拮抗酵母及结合热空气处理对樱桃番茄采后病害的防治及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
樱桃番茄是我国广泛种植的经济作物之一,在我国经济发展和食物供给中占有重要地位。生物防治(Biological control)作为一种可有效控制果蔬类产品采后病害的方法引起了研究人员的广泛关注,本论文将重点研究拮抗酵母对樱桃番茄采后病害的防治效果及其作用机理。此外,采后热处理(Post-harvest heat treatment)是一种无毒无残留的物理处理方法,合适的热处理方法能较好的维持果蔬贮藏品质、减少病虫害损失。因此,本论文以樱桃番茄果实为研究材料,以酵母菌Pichia guilliermondii为生物防治拮抗菌,并结合得到国内外广泛认可的热处理条件(38℃热空气处理),研究生物防治结合热空气处理对樱桃番茄采后病害的防治效果及其作用机理。具体研究内容和结果如下:
     1.拮抗酵母对樱桃番茄采后病害防治效果的研究
     对于采摘于绿熟期的樱桃番茄果实而言,拮抗酵母P. guilliermondii的使用可以有效地防治由病原菌Botrytis cinerea、Alternaria solani和Rhizopus stolonifer所引发的番茄果实贮藏期间灰霉病、果腐病和根霉霉烂病的发生和发展。在本试验条件下,对于病害的防治效果和拮抗酵母的使用浓度正相关,酵母菌的浓度越大,对于病害侵染的防治效果越好;当酵母菌菌悬液浓度为108 CFU/mL时,对樱桃番茄采后三种主要病原菌的防治效果均最好。在樱桃番茄采后的三种主要病原真菌中,拮抗酵母Pguilliermondii对于R. stolonifer的抑制效果最为显著。
     对于三种不同成熟度的樱桃番茄果实而言(红熟期、粉红期、绿熟期),采用浓度为108CFU/mL的拮抗酵母菌悬液均可以显著地减少其采后自然病害的发生和发展;其中对于绿熟期的樱桃番茄果实则可以完全地防治贮藏期间自然病害的发生。与此同时,拮抗酵母P. guilliermondii的使用不会影响樱桃番茄果实的主要贮藏品质指标,包括:果实失重率;总可溶性固形物、可滴定酸、维生素C含量以及果实颜色。
     2.拮抗酵母生物防治作用机理的初步研究
     本章首先研究了拮抗酵母P. guilliermondii的菌悬液、活菌液、高压灭菌液以及过滤液对樱桃番茄采后人工接种病害的防治效果,结果表明:该拮抗酵母不产生体外抗菌素;其生物防治作用效果和其与病原菌之间对于营养物质的竞争有关。其次研究了拮抗酵母的接种时间对于防治果实根霉霉烂病的影响,结果表明:相对于病原微生物,拮抗酵母接种于伤口处的时间越早,对樱桃番茄采后病害的防治效果越好;其生物防治作用效果和其与病原菌之间对于生存空间的竞争有关。最后研究了拮抗酵母对于樱桃番茄果实抗病性防御酶的诱导作用,结果表明:酵母菌P. guilliermondii诱导了樱桃番茄果实细胞中过氧化物酶(POD)、多酚氧化酶(PPO)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)、几丁质酶(CHI)以及p-1,3葡聚糖酶等防御酶活性的提高,增强了其在贮藏期间对于病害的防御能力。
     3.采后热空气处理对樱桃番茄贮藏品质的影响及贮期主要病害的控制
     由于在生产实践当中,单一使用生物防治的方法其防病保鲜效果可能难以与化学杀菌剂相抗衡,因此,我们尝试将生物防治与采后热处理这一安全、有效、无残留的处理方式相结合,以期增强对果蔬采后病害的防治效果。在将此两种方式结合使用之前,有必要研究一下热处理对樱桃番茄贮藏品质的影响及贮期主要病害的控制,以便于选择最适宜的热处理条件。
     本章试验所选用的采后热处理方式为热空气处理(Hot Air Treatment, HAT),选择国际上惯常使用的应用于果蔬采后防病保鲜的热空气处理温度(38℃),得出以下试验结论:(1)38℃热空气处理可以有效地防治樱桃番茄果实在室温下贮藏期间的三种主要病害;在本试验条件下,热处理时间越长,对于病害的防治效果越好;但即使是处理时间最短的24 h,也可以显著地降低三种病害的发病率并减小果实的病斑直径,且该防治效果可以维持到贮藏期结束;(2)对于不同处理组果实的品质指标而言,38℃热空气处理24h不会影响樱桃番茄果实的贮藏品质;而48 h、72 h的热空气处理会使番茄果实总可溶性固形物、可滴定酸含量以及维生素C含量不同程度地下降;此外,72 h的热空气处理还会加速采后番茄果实颜色的转变,加速果实的衰老。所以,综合考虑本章的试验结果,本着节约能源与社会资本的原则,选择38℃热空气处理24 h作为最佳采后热空气处理条件,它将在下几章的研究中与生物防治相结合,以期增强对果蔬采后病害的防治效果。
     4.拮抗酵母结合热空气处理对樱桃番茄采后病害的防治效果
     本部分研究首先通过拮抗酵母P. guilliermondii在不同温度下生长曲线的测定,得出拮抗酵母P. guilliermondii不耐热,因此,生物防治与热空气处理的结合顺序为先热处理,再拮抗酵母处理。接下来,研究了单独热空气处理、拮抗酵母处理以及二者结合对樱桃番茄采后三种主要病原微生物B. cinerea、A. solani和R. stolonifer的防治效果,结果表明:对于樱桃番茄果实贮期灰霉病而言,单独热空气处理防治效果要显著好于拮抗酵母处理;对于果腐病而言,单独拮抗酵母处理防治效果要显著好于热空气处理;而对于根霉霉烂病而言,当贮期结束时,两种处理方法的防治效果相差无几。因此,不同的病原菌对热处理或者生物防治的敏感度不同,单一使用一种采后处理方式可能无法防治多种病原菌的侵染,考虑到果实采后其贮藏环境中微生态的复杂多样性,若将热空气处理与拮抗酵母处理结合应用,则可以同时增强对樱桃番茄果实贮期多种病害侵染的防治效果,极大地降低果实采后贮藏期间的病害发生率。
     扫描电镜观察结果显示:热空气处理通过抑制病原菌菌丝生长与孢子萌发来防治病原真菌对果实的侵染,而拮抗酵母则通过营养物质和生存空间的竞争抑制病原菌,此外,酵母细胞可以紧密地附着于病原菌菌丝体上抑制其生长。本章的最后,使用电子鼻来检测樱桃番茄果实贮藏期间挥发性气味的浓度,并将检测结果与不同处理组果实病害发生情况建立联系,结果显示:经过热空气结合拮抗酵母处理的樱桃番茄果实伤口处腐烂程度最低、溢出的挥发性气味最少。
     5.拮抗酵母结合热空气处理对樱桃番茄果实抗病性防御反应的诱导
     由于目前的研究对于热处理对果蔬表皮和伤口处潜在病原菌的直接杀死作用和拮抗酵母通过营养及生存空间的竞争来抑制病原菌的生长已经有了较为明确的认识,因此本章将重点研究热空气处理结合拮抗酵母P. guilliermondii对樱桃番茄果实采后主动防御反应(active defense responses)的诱导。试验结果表明:(1)单独热空气处理或者单独拮抗酵母处理均可以有效地防治樱桃番茄果实贮藏期间灰霉病、果腐病以及根霉霉烂病的发生和发展,但若将两种采后处理方法相结合,则可以显著地提高对于三种病害的防治效果;(2)热空气处理和拮抗酵母均可以诱导樱桃番茄果实的抗病性防御反应,热空气处理可以调节番茄果实细胞中H202的代谢,而拮抗酵母则可以诱导番茄果实细胞中木质素的生物合成以及β-1,3葡聚糖酶的积累;(3)结合处理对于樱桃番茄果实抗病性防御反应的诱导要显著地好于二者单独应用,包括对于H202代谢的调节、提高木质素生物合成、诱导β-1,3葡聚糖酶这几个方面。
     6.拮抗酵母采前喷施对樱桃番茄贮藏品质的影响及贮期自然病害的防治
     由于许多病原微生物在果实生长期间就已侵入果实并长期潜伏,而不表现症状,直到果实成熟采收和环境条件适合的时候才发病,此类病害的防治主要应加强采前的田间管理,以清除病原、减少果实采后病害的发生。因此,本章的研究重点是拮抗酵母P. guilliermondii采前喷施对樱桃番茄果实贮藏品质的影响以及贮期自然病害的防治,通过对于试验数据的分析,可以得出以下几点结论:(1)拮抗酵母P. guilliermondii采前喷施以及其喷施次数均不会影响樱桃番茄果实采前生长时期以及采后贮藏阶段的果实品质;(2)拮抗酵母采前喷施可以显著地降低樱桃番茄果实贮藏期间自然病害的发生率,在本试验条件下,其采前喷施次数越多,对自然病害的防治效果越好;(3)P. guilliermondii采前喷施可以诱导樱桃番茄果实抗病性防御酶活性的升高,在本试验条件下,其采前喷施次数越多,对于酶活性的诱导能力越强;(4)在本试验条件下,拮抗酵母P. guilliermondii采前喷施的次数越多,其在番茄果实表皮的定殖生长能力就越强。
Cherry tomato is an important agricultural commodity and widely planted in China. Because many postharvest pathogens infect through wounds caused during harvest and are readily accessible to treatment with antagonists, biological control is considered a desirable alternative to chemical control. Furthermore, heat treatment is a non-damaging physical treatment that can be used to alleviate physiological diseases of various commodities. Therefore, in this paper, we will select cherry tomato fruit as experimental material, and our purpose is to research the effect and mechanism of antagonistic yeast (Pichia guilliermondii), alone or in combination with heat treatment (Hot air treatment,38℃) on the reduction of postharvest disease on cherry tomato fruit.
