis of computer integrated manufacturing systems by fuzzy human operator behavior. J. Qual. Maint. Eng., vol. 3, no. 3, p. 189, 1997.
    [78] R.R.Wu, L.Ma, J.Mathew, and G.H.Duan. Optimal operation planning using fuzzy Petri nets with resource constraints. Int. J. Comput. Integr. Manuf., vol. 15, no. 1, pp. 28–36, 2002.
    [79] J. X. Xu. Fuzzy Petri net-based optimum scheduling of FMS with human factors. in Proc. 35th Conf. Decision Control, Kobe, Japan, Dec. 1996, pp. 4451–4452.
    [80]赵勇,王红卫,岳超源.模糊Petri网及其应用.系统工程与电子技术, 1997, 19(8):46-51.
    [81]麻信洛等.无线局域网构建及应用.国防工业出版社,2006.
    [82]曹秀英,耿嘉,沈平等.无线局域网安全系统.电子工业出版社,2004.
    [83]塔波尼著,李新付等译.无线移动通信网络.电子工业出版社,2001.
    [84]马涛,张信明,王青山等.无线网络分组调度算法综述.计算机科学,2004, 31 (4):35-39.
    [85] Jim Geier.无线局域网.人民邮电出版社,2001.
    [86] http://www.homerf.org.
    [87] K.M.Alzoubi, P.J .Wan, O.Frieder. New Distributed Algorithm for Connected Dominating Set in Wireless Ad Hoc Networks. In Proc.35th HICSS, Hawaii, January 7-10, 2002, pp.3849-3855
    [88] L.Jia, R.Rajaraman, T.Suel. An Efficient Distributed Algorithm for Constructing Small Dominating Sets. In Proc. the Annual ACM Symposium on Principles of Distributed Computing, 2001, pp.33-42.
    [89] Y F Wu, Y.L.Xu, G.L.Chen and K.Wang. On the Construction of Virtual Multicast Backbonefor Wireless Ad Hoc Networks. In Proc. The First IEEE International Conference on Mobile Ad hoc and Sensor Systems, Florida, USA. October 2004, pp .294-303.
    [90] Demers A, Keshav S, Shenker S. Analysis and simulation of a fair queuing algorithm. In Proc. of ACM SIGCOMM’89, 1989.
    [91] Bennett J, Zhang H. WF 2 Q: worst-case fair weighted fair queuing. In: Proc. of IEEE INFOCOM’96, 1996.
    [92] Goyal P, Vin H, Chen H. Start-time fair queueing: A scheduling algorithm for integrated service access. In: Proc. of ACM SIGCOMM'96, 1996.
    [93] Bhagwat P, Bhattacharya P, Krishma A, Tripathi S. Enhancing throughput over wireless LANs using channel state dependent packet scheduling. In: Proc. of IEEE INFOCOM’97, 1997.
    [94] Lu S, Nandagopal T, Bharghavan V. Fair scheduling in wireless packet networks. In: Proc. of ACM MOBICOM’98, 1998.
    [95] Lu S, Bharghavan V, Srikant R. Fair scheduling in wireless packet networks. In: Proc. of ACM SIGCOMM’97, 1997.
    [96] Ramanathan P, Agrawal P. Adapting packet fair queuing algorithms to wireless networks. In: Proc. of ACM MOBICOM’98, 1998.
    [97] Ng T, Stoica I, Zhang H. Packet fair queuing algorithms for wireless networks with location-dependent errors. In: Proc. of IEEE INFOCOM’98, 1998.
    [98] Ephremides A, Truong T. Scheduling broadcasts in multihop networks. IEEE Trans. Commun., 1990, 38(4): 456-460.
    [99] Ramaswami R, Parhi K. Distributed scheduling of broadcasts in a radio network. In: Proc. of IEEE INFOCOM’89, 1989.
    [100] Baker D, Ephremides A. The architectural organization of a mobile radio network via a distributed algorithm. IEEE Trans. Common., 1981, 29(11): 1694–1701.
    [101] Hajek B, Sasaki G. Link scheduling in polynomial time. IEEE Trans. Inform. Theory, 1988, 34(9): 910–917.
    [102] S. Y. E. Rouayheb, M.A.R.Chaudhry, A.Sprinston, On the minimum number of transmission in single-hop wireless coding networks, Proc. of 2007 IEEE Information Theory Workshop, 2007:120-125.