     The contents and results are as follows: 1. Biological control of the postharvest pathogens Botrytis cinerea, Alternaria solani and Rhizopus stolonifer on cherry tomato fruit by P. guilliermondii
     In mature green cherry tomato fruit, P. guilliermondii controlled three postharvest pathogens of tomato (B. cinerea, A. solani and R. stolonifer). Moreover, there was a close link between the concentration of the antagonistic yeast and the control effect. Cell suspensions at 108 CFU mL-1 were most effective in controlling all three tomato pathogens. P. guilliermondii showed efficacy against all three pathogens, but it appeared to be most effective against R. stolonifer.
     In tomato fruit at three different stages of maturity (red, pink, or mature green), a cell suspension of P. guilliermondii at 108 CFU mL-1 significantly decreased the rate of natural infection. Based on the results of an inoculation experiment, lower yeast concentrations (107 CFU mL-1) could effectively inhibit infections caused by all three pathogens, and it may be possible to use lower numbers of cells of the antagonistic yeast to control natural diseases. In this study, P. guilliermondii did not significantly affect fruit quality parameters such as FW loss, total soluble solids content, titratable acidity content, ascorbic acid content, and fruit colour of cherry tomato fruit during postharvest storage.
     2. Mechanism of the yeast P. guilliermondii against postharvest pathogens on cherry tomato fruit
     The yeast P. guilliermondii, was examined for its effects to control R. stolonifer on cherry tomato fruit during storage time, and in order to highlight the reason for biocontrol, possible mode of action was discussed. Results showed that the yeast autoclaved culture and culture filtrate had no effect in controlling postharvest disease caused by R. stolonifer, and inoculating P. guilliermondii prior to R. stolonifer had better biocontrol efficacy. Moreover, rapid colonization of the yeast on wound sites was observed during initial three days at 20℃, and then the population stabilized for the remaining four days. This phenomenon indicated that at room temperature, P. guilliermondii could acclimatize itself to the environment of tomato fruit wounds and occupy the living space quickly. All of the above results indicated that P. guilliermondii did not produce an antifungal substance, however, competition for nutrients and space on wounds appeared to play a role in the activity of biocontrol and it might be one of the mechanisms. In addition, the fruit inoculated with P. guilliermondii changed the expression of activities of peroxidase (POD), polyphenoloxidase (PPO), superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia-lyase (PAL), chitinase (CHI) andβ-1,3-glucanase, all of which were correlated with the onset of induced resistance. This result suggested that cherry tomato fruit was capable of responding to the yeast P. guilliermondii, which could activate defensive enzymes, thereby induced host disease resistance. This might be also one of the mechanisms.
     3. Effects of postharvest hot air treatment on quality parameters and decay development of cherry tomato fruit
     Compared to synthetic fungicides, biocontrol agent such as antagonistic yeast lacks eradicative ability, its spectrum of activity is narrower, and the effect of environmental factors is generally greater. It is therefore necessary to use an integrated strategy rather than a single approach. Heat treatment is a non-damaging physical treatment that can be used to alleviate physiological diseases of various commodities. The current study investigated the effects of heat treatment and antagonistic yeast, either alone or in combination, on the quality parameters and incidence of fungal infection in cherry tomato fruit.
     Hot air treatment (38℃) was used in this experiment and the results are as follows:(1) hot air treatment controlled three postharvest pathogens of tomato (B. cinerea, A. solani and R. stolonifer) effectively. Moreover, longer heat treatment gave a lower incidence of disease. Although cherry tomato fruit received hot air treatment (38℃) for only 24 h, the postharvest gray mold decay, black spot decay and Rhizopus decay were all significantly reduced. (2) hot air treatment (38℃for 24 h) did not significantly affect fruit quality parameters. However, hot air treatment (38℃for 48 h or 72 h) impaired the contents of total soluble solids, titratable acidity and ascorbic acid of cherry tomato fruit. Furthermore, hot air treatment (38℃for 72 h) made fruit color change fast. Therefore, considering all of the above results and the rule for saving energy and social capital, hot air treatment (38℃for 24 h) was selected in the following experiments.
     4. A combination of P. guilliermondii and hot air treatment prevents cherry tomato spoilage by fungi
     Results showed that antagonistic yeast P. guilliermondii's ability to survive was inhibited gravely by the 38℃hot air treatment and this yeast was not heat-resistant, thus controlling postharvest diseases by applying P. guilliermondii after postharvest hot air treatment is recommended. In addition, for controlling various diseases, heat treatment or antagonistic yeast alone is not satisfactory; the best method, according to this research, is the combination of hot air treatment and P. guilliermondii, which has significant efficacy in controlling postharvest diseases of cherry tomato fruit caused by B. cinerea, A. solani and R. stolonifer.
     Scanning electron microscopy (SEM) observation indicated that hot air treatment at 38℃for 24 hours can inhibit hyphae growth and spore germination of R. stolonifer. Furthermore, P. guilliermondii multiplied rapidly on fruit wounds, and its cells had a strong capability of competing for nutrient substance and living space with pathogen. Although the combination of hot air treatment and P. guilliermondii not to eradicate pathogens existing on fruit wounds, the cells of yeast P. guilliermondii reproduced on fruit wounds and firmly attached to fungal hyphae, inhibiting their ability to infect cherry tomato fruit and competing for nutrients and living spaces to provide persistent protection. Furthermore, the result of electronic nose also showed that a combination of hot air treatment and P. guilliermondii is one of the most effective techniques at controlling postharvest fungal spoilage in cherry tomato fruit.
     5. Antagonistic yeast in combination with hot air treatment reduces diseases and elicits the active defense responses in harvested cherry tomato fruit
     In recent years, considerable amount of research has focused on the active resistance in harvested fruits and vegetables, which acts as an important manageable form of crop protection. Results showed that hot air treatment at 38℃for 24 h in combination with P. guilliermondii at 108 CFU mL-1 was the most effective approach to reduce various infections on cherry tomato fruit's wounds. Moreover, the combined hot air and P. guilliermondii treatment stimulated a rapid increase of H2O2 and higher lignin deposition in cherry tomato fruit showing that the oxidative burst and biological synthesis of lignin might play important roles in the fruit's active defense responses. In addition, the reduction of the fruit's susceptibility to pathogens by the combined treatment was positively correlated with higher activities of phenylalanine ammonia-lyase (PAL) andβ-1,3-glucanase in cherry tomato fruits, both of which are associated with plant defense responses.
     6. Effects of preharvest P. guilliermondii treatment on quality parameters and decay development of cherry tomato fruit
     Many pathogenic microorganisms have penetrated the fruit during the period of fruit growth, but the symptom of diseases usually be shown until fruit being stored with appropriate environmental conditions. In order to reduce the incidence of postharvest diseases, the primary prevention for such diseases should be taken to strengthen the field management before fruit harvest. Therefore, the purpose of this study was to evaluate the effects of preharvest P. guilliermondii treatment on quality parameters and decay development of cherry tomato fruit. Based on the results of this experiment, we suggested that:(1) both preharvest P. guilliermondii treatment and the spraying frequency did not significantly affect fruit quality parameters regardless cherry tomato fruit growing or stored after harvest. (2) preharvest P. guilliermondii treatment significantly reduced the incidence of postharvest natural decay, and the efficacy of biological control was positively correlated with the spraying frequency of P. guilliermondii. (3) preharvest P. guilliermondii treatment induced the defensive enzymes of cherry tomato fruit, such as POD, PAL andβ-1, 3-glucanase, which was related to host disease resistance. Furthermore, the efficacy of induction was positively correlated with the spraying frequency of P. guilliermondii. (4) the ability of P. guilliermondii to colonize on the surface of fruit was also positively correlated with the spraying frequency of antagonistic yeast.
引文
[1]范青.果实采后病害生物防治及其机理研究[D].中国科学院博士学位论文,2001.
    [2]Gutter Y, Littauer F. Antagonistic action of Bacillus subtilis against citrus fruit pathogens [J]. Bulletin of the Research Council of Israel,1953,3:192-197.
    [3]Wilson C L, Pusey P L. Potential for biological control of postharvest plant diseases [J]. Plant Disease,1985,69:375-378.
    [4]Tronsmo A, Dennis C. The use of Trichoderma species to control strawberry fruit rots [J]. Netherlands Journal of Plant Pathology,1977,83:449-455.
    [5]Janisiewicz W J, Roitman J. Postharvest mucor rot control on apples with Pseudomonas cepacia [J]. Phytopathol,1987,77:1776.
    [6]Janisiewicz W J, Marchi A. Control of storage rots on various pear cultivars with a saprophytic strain of pseudomonus syringae [J]. Plant Disease,1992,76:555-560.
    [7]Robsrts R G. Postharvest biological control of gray mold of apple by Cryptococcus laurentii [J]. Phytopathology,1990,80:526-530.
    [8]Chalutz E, Wilson C L. Postharvest biocontrol of green and blue mould and sour rot of citrus fruit by Debaryomyces hansenii [J]. Plant Disease,1990,74:134-137.
    [9]MacLaughlin R J, Wilson C L, Droby S, et al. Biological control of postharvest diseases of grape, peach, and apple with yeasts Kloeckera apiculata and Candida guilliermondii [J]. Plant Disease, 1992,76:470-473.
    [10]Wilson C L, Chalutz E. Postharvest biological control of penicillium rots of citrus with antagonistic yeasts and bacteria [J]. Scientia Horticulturae,1989,40:105-112.
    [11]薛梦琳,拮抗菌对冬枣采后病害的生物防治[D].西北农林科技大学博士学位论文,2006.
    [12]Wisniewski M E, Wilson C L. Biological control of postharvest diseases of fruits and vegetables: recent advances [J]. Hortscience,1992,27:94-98.
    [13]Stockwell V O, Stack J P. Using Pseudomonas spp. for integrated biological control [J]. Phytopathology,2007,97:244-249.
    [14]Kurtzman C P, Droby S. Metschnikowia fructicola, a new ascosporic yeast effective for biocontrol of postharvest fruit rots [J]. Systematic and Applied Microbiology,2001,24:395-399.
    [15]Blachinsky D, Antonov J, Bercovitz A, et al. Commercial applications of "Shemer" for the control of pre- and postharvest diseases [J]. IOBCWPRS Bull,2007,30:75-78.
    [16]Droby S, Wisniewski M, Macarisin D, et al. Twenty years of postharvest biocontrol research:Is it time for a new paradigm? [J] Postharvest Biology and Technology,2009,52:137-145.
    [17]Wilson C L, Wisniewski M. Biological control of postharvest diseases of fruits and vegetables:an emerging technology [J]. Annual Review of Phytopathology,1989,27:425-441.
    [18]Droby S, Wilson C, Wisniewski M, et al. Biologically based technology for the control of postharvest diseases of fruits and vegetables. In:Wilson, C., Droby, S. (Eds.), Microbial Food Contamination. CRC Press, Boca Raton, FL,2000, pp.187-206.
    [19]Wilson C L, Wisniewski M, Droby S, et al. A selection strategy for microbial antagonist to control postharvest diseases of fruits and vegetables [J]. Scientia Horticulturae,1993,53:183-189.
    [20]Droby S, Chalutz E, Wilson C L, et al. Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit [J]. Canadian Journal of Microbiology,1989,35:794-800.
    [21]El Ghaouth A, Smilanick J L, Wisniewski M, et al. Improved control of apple and citrus fruit decay with a combination of Candida saitoana and 2-deoxy-d-glucose [J]. Plant Disease,2000,84: 249-253.
    [22]O'Brien R D, Lindow S E. Effect of plant species and environmental conditions on epiphytic population sizes of Pser.rdomonas syingae and other bacteria [J]. Phytopathology,1989,79:619.
    [23]Roberts R G. Characterization of postharvest biological control of deciduous fruit diseases by Cryptococcus spp, Biological Control of Postharvest Diseases of Fruits and Vegetables. Wrkshp. Proc., Shepherdstown, W. Va., Sept.1990, U.S. Dept, Agr. Res. Serv. Publ.1991,92:32-43.
    [24]Pusey P L, Wilson C L. Postharvest biological of stone fruit brown rot by Bacillus subtilis [J]. Plant Disease,1984,68:753-756.
    [25]Filonow A B, Vishniac H S, Anderson J A, et al. Biological Control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism [J]. Biological Control, 1996,7:212-220.
    [26]秦丹.生防制剂在葡萄保鲜中的应用与抑菌机理研究[D].湖南农业大学博士学位论文,2007.
    [27]Fleet G H. Yeasts in foods and beverages:impact on product quality and safety [J]. Current Opinion in Biotechnology,2007,18:1-6.
    [28]余挺.提高罗伦隐球酵母拮抗效力的途径及其机理的研究[D].浙江大学博士学位论文,2007.
    [29]Janisiewicz W J, Tworkoski T J, Sharer C. Characterizing the mechanism of biological control of postharvest diseases on fruits with a simplemethod to study competition for nutrients [J]. Phytopathology,2000,90:1196-1200.
    [30]Filonow A B. Role of competition for sugars by yeasts in the biocontrol of gray mold of apple [J]. Biocontrol Science and Technoiogy,1998,8:243-256.
    [31]Droby S. Biological control of postharvest diseases of fruit:alternative to synthetic fungicides [J]. Crop Protection,1991,10:174.
    [32]范青,田世平,徐勇,等.季也蒙假丝酵母对采后桃果实软腐病的抑制效果[J].植物学报,2000,42:1033-1038.
    [33]Janisiewicz W J, Peterson D L, Bors R. Control of storage of apples with Sporobolomyces roseus [J]. Plant disease,1994,78:466-470.
    [34]Wisniewski M, Biles C, Droby S, et al. Mode of action of the postharvest biocontrol yeast, Pichia guilliermondi. I. Characterization of the attachment to Botrytis cinerea [J]. Physiological and Molecular Plant Pathology,1991,39:245-258.
    [35]Wisniewski M, Wilson C, Droby S, et al. Postharvest biocontrol:new concepts and applications. In: Vincent, C., Goettel, M.S., Lazarovits, G. (Eds.), Biological Control A Global Perspective.2007, CABI, Cambridge, MA, USA, pp.262-273.
    [36]Castoria R, De Curtis F, Lima G, et al. β-1,3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases [J]. Postharvest Biology and Technology,1997,12:293-300.
    [37]Yehuda H, Droby S, Bar-Shimon M, et al. The effect of under- and over-express CoEXG1-encoded-exo-glucanase secreted by Candida oleophila on the biocontrol of Penicillium digitatum [J]. Yeast,2003,20:771-780.
    [38]Droby S, Vinokur V, Weiss B, et al. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila [J]. Biological Control,2002,92:393-399.
    [39]McGuire RG. Population dynamics of postharvest decay antagonists growing epiphytically and within wounds on grapefruit [J]. Phytopathology,2000,90:1217-1223.
    [40]Chan Z, Tian S. Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action [J]. Postharvest Biology and Technology,2005,36:215-223.
    [41]Claude P S. Antifungal protein [J]. Applied Microbiology and Biotechnology,2001,67:2883-2894.
    [42]Manfred J S, Frank B. The viral killer system in yeast:from molecular biology to application [J]. FEMS Microbiology Reviews,2002,26:257-276.
    [43]Golubev W I, Kulakovskaya T V, Golubeva E W. The yeast Pseudozyma,fusiformata VKM Y-2821 producing an antifungal glycolipid [J]. Microbiology,2001,70:553-556.
    [44]Weiler F, Schimtt M J. Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailli, and its effect on sensitive fungal cells [J]. FEMS Yeast Research,2003,3:69-76.
    [45]李振岐,商鸿生.中国农作物抗病性及其利用[M].中国农业出版社,2005.
    [46]彭友良译.植物病理学导论[M].化学工业出版社,2007,197.
    [47]Xu X, Tian S. Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit [J]. Postharvest Biology and Technology,2008,49:379-385.
    [48]Campo S, Carrascal M, Coca M, et al. The defense response of germinating maize embryos against fungal infection:a proteomics approach [J]. Proteomics,2004,4:383-396.
    [49]Chan Z, Tian S. Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry fruit [J]. Postharvest Biology and Technology,2006,39:314-320.
    [50]Castoria R, Caputo L, De Curtis F, et al. Resistance of postharvest biocontrol yeasts to oxidative stress:a possible new mechanism of action [J]. Phytopathology,2003,93:564-572.
    [51]Xu X, Qin G, Tian S. Effect of microbial biocontrol agents on alleviating oxidative damage of peach fruit subjected to fungal pathogen [J]. International Journal of Food Microbiology,2008,126: 153-158.
    [52]Brownleader M D, et al. Elicitor-induced extension insolubilization in suspension-cultured tomato cells [J]. Phytochemistry,1997,46:1-9.
    [53]Cao S F, et al. Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms [J]. Postharvest Biology and Technology,2008,49: 301-307.
    [54]Yao H J, Tian S P. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved [J]. Journal of Applied Microbiology,2005,98: 941-950.