    [103]陶少国、黄佳庆.网络编码研究综述.小型微型计算机系统, 2008, 29(4):583-592
    [104]卢开澄、卢华明.图论及其应用(第二版).清华大学出版社, 1995.
    [105] T Corman, C .Leiserson, and R. Rivest. Introduction to Algorithm. The MIT Press,1989.
    [106] Ang B, Hou J C. Multicast routing and its QoS extension: problems, algorithms and protocols IEEE Network, 2000, 14(1):22-36.
    [107]孙宝林,李腊元.移动AdHoc网络多播路由协议的研究进展.计算机工程与应用,2004,40 (32 ): 139-143.
    [108]孙宝林,李腊元.多跳无线AdHoc路由协议技术研究.小型微型计算机系统,2004,25 (10 ): 1737-1741.
    [109]李云,赵为粮,隆克平,吴诗其.无线AdHoc网络支持QoS的研究进展与展望.软件学报,2004,15(12):1885-1893.
    [110]史美林,英春.自组网路由协议综述.通信学报,2001,22(11):93-103.
    [111] Bangnan Xu; Hischke, S.; Walke, B. The role of ad hoc networking in future wireless communications. Proceedings International Conference on Communication Technology ICCT 2003(2):1353 - 1358.
    [112] S. Lee, S. Banerjee, and B. Bhaatcharjee. The case for a multi-hop wireless local area network. In Proc. of IEEE INFOCOM, Mar.2004.
    [113] J E Wieselthier, G D Nguyen. A Ephremides. Energy-efficient broadcast and multicast trees in wireless networks. Mobile Networks and Applications (S1383-469X), 2002, 7(6): 481-492.
    [114] J Cartigny, D Simplot, I Stojmenovic. Localized minimum-energy broadcasting in ad-hoc networks. Proc. of IEEE/INFOCOM. USA: IEEE 2003, 3: 2210-2217.
    [115] A Basalamah, H Sugimoto, T Sato. Rate adaptive reliable multicast MAC protocol for WLANs. Proc. of Vehicular Technology Conference, Melbourne: IEEE Computer Society Press, May 2006: 1216-1220.
    [116] U T Nguyen, A Asif, X Xiong. Multirate-aware multicast routing in MNANETs. Proc. of ACM MASS, 2006. USA: ACM, 2006: 554-557.
    [117] C T Chou, A Misra, J Qadir. Low-latency broadcast in multi-rate wireless mesh networks. IEEE Journal on Selected Areas in Communications (S0733-8716), 2006, 24(11): 2081-2091.
    [118] S.Deering. Multicast Routing in a Datagram Network. Ph.D. dissertation, Stanford Univ. 1991.
    [119] De Morais Cordeiro C, Gossain H, Agrawal D P. Multicast over wireless mobile ad hoc networks: present and future directions, IEEE Network, 2003,17 (1):52-59.
    [120] S.-J.Lee, Mario Gerla,and C.-C Chiang. On-Demand Multicast Routing Protocol. In Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC’99,pp.1298-1304, September l999
    [121] Gerla M, Lee S-J, Su W. On-Demand Multicast Routing Protocol (ODMRP) for Ad Hoc Networks. Internet draft, draft-ictf-manet-odnup-02.txt, 2000.
    [122] S J Lee, W Su, M Gerla. On-demand multicast protocol in multihop wireless mobile networks. ACM/Kluwer Mobile Networks and Applications, 2002. USA: ACM, 2002, 7: 441-453.
    [123] Royer E M, Perkins C E. Multicast Operation of the Ad Hoc On-Demand Distance Vector Routing Protocol. ACM MOBICOM, Aug.1999. 207-218.
    [124] Garcia-Lunc-Aceves J J, Madruga E L. The Core-Assisted Mesh Protocol. IEEE JSAC, Aug.1999.1380-1394
    [125] C.-C.Chiang,Mario Gerla. and Lixia zhang. Forwarding Group Multicast Protocol. (FGMP) for Multihop. Mobile Wireless Networks. ACM Baltzer Journal of Cluster Computing: Special Issue on Mobile Computing,1(2):187-196,1998.
    [126] Chen K, Nahrstedt K. Effective Location-Guided Tree Construction Algorithms for Small Group Multicast in MANET. Proc. INFOCOM, 2002.1180—1189.