    [55]Qin G Z, Tian S P, Liu H B, et al. Polyphenol oxidase, peroxidase and phenylalanine ammonium lyase induced in postharvest peach fruits by inoculation with Pichia membranefaciens or Rhizopus stolonifer [J]. Agricultural Sciences in China,2002,1:1370-1375. (In Chinese with English abstract).
    [56]高必达,陈捷.生理植物病理学[M].科学出版社,2006.
    [57]Ride J P. The role of cell wall alteration in resistance to fungi [J]. Annals of Applied Biology,1978, 89:302-306.
    [58]Ride J P, Barber M S. The effects of various treatments on induced lignification and the resistance of wheat to fungi [J]. Physiological and Molecular Plant Pathology,1987,31:349-360.
    [59]Pavoncello D, et al. A hot water treatment induces resistance to Penicillium digitatum and promotes the accum μation of heat shock and pathogensis-related proteins in grapegruit flavedo [J]. Physiology Plantrarum,2001,111:17-22.
    [60]Tian S P, Yao H J, Deng X, et al. Characterization and Expression of β-1,3-Glucanase Genes in Jujube Fruit Induced by the Microbial Biocontrol Agent Cryptococcus laurentii [J]. Biological control,2007,97:260-268.
    [61]产祝龙.果实对酵母拮抗菌和外源水杨酸诱导的抗病性应答机理[D].中国科学院研究生院博士学位论文,2006.
    [62]Conway W S, et al. Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansion [J]. Postharvest Biology and Technology,2004,34:11-20.
    [63]万亚坤.酵母拮抗菌的抑病机理及生防效力改良的研究[D].中国科学院研究生院博士学位论文,2004.
    [64]张红印,郑晓冬,孙萍.提高生防菌对水果采后病害防治能力的研究进展[J].食品科学,2006,27:247-250.
    [65]Guetsky R, Shtienberg D, Elad Y, et al. Improving Biological Control by Combining Biocontrol Agents Each with Several Mechanisms of Disease Suppression [J]. Biological Control,2002,92: 976-985.
    [66]Calvo J, et al. Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures [J]. BioControl,2003,48:579-593.
    [67]Leibinger W, Breuker B, Hahn M, et al. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field [J]. Phytopathology,1997,87: 1103-1110.
    [68]张红印.罗伦隐球酵母对水果采后病害的生物防治及其防治机理研究[D].浙江大学博士学位论文,2004.
    [69]Droby S, Cohen L, Daus A, et al. Commercial Testing of Aspire:A Yeast Preparation for the Biological Control of Postharvest Decay of Citrus [J]. Biological Control,1998,12:97-101.
    [70]Lima G, De Curtis F, Castoria R, et al. Integrated control of apple postharvest pathogens and survival of biocontrol yeasts in semi-commercial conditions [J]. European Journal of Plant Pathology,2003,109:341-349.
    [71]Tian S P, Fan Q, Xu Y, et al. Effects of Trichosporon sp in combination with calcium and fungicide on biocontrol of postharvest diseases in apple fruits [J]. Acta Botanica Sinica,2001,43:501-505.
    [72]Wisniewski M, Droby S, Chalutz E, et al. Effects of Ca2+ and Mg2+ on Botrytis cinerea and Penicillium expansum in vitro and on the biocontrol activity of Candida oleophila [J]. Plant Pathology,1995,44:1416-1024.
    [73]Cao S, Zheng Y, Tang S, et al. Improved control of anthracnose rot in loquat fruit by a combination treatment of Pichia membranifaciens with CaCl2 [J]. International Journal of Food Microbiology, 2008,126:216-220.
    [74]Ippolito A, Schena L, Pentimone I, et al. Control of postharvest rots of sweet cherries by pre-and postharvest applications of Aureobasidium pullulans in combination with calcium chloride or sodium bicarbonate [J]. Postharvest Biology and Technology,2005,36:245-252.
    [75]Karabulut O A, Arslan U, Ilhan K, et al. Integrated control of postharvest diseases of sweet cherry with yeast antagonists and sodium bicarbonate applications within a hydrocooler [J]. Postharvest Biology and Technology,2005,37:135-141.
    [76]习柳,田世平.酵母拮抗菌与碳酸氢钠配合对番茄果实采后病害的防治效果研究[J].中国农业科学,2005,38(5):950-955.
    [77]Yao H, Tian S, Wang Y. Sodium bicarbonate enhances biocontrol efficacy of yeasts on fungal spoilage of pears [J]. International Journal of Food Microbiology,2004,93:297-304.
    [78]Nunes C, et al. Improved Control of Postharvest Decay of Pears by the Combination of Candida sake (CPA-1) and Ammonium Molybdate [J]. Biological control,2002,92:281-287.
    [79]Nunes C, Usall J, et al. Improvement of Candida sake biocontrol activity against post-harvest decay by the addition of ammonium molybdate [J]. Journal of Applied Microbiology,2002,92: 927-935.
    [80]Wan Y, Tian S. Integrated control of postharvest diseases of pear fruits using antagonistic yeasts in combination with ammonium molybdate [J]. Journal of the Science of Food and Agriculture,2005, 85:2605-2610.
    [81]张治安,陈展于.植物生理学[M].吉林大学出版社,2009.
    [82]Qin G Z, Tian S P, Xu Y, et al. Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit [J]. Physiological and Molecular Plant Pathology,2003,62: 147-154.
    [83]Zhang H, Ma L, Wang L, et al. Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters [J]. Biological Control,2008,47:60-65.
    [84]Zhang H, Ma L, Turner M, et al. Methyl jasmonate enhances biocontrol efficacy of Rhodotorula glutinis to postharvest blue mold decay of pears [J]. Food Chemistry,2009,117:621-626.
    [85]Cao S, Zheng Y, Wang K, et al. Effect of yeast antagonist in combination with methyl jasmonate treatment on postharvest anthracnose rot of loquat fruit [J]. Biological Control,2009,50:73-77.
    [86]Teixido N, Usall J, Vinas I. Efficacy of preharvest and postharvest Candida sake biocontrol treatments to prevent blue mould on apples during cold storage [J]. International Journal of Food Microbiology,1999,50:203-210.
    [87]Benbow J M, Sugar D. Fruit surface colonization and biological control of postharvest diseases of pear by preharvest yeast applications [J]. Plant Disease,1999,83:839-844.
    [88]Usall J, Teixido N, Fons E, et al. Biological control of blue mould on apple by a strain of Candida sake under several controlled atmosphere conditions [J]. International Journal of Food Microbiology,2000,58:83-92.
    [89]Conway W S, Janisiewicz W J, Leverentz B, et al. Control of blue mold of apple by combining controlled atmosphere, an antagonist mixture, and sodium bicarbonate [J]. Postharvest Biology and Technology,2007,45:326-332.
    [90]Janisiewicza W J, Saftner R A, Conway W S, et al. Control of blue mold decay of apple during commercial controlled atmosphere storage with yeast antagonists and sodium bicarbonate [J]. Postharvest Biology and Technology,2008,49:374-378.
    [91]Karabulut O A, Baykal N. Evaluation of the use of microwave power for the control of postharvest disease of peaches [J]. Postharvest Biology and Technology,2002,26:237-240.
    [92]Zhang H Y, Fu C X, Zheng X D, et al. Control of postharvest Rhizopus rot of peach by microwave treatment and yeast antagonist [J]. European Food Research and Technology,2004,218 (6): 568-572.
    [93]Zhang H, Zheng X, Su D. Postharvest control of blue mold rot of pear by microwave treatment and Cryptococcus laurentii [J]. Journal of Food Engineering,2006,77:539-544.
    [94]静玮.采后热水喷淋处理及与拮抗菌结合在甜樱桃贮藏保鲜上的应用[D].南京农业大学硕士学位论文,2008.
    [95]Lu J, Vigneault C, Charles M T, et al. Heat treatment application to increase fruit and vegetable quality [J]. Stewart Postharvest Review,2007,3:1-7.
    [96]Zhang H, Zheng X, Lei Wang, et al. Effect of yeast antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries [J]. Journal of Food Engineering,2007,78:281-287.
    [97]Wszelaki A L, Mitcham E J. Effect of combinations of hot water dips, biological control and controlled atmospheres for control of gray mold on harvested strawberries [J]. Postharvest Biology and Technology,2003,27:255-264.
    [98]Zhang H, Wang S, Huang X, et al. Integrated control of postharvest blue mold decay of pears with hot water treatment and Rhodotorula glutinis [J]. Postharvest Biology and Technology,2008,49: 308-313.
    [99]Karabulut O A, Cohen L, Wiess B, et al. Control of brown rot and blue mold of peach and nectarine by short hot water brushing and yeast antagonists [J]. Postharvest Biology and Technology,2002, 24:103-111.
    [100]陈莉.红富士苹果贮前热空气处理条件的优化及对其贮藏品质和生理的影响[D].南京农业大学硕士学位论文,2006.
    [101]邵兴锋.采后热空气处理对苹果后熟和病害的影响及其机理研究[D].南京农业大学博士学位论文,2008.
    [102]Leverentz B, Janisiewicz W J, Conway W S, et al. Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of 'Gala' apples [J]. Postharvest Biology and Technology,2000,21:87-94.
    [103]Leverentz B, Conway W S, Janisiewicz W J, et al. Effect of combining MCP treatment, heat treatment, and biocontrol on the reduction of postharvest decay of 'Golden Delicious' apples [J]. Postharvest Biology and Technology,2003,27:221-233.
    [104]Conway W S, Leverentz B, Janisiewicz W J, et al. Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit [J]. Postharvest Biology and Technology,2005,36:235-244.
    [105]李家庆.果蔬保鲜手册[M].中国轻工业出版社,2003.
    [106]Lurie S, Klein D. Heat treatment of ripening apples:differential effects on physiology and biochemistry [J]. Physiologia Plantarum,1990,78:181-186.
    [107]韩涛,李丽萍,葛兴.热激处理对冷藏桃果实的生理效应[[J].植物生理学通讯,1996,32(3):184-186.
    [108]Budde C O, Polenta G, Lucangeli C D, et al. Air and immersion heat treatments affect ethylene production and organoleptic quality of 'Dixiland' peaches [J]. Postharvest Biology and Technology,2006,41:32-37.
    [109]Yang R F, Cheng T S, Shewfelt R L. The effect of high temperature and ethylene treatment on the ripening of tomatoes[J]. Journal of Plant Physiology,1990,136:368-372.
    [110]Klein J D, Abbott J A, Basker D, et al. Sensory evaluation of heated and calcium-treated fruits [J]. Acta Horticulturae,1998,464:467-471.
    [111]Shalom N B, Hanzon J, Klein J D, et al. A postharvest heat treatment inhibits cell wall degradation in apples during storage [J]. Phytochemistry,1993,34:955-958.
    [112]Klein J D, Lurie S. Prestorage heat treatment as a means of improving poststorage quality of apples[J]. Journal of the American Society for Horticultural Science,1990,115:255-259.
    [113]Garcia J M, Aguilera C, Albi M A. Postharvest heat treatment on Spanish strawberry (Fragaria× ananassa cv Tudla)[J]. Journal of Agricultural Food and Chemistry,1995,43:1489-1492.
    [114]Forney C F. Hot water dips extend the shelf life of fresh broccoli [J]. HortScience,1995,30: 1054-1057.
    [115]Lurie S, Klein J D. Heat treatment of ripening apples:differential effects on physiology and biochemistry [J]. Physiologia Plantarum,1990,78:181-186.
    [116]Burke J J, Orzech K A. The heat shoek response on the higher plant [J]. Plant cell and environment, 1988,11:441.
    [117]Ding C K, Wang C Y, Gross K C, et al. Reduetion of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate [J]. Plant Science, 2001,161:1153-1159.
    [118]Zhang J H, Huang W D, Pan Q H, et al. Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries(Vitis vinifera cv. Jingxiu) by heat pretreatment [J]. Postharvest Biology and Technology,2005,38:80-90.
    [119]Zhang H, Wang L, Zheng X, et al. Effect of yeast antagonist in combination with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches [J]. International Journal of Food Microbiology,2007,115:53-58.
    [120]程海慧,陈维信,刘爱媛.热处理对四种果实上炭疽病的抑制作用及防止效果[J].西南园艺,2005,33(3):4-7.
    [121]刘风娟.热空气处理对“解放钟”枇杷贮藏保鲜的影响[D].南京农业大学硕士学位论文,2009.
    [122]王世珍,张红印,黄星奕.热处理对水果采后病害防治的研究进展[J].食品科学,2008,29:477-480.
    [123]Roy S, Conway W S, Watada A E. Changes in ultrastructure of the epicuticular wax and postharvest calcium uptake in apples [J]. HortScience,1999,34:121-124.
    [124]Porat R, Daus A, Weiss B, et al. Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment [J]. Postharvest Biology and Technology,2000,18:151-157.
    [125]Fallik E, Tuvia-alkalai S, Feng X, et al. Ripening characterization and decay development of stored apples after a short pre-storage hot water rinsing and brushing [J]. Innovative Food Science & Emerging Technologies,2001,2:127-132.
    [126]Schirra M, Dhallewin G. Storage performance of Fortune mandarins following hot water dips [J]. Postharvest Biology and Technology,1997,10:229-238.
    [127]Yao H J, Tian S P. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved [J]. Journal of Applied Microbiology,2005,98: 941-950.
    [128]胡美姣,刘秀娟,黄圣明.热处理后芒果、香蕉果皮PAL活性变化与炭疽病发生的关系[J].热带作物学报,2000,21(4):63-67.
    [129]Kuc J. Induced immunity to plant disease [J]. Bioscience,1982,32:854.
    [130]Chan Z L, Qin G Z, Xu X B, et al. Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit [J]. Journal of Proteome Research.,2007,6: 1677-1688.
    [131]Lurie S, Fallik E, Handros, et al. The possible involvement of perioxidase in resistance to Botrytis cinerea in heat treated tomato fruit [J]. Physiologial and Molecular Plant Pathology,1997,50: 141-149.
    [132]Tian S P, Yao H J, Deng X, et al. Characterization and expression of β-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii [J]. Phytopathology, 2007,97:260-268.
    [133]Pavoncello D, Lurie S, Droby S, et al. A hot water treatment induces resistance to Penicillium digitatum and promotes the accumulation of heat shock and pathogensis-related proteins in grapegruit flavedo [J]. Physiology Plantrarum,2001,111:17-22.
    [134]赵统敏,余文贵,任建平,等.最新樱桃番茄品种及优质高产栽培技术[M].中国农业出版社,2006.
    [135]林蒲田.健康食品—樱桃番茄[J].湖南农业,2009,10.
    [136]柴敏,耿三省.特色番茄彩色甜椒新品种及栽培技术[M].中国农业出版社,2006,4.
    [137]徐鹤林,李景富.中国番茄[M].中国农业出版社,2007,4-5.
    [138]王金玉.采后因子对番茄货架期腐烂及品质的影响[D].中国农业科学院硕士学位论文,2008.
    [139]Wang Y, et al. Biocontrol of Alternaria alternata on cherry tomato fruit by use of marine yeast Rhodosporidium paludigenum Fell & Tallman [J]. International Journal of Food Microbiology, 2008,123:234-239.
    [140]哈斯格根.中草药提取物对番茄采后主要病原真菌的抑制作用和机理的研究[D].内蒙古农业大学硕士学位论文,2009.
    [141]马辉刚,李瑞明,胡水秀,等.番茄灰霉病菌生物学特性研究[J].江西农业大学学报,1998,20:207-209.
    [142]中国农业病虫检测网http://www.bcjcchina.com/test.asp
    [143]Spadaro D, Gullino M L. State of the art and future prospects of the biological control of postharvest fruit diseases [J]. International Journal of Food Microbiology,2004,91:185-194.
    [144]Yao H J, Tian S P. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved [J]. Journal of Applied Microbiology,2005,98: 941-950.
    [145]姜力群,胡太君,郑加希.果蔬冷藏保鲜技术的试验,应用与研究[J].食品科技,2003,8:65-66.
    [146]Morris L L. Chilling injury of horticultural crops [J]. HortScience,1982,17:161-162.
    [147]Ding C K, et al. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate [J]. Plant Science,2001,161:1153-1159.
    [148]Yam K L, Lee D S. Design of modified atmosphere packaging for fresh produce [J]. Dep of Food Science Rutgers University,1990,55-73.
    [149]杨士章,徐春仲.果蔬贮藏保鲜加工大全[M].中国农业出版社,1995.
    [150]雷桥,徐文达.新鲜番茄主动气调包装[J].上海水产大学学报,2002,11:357-361.
    [151]孟成民,徐步前.自发气调包装及乙烯吸收剂对樱桃番茄贮藏品质的影响[J].保鲜与加工,2005,26:31-33.
    [152]刘北辰.辐照食品保鲜技术的现状及前景[J].苏南科技开发,2007,9:78-79.
    [153]周利娟,胡美英,黄继光,等.γ-射线辐射处理对柑橘锈螨卵和若螨的影响[J].华中农业大学学报,2006,25:142-144.
    [154]Nigro F, Ippolito A, Lima G. Use of UV-C light to reduce Botrytis storage rot of table grapes [J]. Postharvest Biology and Technology,1998,13:171-181.
    [155]杨晖,幸华,周剑平.增强UV-B辐射对番茄果实产量和品质的影响[J].天水师范学院学报,2009,29:35-37.
    [156]周防震,彭振坤.番茄早疫病拮抗菌酵母的筛选[J].湖北民族学院学报,2003,21:10.
    [157]周防震,邓伯勋,张婵娟.两株酵母菌对番茄采后病害的防治效果[J].中国蔬菜,2006,2:14-16.