    [127] Sinha P, Sivakumar R, Bharghavan. VMCEDARR Multicast Core-Extraction Distribution Ad Hoc Routing. IEEE Wireless Commun. And Net. Conf; Sept.1999.1313-1317.
    [128] Ji L, Corson M S. Differential Destination Multicast-A MANET Multicast Routing Protocol for Small Groups. Proc. INFOCOM, 2001.1192-1202.
    [129] Powers R. Batteries for low power electronics. Proc IEEE, 1995, 83 (4):687-693.
    [130] Wu C W, Tay Y C, Toh C K. Ad Hoc Multicast Routing Protocol Utilizing Increasing id-numberS (AMRIS) Functional Specification. Internet draft, Nov.1998.
    [131] Z Ji, Y Yang. Exploiting medium access diversity in rate adaptive wireless LANS Proc. of ACM MOBICOM, Philadelphia, USA, Sept., 2004. USA: ACM: 345-359.
    [132] C-C Chen, H Luo, E Seo, N H Vaidya, X Wang. Rate-adaptive framing for interfered wireless networks. Proc. of IEEE INFOCOM, May, 2007. USA: IEEE, 2007: 1325-1333.
    [133] R Bhatia, L Li. Characterizing achievable multicast rates in multi-hop wireless networks Proc. of ACM/Mobihoc, 2005. USA: ACM, 2005.
    [134] T Elbatt, A Ephremides. Joint scheduling and power control for wireless ad-hoc networks Proc. of IEEE/INFOCOM 2002. USA: ACM, 2002.
    [135] A.Ballardie. Core Based Trees (CBT) Multicast Routing Architecture. RFC 2201, September 1997.
    [136] Bommaiah, McAuley, and Talpade. AMRoute: Ad hoc Multicast Routing Protocol. Intemet-Draft,draft-tdpade-manet-amrout-00.txt, February l999. Work in progress.
    [137] J.J.Garcia-Luna-Aceves and E.L.Madruga. A Multicast Routing Protocol for Ad-Hoc Networks. In Proceedings of the IEEE Conference on Computer Communications, INFOCOM99, pp.784-792, March l999.
    [138] Sinha P, Sivakumar R, Bharghavan. VMCEDARR Multicast Core-Extraction Distribution Ad Hoc Routing. IEEE Wireless Commun. And Net. Conf; Sept.1999.1313-1317.
    [139] Ji L, Corson M S. Differential Destination Multicast-A MANET Multicast Routing Protocol for Small Groups. Proc. INFOCOM, 2001.1192-1202.
    [140] Luo H, Lu S, Bharghavan V. A new model for packet scheduling in multihop wireless networks. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Oct 2000.
    [141] Lu S, Bharghavan V, Srikant R. Fair scheduling in wireless packet networks. IEEE/ACM Transactions on Networking, 1999, 7(8): 473 489.
    [142] Wu X, Yuen C, Gao Y, et al. Fair scheduling with bottleneck consideration in wireless Ad Hoc networks. In Proceedings of the Tenth International Conference, Oct 2001.
    [143] Luo Haiyun, Lu Songwu, Vaduvur Bharghavan, et al. A packet scheduling approach to QoS support in multihop wireless networks. ACM Journal of Mobile Networks and Applications (MONET), 2004, 9(6).
    [144] Goyal P, Vin H M, Chen H. Start-time fair queuing: a scheduling algorithm for integrated service access. In ACM SIGCOMM 96, Aug 1996.
    [145] Zeng G k, Xu Y L, Wu Y F. Weighted flow contention graph and its application in wireless Ad-Hoc networks. In IEEE/ICN, 2004.
    [146]王琦,韩江洪,王青山.多速率敏感无线多跳网中最小化延迟多播路由.系统仿真学报, 2008, 20(24): 6707 6713.
    [147]马涛,张信明,陈国良等. Ad Hoc无线网络公平调度算法研究.计算机科学, 2004, 31(6): 29 32.
    [148] D.B.Johnson, D.A.Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks. Mobile Computing, T.Imielinski and H.Korth, Ed., Kluwer, 1996.
    [149] C.E.Perkins, E.M.Royer. Ad-hoc on-demand distance vector routing. Proceeding of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, February 1999, pp.90-100.