    [158]Jiang F, Chen J, Miao Y, et al. Identification of differentially expressed genes from cherry tomato fruit (Lycopersicon esculentum) after application of the biological control yeast Cryptococcus laurentii [J]. Postharvest Biology and Technology,2009,53:131-137.
    [I]Rosslenbroich H J, Stuebler D. Botrytis cinerea-history of chemical control and novel fungicides for its managemen [J]. Crop Protection,2000,19:557-561.
    [2]Yao H J, Tian S P. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved [J]. Journal of Applied Microbiology,2005,98: 941-950.
    [3]Holmes G J, Eckert J W. Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California [J]. Phytopathology,1999,89:716-721.
    [4]Spadaro D, Gullino M L. State of the art and future prospects of the biological control of postharvest fruit diseases [J]. International Journal of Food Microbiology,2004,91:185-194.
    [5]Gutter Y, Littauer F. Antagonistic action of Bacillus subtilis against citrus fruit pathogens [J]. Bulletin of the Research Council of Israel,1953,3:192-197.
    [6]Wisniewski M E, Wilson C L. Biological control of postharvest diseases of fruits and vegetables: recent advances [J]. HortScience,1992,27:94-98.
    [7]Droby S, Cohen L, Daus A, et al. Commercial testing of "Aspire":a yeast preparation for the biological control of postharvest decay of citrus [J]. Biological Control,1998,12:97-101.
    [8]徐鹤林,李景富.中国番茄[M].中国农业出版社,2007.
    [9]周防震.番茄采后病害拮抗酵母菌的筛选和应用[D].华中农业大学硕士学位论文,2004.
    [10]范青.果实采后病害生物防治及其机理研究[D].中国科学院博十学位论文,2001.
    [11]Batu A. Determination of acceptable firmness and colour values of tomatoes [J]. Journal of Food Engineering,2004,61:471-475.
    [12]Larrigaudiere C, Pons J, Torres R, et al. Storage performance of clementines treated with hot water, sodium carbonate and sodium bicarbonate dips [J]. Journal of Horticultural Science & Biotechnology,2002,77:314-319.
    [13]静玮.采后热水喷淋处理及与拮抗菌结合在甜樱桃贮藏保鲜上的应用[D].南京农业大学硕士学位论文,2008.
    [14]Mcguire R G. Reporting of objective color measurements [J]. HortScience,1992,27:1254-1255.
    [15]Zhang H, Zheng X, Yu T. Biological control of postharvest diseases of peach with Cryptococcus laurentii [J]. Food Control,2007,18:287-291.
    [16]Vinas I, Usall J, Teixido N, et al. Biological control of major postharvest pathogens on apple with Candida sake [J]. International Journal of Food Microbiology,1998,40:9-16.
    [17]Zahavi T, Cohen L, Weiss B, et al. Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel [J]. Postharvest Biology and Technology,2000,20:115-124.
    [18]Zhang H, Wang L, Dong Y, et al. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis [J]. Biological Control,2007,40:287-292.
    [1]Wisniewski M E, Wilson C L. Biological control of postharvest diseases of fruit and vegetables: recent advances [J]. Hortscience,1992,27:94-98.
    [2]Chan Z L, Tian S P. Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action [J]. Postharvest Biology and Technology,2005,36:215-223.
    [3]龙超安.酵母菌的分离、筛选以及对柑橘保鲜的机理研究[D].华中农业大学博士学位论文, 2005.
    [4]范青.果实采后病害生物防治及其机理研究[D].中国科学院博十学位论文,2001.
    [5]Gutter Y, Littauer F. Antagonistic action of Bacillus subtilis against citrus fruit pathogens [J]. Bulletin of the Research Council of Israel,1953,3:192-197.
    [6]Zhang H Y, Zheng X D, Xi Y F. Biocontrol of postharvest blue mould rot of pear by Cryptococcus laurentii [J]. Journal of Horticultural Science & Biotechnology,2003,78:888-893.
    [7]Janisiewicz W J, Usall J, Bors B. Nutritional enhancement of biocontrol of blue mold on apples [J]. Phytopathology,1992,82:1364-1370.
    [8]产祝龙.果实对酵母拮抗菌和外源水杨酸诱导的抗病性应答机理[D].中国科学院博士学位论文,2006.
    [9]Wilson C L, Wisniewski M E. Biological control of postharvest diseases of fruits and vegetables-theory and practice. CRC Press, Boca Raton, USA.
    [10]Qin G Z, Tian S P, Liu H B, et al. Polyphenol oxidase, peroxidase and phenylalanine ammonium lyase induced in postharvest peach fruits by inoculation with Pichia membranefaciens or Rhizopus stolonifer [J]. Agricultural Sciences in China,2002,1:1370-1375.
    [11]Ippolito A, El-Ghaouth A, Wilson C L, et al. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense response [J]. Postharvest Biology and Technology,2000,19:265-272.
    [12]Droby S, Vinokur V, Weiss B, et al. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila [J]. Phytopathology,2002,92:393-399.
    [13]Yao H J, Tian S P. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved [J]. Journal of Applied Microbiology,2005,98: 941-950.
    [14]张红印.罗伦隐球酵母对水果采后病害的生物防治及其防治机理研究[D].浙江大学博士学位论文,2004.
    [15]Kochba J, Lavee S, Spiege R P. Difference in peroxidase activity and isoenzymes in embryogenic and non-embryogenic 'Shamouti' orange ovular callus lines [J]. Plant Cell Physiol,1977,18: 463-467.
    [16]Tian S P, Xu Y, Jiang A L, et al. Physiological and quality responses of longan fruit to high O2 or high CO2 atmospheres in storage [J]. Postharvest Biology and Technology,2002,24:335-340.
    [17]姜爱丽.甜樱桃果实采后生理、耐藏性及褐变机理的研究[D].中国科学院植物研究所.2002.
    [18]Wang Y S, Tian S P, Xu Y, et al. Changes in the activities of pro- and anti-oxidant enzymes in peach fruit inoculated with Cryptococcus laurentii or Penicillium expansum at 0 or 20℃ [J]. Postharvest Biology and Technology,2004,34:21-28.
    [19]Assis J S, Maldonado R, Munoz T, et al. Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit [J]. Postharvest Biology and Technology, 2001,23:33-39.
    [20]夏秋瑜.几丁质酶高产菌株的筛选及酶法制备几丁寡糖的研究[D].华南热带农业大学,2006.
    [21]余挺.提高罗伦隐球酵母拮抗效力的途径及其机理的研究[D].浙江大学博士学位论文,2007.
    [22]Fan Q, Tian S P. Postharvest biological control of Rhizopus rot of nectarine fruit by Pichia membranefaciens [J]. Plant Disease,2000,84:1212-1216.
    [23]Zheng X D, Zhang H Y, Xi Y F. Postharvest biological control of gray mold rot of strawberry with Cryptococcus laurentii [J]. Trans.CSAE,2003,5:171-175.
    [24]Filonow A B. Role of competition for sugars by yeasts in the biocontrol of gray mold of apple [J]. Biocontrol Science and Technology,1998,8:243-256.
    [25]Lima G, Ippolito A, Nigro F, et al. Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots [J]. Postharvest Biology and Technology,1997,10:169-178.
    [26]Droby S, Chalutz E, Wilson C L, et al. Charaterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit [J]. Canada Journal of Microbiology, 1989,35:794-800.
    [27]Janisiewicz W J, Peterson D L, Bors R. Control of storage decay of apples with Sporobolomyces roseus [J]. Plant Disease,1994,78:466-470.
    [28]高必达,陈捷.生理植物病理学[M].科学出版社,2006.
    [29]Chan Z L, Qin G Z, Xu X B, et al. Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit [J]. Proteome Research,2007,6:1677-1688.
    [30]Lacan D, Baccou J C. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits [J]. Planta,1998,204:377-382.
    [31]Vandenabeele S, Vanderauwera S, Vuylsteke M, et al. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana [J]. Plant Journal,2004,39:45-58.
    [32]Khanam N N, Ueno M, Kihara J, et al. Suppression of red light-induced resistance in broad beans to Botrytis cinerea by salicylic acid [J]. Physiological and Molecular Plant Pathology,2005,66: 20-29.
    [33]Kogel K H, Langen G. Induced disease resistance and gene expression in cereals [J]. Cell Microbiology,2005,7:1555-1564.
    [34]Liu H, Jiang W, Zhou L, et al. The effects of 1-methylcyclopropene on peach fruit (Prunus persica L. cv. Jiubao) ripening and disease resistance [J]. International Journal of Food Science & Technology,2005,40:1-7.
    [35]彭友良泽.植物病理学导论[M].化学工业出版社,2007,197.
    [36]Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism [J]. Plant Cell,1995,7: 1085-1097.
    [37]Huckelhoven R, Fodor J, Preis C, et al. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation [J]. Plant Physiology,1999,119:1251-1260.
    [38]Tian S P, Yao H J, Deng X, et al. Characterization and expression of β-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii [J]. Biological Control,2007, 97:260-268.
    [1]刘风娟.热空气处理对“解放钟”枇杷贮藏保鲜的影响[D].南京农业大学硕士学位论文,2009.
    [2]邵兴锋.采后热空气处理对苹果后熟和病害的影响及其机理研究[D].南京农业大学博士学位论文,2008.
    [3]Lurie S. Postharvest heat treatments [J]. Postharvest Biology and Technology,1998,14:257-269.
    [4]Lu J, Vigneault C, Charles M T, et al. Heat treatment application to increase fruit and vegetable quality [J]. Stewart Postharvest Review,2007,3:1-7.
    [5]Mulas M, Schirra M. The effect of heat conditioning treatments on the postharvest quality of horticultural crops [J]. Stewart Postharvest Review,2007,1:2.
    [6]屠康,邵兴锋,静玮.贮前复合热处理对果熟品质和病虫害的影响[J].果树学报,2006,23(3):442-447.
    [7]Klein J D, Lurie S. Prestorage heat treatment as a means of improving poststorage quality of apples [J]. Journal of the American Society for Horticultural Science,1990,115:255-259.
    [8]Liu F W. Modification of apple quality by high temperature [J]. Journal of the American Society for Horticultural Science,1978,103:730-732.
    [9]Porritt S W, Lidser P D. The effect of prestorage heating on ripening and senescence of apples during cold storage [J]. Journal of the American Society for Horticultural Science,1978,103:584-587.
    [10]Lay-Yee M, Rose K J. Quality of 'Fantasia' nectarines following forced air heat treatments for insect disinfestations [J]. HortScience,1994,29:663-666.
    [11]Garcia J M, Aguilera C, Albi M A. Postharvest heat treatment on Spanish strawberry (Fragaria× ananassa cv Tudla) [J]. Journal of Agricultural and Food Chemistry,1995,43:1489-1492.
    [12]Lurie S, Sabehat A. Prestorage temperature manipulations to reduce chilling injury in tomatoes [J]. Postharvest Biology and Technology,1997,11:57-62.
    [13]Miller W R, McDonald R E. Postharvest quality of early season grapefruit after forced air vapor heat treatment [J]. HortScience,1992,27:422-424.
    [14]Garcia J M, Ballesteros J M, Albi M A. Effect of foliar applications of CaCl2 on tomato stored at different temperatures [J]. Journal of Agricultural and Food Chemistry,1995,43:9-12.
    [15]Shellie K C, Mangan R L. Tolerance of red fleshed grapefruit to a constant of stepped temperature, forced air quarantine heat treatment [J]. Postharvest Biology and Technology,1996,7:151-159.
    [16]Klein J D, Lurie S, Ben-Arie R. Quality and cell wall components of 'Anna' and 'Grannny Smith' apples treated with heat, calcium and ethylene [J]. Journal of the American Society for Horticultural Science,1990,115:954-958.
    [17]Lurie S, Klein J D, Ben-Arie R. Postharvest heat treatment as a possible means of reducing superficial scald of apples [J]. Journal of Horticultural Science,1990,65:503-509.
    [18]Lurie S, Klein J D. Acquisition of low temperature tolerance in tomatoes by exposure to high temperature stress [J]. Journal of the American Society for Horticultural Science,1991,116: 1007-1012.
    [19]Chan H T, Linse E. Conditioning cucumbers for quarantine heat treatments [J]. HortScience,1989, 24:985-989.
    [20]Jacobi K K, Wong L S, Giles J E. Postharvest quality of zucchini (Cucurbita pepo L.) following high humidity hot air disinfestations treatments and cool storage [J]. Postharvest Biology and Technology,1996,7:309-316.
    [21]Forney C F. Hot water dips extend the shelf life of fresh broccoli [J]. HortScience,1995,30: 1054-1057.
    [22]Porat R, Daus A, Weiss B, et al. Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment [J]. Postharvest Biology and Technology,2000,18:151-157.
    [23]Karabulut O A, Arslan U, Kuruoglu G. Control of postharvest diseases of organically grown strawberry with preharvest applications of some food additives and postharvest hot water dips [J]. Journal of Phytopathology,2004,152:224-228.
    [24]Maxin P, Klopp K, Huyskens-Keil S, et al. Control of postharvest decay in organic grown apples by hot water treatment [J]. Acta Horticulture,2005,682:2153-2157.
    [25]Schirra M, D'hallewin G, Ben-Yehoshua S, et al. Host-pathogen interactions modulated by heat treatment [J]. Postharvest Biology and Technology,2000,21:71-85.
    [26]Nafussi B, Ben-Yehoshua S, Rodov V, et al. Mode of action of hot-water dip in reducing decay of lemon fruit [J]. Journal of Agriculture and Food Chemistry,2001,49:107-113.
    [27]Camps C, Guilermin P, Mauget J C, et al. Data analysis of penetrometric force/displacement curves for the characterization of whole apple fruits [J]. Journal of Texture Studies,2005,36:387-401.
    [28]Larrigaudiere C, Pons J, Torres R, et al. Storage performance of clementines treated with hot water, sodium carbonate and sodium bicarbonate dips [J]. Journal of Horticultural Science & Biotechnology,2002,77:314-319.
    [29]Janisiewicz W J, Leverentz B, Conway W S, et al. Control of bitter rot and blue mold of apples by integrating heat and antagonist treatments on 1-MCP treated fruit stored under controlled atmosphere conditions [J]. Postharvest Biology and Technology,2003,29:129-143.
    [30]Shalom N B, Hanzon J, Pinto R, et al. Cell wall changes and partial prevention of fruit softening in prestorage heat treated 'Anna' apples [J]. Journal of the Science of Food and Agriculture,1996,72: 231-234.
    [31]Klein J D, Abbott J A, Basker D, et al. Sensory evaluation of heated and calcium-treated fruits [J]. Acta Horticulturae,1998,464:467-471.
    [32]静玮.采后热水喷淋处理及与拮抗菌结合在甜樱桃贮藏保鲜上的应用[D].南京农业大学硕士学位论文,2008.
    [33]Lurie S, Klein D. Heat treatment of ripening apples:differential effects on physiology and biochemistry [J]. Physiologia Plantarum,1990,78:181-186.
    [34]Costa M L, Civello P M, Chaves A R, et al. Effect of hot air treatments on senescence and quality parameters of harvesters of harvested broccoli(Brassica oleracea L var Italica) heads [J]. Journal of the Science of Food and Agriculture,2005,85:1154-1160.
    [35]赵艺泽,屠康,潘秀娟.采后热处理对红富士苹果青霉病和灰霉病的控制[J].食品与发酵工业,2004,12:129-133.
    [1]王金玉.采后因子对侨茄货架期腐烂及品质的影响[D].中国农业科学院硕十学位论文,2008.
    [2]周防震.番茄采后病害拮抗酵母菌的筛选和应用[D].华中农业大学硕十学位论文,2004.
    [3]Spadaro D, Gullino M L. State of the art and future prospects of the biological control of postharvest fruit diseases [J]. International Journal of Food Microbiology,2004,91:185-194.
    [4]Yao H J, Tian S P. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved [J]. Journal of Applied Microbiology,2005,98: 941-950.
    [5]Ding C K, et al. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate [J]. Plant Science,2001,161:1153-1159.
    [6]静玮.采后热水喷淋处理及与拮抗菌结合在甜樱桃贮藏保鲜上的应用[D].南京农业大学硕士学位论文,2008.
    [7]邵兴锋.采后热空气处理对苹果后熟和病害的影响及其机理研究[D].南京农业大学博士学位论文,2008.
    [8]Hoa T T, et al. Postharvest quality of Dragon fruit(Hylocereus undatus) following disinfesting hot air treatments [J]. Postharvest Biology and Technology,2006,41:62-69.
    [9]Murray R, et al. Combined pre-storage heat treatment and controlled atmosphere storage reduced internal breakdown of "Flavorcrest" peach [J]. Postharvest Biology and Technology,2007,44: 116-121.
    [10]Leverentz B, et al. Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of 'Gala' apples [J]. Postharvest Biology and Technology,2000,21:87-94.
    [11]Droby S, et al. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila [J]. Phytopathology,2002,92:393-399.
    [12]Nunes C, et al. Improvement of Candida sake biocontrol activity against post-harvest decay by the addition of ammonium molybdate [J]. Journal of Applied Microbiology,2002,92:927-935.
    [13]Giuseppe L, et al. Integration of biocontrol yeast and thiabendazole protects stored apples from fungicide sensitive and resistant isolates of Botrytis cinerea [J]. Postharvest Biology and Technology,2006,40:301-307.
    [14]Qin G Z, Tian S P, Xu Y. Biocontrol of postharvest diseases on sweet cherries by four antagonistic yeasts in different storage conditions [J]. Postharvest Biology and Technology,2004,31:51-58.
    [15]Zhang H, Zheng X, Yu T. Biological control of postharvest diseases of peach with Cryptococcus laurentii [J]. Food Control,2007,18:287-291.
    [16]Conway W S, Leverentz B, Janisiewicz WJ, et al. Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansum [J]. Postharvest Biology and Technology,2004,34:11-20.