    [150] A.Baruch, D.Holmer and H.Rubens. High throughput route selection in multi-rate ad hoc wireless networks. Proc. of the Workshop on Wireless on-Demand Network Systems, Jan. 2004, 251-268.
    [151] D.B. Johnson, D.A.Maltz and Y.C.Hu. The dynamic source routing protocol for mobile ad hoc networks. IETF Internet Draft (work in progress), draft-ietf-dsr-09-txt, April 2003.
    [152] Looney C G. Petri fuzzy nets for rule-based decision making. IEEE Transactions on system, man, and cybernetics-part A, 1998, 18(1):178-183.
    [153] Hao Ma,Zhigang Hu,Guojun Wang. A Reliable Routing Algorithm in Mobile Ad Hoc Networks Using Fuzzy Petri Net. IEEE Communications Society Globecom 2004 Workshops, pp: 80-84.
    [154] Qunfeng Dong, Suman Banerjee. Minimum Energy Reliable Paths Using Unreliable Wireless Links. In ACM MobiHoc’05, May.2005, pp.25-27.
    [155] Tzu-Chiang Chiang, Yueh-Min Huang. Multicast Routing Representation in Ad HocNetworks Using Fuzzy Petri Nets. Proceeding of the 18th International Conference on Advanced Information Networking and Application(AINA’04), Vol. 40, March 2004, pp. 420-423.
    [156]邹仕洪,程时瑞.一种多速率移动自组网中的拓扑控制算法.软件学报, 2004, 15(12):1869-1876.
    [157] Y. Wang, H. Zhu, K.Yen. Using directional antenna to realize multi-relay MAC for wireless ad hoc networks. In Proc. of IEEE/ICICS 2007:257-261.
    [158] Baruch Awerbuch, David Holmer. High Throughput Route Selection in Multi-Rate Ad Hoc Wireless Networks. Mobile Neworks and applications, 2006, 11(2):253-266.
    [159] R.Ahlswede, N.Cai, S.-Y. R.Li and R.w.Yeung. Network information flow. IEEE Transactions on Information Theory, Jul. 2000, 46(4):1204—1216.
    [160] R.Koeter, M.Medard. Beyond routing: an algebraic approach to network coding. IEEE INFOCOM. 2002:122-130
    [161] R.Koeter, M.Medard, An algebraic approach to network coding, IEEE/ACM Trans. On Networking, Oct. 2003, 11(5):782-795.
    [162] S.Jaggi, P.Sanders, P.A.Chou, M.Effros, S.Egner, K.Jain, L.Tolhuizen. Polynomial time algorithm for multicast network code construction, IEEE Trans. on Information Theory, vol. 51, no. 6, June 2005.
    [163] P.Chou, Y.Wu, K.Jain. Practical network coding. in Proc. of Allerton Conference on Communication, Control, and Computing, Oct. 2003.
    [164] C.Gkantsidis, P.Rodriguez. Network coding for large scale content distribution. in Proc. IEEE INFOCOM, march 2005:2235-2245.
    [165]马冠骏,许胤龙,林明宏,宣颖.基于网络编码的P2P内容分发性能分析.中国科学技术大学学报, 2006(11).
    [166] Lei Guo, Xiaoning Ding, Haining Wang. Cooperative Relay Service in a Wireless LAN. IEEE Journal on Selected Areas in Communications, 2007, 25(2):355-368.
    [167] Y.Wu, P.A.Chou and S.-Y.Kung. Minimum-energy multicast in mobile ad hoc networks using network coding. IEEE Transactions on Information Theory, 2005, 53(11):1906-1918.
    [168] Y Wu, P.A.Chou, Q.Zhang, et al. Achievable throughput for multiple multicast sessions in wireless ad hoc networks. IEEE Globecom, Mar, 2004.
    [169] Y.Wu, P.A.Chou and S.-Y.Kung. Information exchange in wireless networks with network coding and physical-layer broadcast. 2005 Conference on information sciences and systems.
    [170] J.Widmer, C.Fragouli, J.-Y.L.Boudec. Low-complexity energy-efficient braodcasting in wireless ad-hoc networks using network coding. in NetCod 2005, Apr. 2005.
    [171]张勇,郭达.无线网状网原理与技术.电子工业出版社. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700