    [17]Conway W S, Leverentz B, Janisiewicz W J, et al. Improving biocontrol using antagonist mixtures with heat and/or sodiumbicarbonate to control postharvest decay of apple fruit [J]. Postharvest Biology and Technology,2005,36:235-244.
    [18]Ben-Yehoshua S, Barak E, Shapiro, B. Postharvest curing at high temperature reduces decay of individually sealed lemons, and other citrus fruit [J]. Journal of the American Society for Horticultural Science,1987,112:658-663.
    [19]Ippolito R, Nigro F. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables [J]. Crop Protection,2000,19:715-723.
    [20]Chan Z, Tian S. Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action [J]. Postharvest Biology and Technology,2005,36:215-223.
    [21]Lesage P, Destain M F. Measurement of tomato firmness by using a nondestructive mechanical sensor [J]. Postharvest Biology and Technology,1996,8:45-55.
    [22]Saevels S, Lammertyn J, Berna A Z, et al. Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apples [J]. Postharvest Biology and Technology,2003,30:3-14.
    [23]Fernandes D L A, Oliveira J A B P, Teresa M, et al. Detecting spoiled fruit in the house of the future [J]. Analytica Chimica Acta,2008,617:171-176.
    [24]周亦斌.基于电子鼻的西红柿与黄酒的检测与评价研究[D].浙江大学硕士学位论文,2005.
    [25]Cao S F, Zheng Y H, Tang S S, et al. Improved control of anthracnose rot in loquat fruit by a combination treatment of Pichia membranifaciens with CaCl2 [J]. International Journal of Food Microbiology,2008,126:216-220.
    [26]Conway W S, Leverentz B, Janisiewicz W J, et al. Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansum [J]. Postharvest Biology and Technology,2004,34:11-20.
    [27]Conway W S, Leverentz B, Janisiewicz W J, et al. Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit [J]. Postharvest Biology and Technology,2005,36:235-244.
    [28]Zhang H Y, Wang L, Zheng X D, et al. Effect of yeast antagonist in combination with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches [J]. International Journal of Food Microbiology,2007,115:53-58.
    [29]Conway W S, Janisiewicz W J, Klein J D, et al. Strategy for combining heat treatment, calcium infiltration, and biocontrol to reduce postharvest decay of 'Gala' apples [J]. HortScience,1999,34: 700-704.
    [30]Leverentz B, Janisiewicz W J, Conway W S, et al. Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of 'Gala' apples [J]. Postharvest Biology and Technology,2000,21:87-94.
    [31]Zhang H, Wang S, Huang X. Integrated control of postharvest blue mold decay of pears with hot water treatment and Rhodotorula glutinis [J]. Postharvest Biology and Technology,2008,49: 308-313.
    [32]Zhang H, Wang L, Zheng X. Effect of yeast antagonist in combination with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches [J]. International Journal of Food Microbiology,2007,115:53-58.
    [33]Karabulut O A, Cohen L, Wiess B, et al. Control of brown rot and blue mold of peach and nectarine by short hot water brushing and yeast antagonists [J]. Postharvest Biology and Technology,2002, 24:103-111.
    [34]Zhang H, Zheng X, Wang L, et al. Effect of yeast antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries [J]. Journal of Food Engineering,2007,78:281-287.
    [35]Cook D W M. A laboratory simulation for vectoring of Trichosporon pullulans by conidia of Botrytis cinerea [J]. Phytopathology,2002,92:1293-1299.
    [36]Wisniewski M, Biles C, Droby S, et al. Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea [J]. Physiological and Molecular Plant Pathology,1991,39:245-258.
    [37]Schirra M, D'hallewin G, Ben-Yehoshua S, et al. Host-pathogen interactions modulated by heat treatment [J]. Postharvest Biology and Technology,2000,21:71-85.
    [38]Janisiewicz W J, Leverentz B, Conway W S, et al. Control of bitter rot and blue mold of apples by integrating heat and antagonist treatments on 1-MCP treated fruit stored under controlled atmosphere conditions [J]. Postharvest Biology and Technology,2003,29:129-143.
    [39]Droby S, Wisniewski M, Macarisin D, et al. Twenty years of postharvest biocontrol research:is it time for a newparadigm [J]? Postharvest Biology and Technology,2009,52:137-145.
    [40]Ponzoni A, Depari A, Falasconi M, et al. Bread baking aromas detection by low-cost electronic nose [J]. Sensors and Actuators B,2008,130:100-104.
    [41]Barie N, Bucking M, Rapp M. A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring [J]. Sensors and Actuators B,2006,114:482-488.
    [1]Schirra M, D'hallewin G, Ben-Yehoshua S, et al. Host-pathogen interactions modulated by heat treatment [J]. Postharvest Biology and Technology,2000,21:71-85.
    [2]Fallik E, Aharonia Y, Copela A, et al. Reduction of postharvest losses of Galia melon by a short hot-water rinse [J]. Plant Pathology,2000,49:333-338.
    [3]Spadaro D, Gullino M L. State of the art and future prospects of the biological control of postharvest fruit diseases [J]. International Journal of Food Microbiology,2004,91:185-194.
    [4]Droby S, Wisniewski M, Macarisin D, et al. Twenty years of postharvest biocontrol research:is it time for a newparadigm? [J] Postharvest Biology and Technology,2009,52:137-145.
    [5]杨震峰,郑永华,曹士锋.纯氧对采后杨梅果实腐烂的抑制与抗病相关酶的诱导[J].植物生理与分子生物学学报,2005,31:425-430.
    [6]Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism [J]. Plant Cell,1995,7: 1085-1097.
    [7]胡美姣,刘秀娟,黄圣明.热处理后芒果、香蕉果皮PAL活性变化与炭疽病发生的关系[J].热带作物学报,2000,4:63-67.
    [8]Lurie S, Fallik E, Handros, et al. The possible involvement of perioxidase in resistance to Botrytis cinerea in heat treated tomato fruit [J]. Physiologial and Molecular Plant Pathology,1997,50: 141-149.
    [9]Rodov V, Ben-Yohoshus S, Kim J, et al. Ultroviolet illumination induces scoparone production in kumquat and orange fruit and improves decay resistance [J]. Journal of the American Society for Horticultural Science,1992,117:788.
    [10]Droby S, Vinokur V, Weiss B, et al. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila [J]. Phytopathology,2002,92:393-399.
    [11]Ippolito A, El Ghaouth A, Wilson C L, et al. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses [J]. Postharvest Biology and Technology,2000,19:265-272.
    [12]彭友良译.植物病理学导论[M].化学工业出版社,2007,197.
    [13]Chan Z L, Qin G Z, Xu X B, et al. Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit [J]. Journal of Proteome Research.,2007,6: 1677-1688.
    [14]Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Science,2002,7: 405-410.
    [15]Xu X, Qin G, Tian S. Effect of microbial biocontrol agents on alleviating oxidative damage of peach fruit subjected to fungal pathogen [J]. International Journal of Food Microbiology,2008,126: 153-158.
    [16]Yao H J, Tian S P. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved [J]. Journal of Applied Microbiology,2005,98: 941-950.
    [17]Droby S, Vinokur V, Weiss B, et al. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila [J]. Phytopathology,2002,92:393-399.
    [18]Vicente A R, Martlez G A, Civello P M, et al. Quality of heat-treated strawberry fruit during refrigerated storage [J]. Postharvest Biology and Technology,2002,25:59-71.
    [19]Xu G, Ye X, Chen J, et al. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract [J]. Journal of Agricultural Food and Chemistry,2007,55:330-335.
    [20]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteindye binding [J]. Analytical Biochemistry,1976,72: 248-254.
    [21]Patterson B D, MacRae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium (IV) [J]. Analytical Biochemistry,1984,139:487-492.
    [22]Femenia A, Garcla-Conesa M, Simal S, et al. Characterisation of the cell walls of loquat (Eriobotrya japonica L.) fruit tissues [J]. Carbohydrate Polymers,1998,35:169-177.
    [23]Cao S, Zheng Y, Yang Z, et al. Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms [J]. Postharvest Biology and Technology,2008,49:301-307.
    [24]Chan Z, Tian S. Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry fruit [J]. Postharvest Biology and Technology,2006,39:314-320.
    [25]高必达,陈捷.生理植物病理学[M].科学出版社,2006,234-241.
    [26]Pavoncello D, Lurie S, Droby S, et al. A hot water treatment induces resistance to Penicillium digitatum and promotes the accumulation of heat shock and pathogenesis-related proteins in grapefruit flavedo [J]. Physiologia Plantrarum,2001,111:17-22.
    [27]Chan Z, Tian S. Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action [J]. Postharvest Biology and Technology,2005,36:215-223.
    [28]Hernandez J A, Ferrer M A, Jimanez A, et al. Antioxidant systems and O2·-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins [J]. Plant Physiology,2001,127:817-831.
    [29]Xu X, Tian S. Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit [J]. Postharvest Biology and Technology,2008,49:379-385.
    [30]Khanam N N, Ueno M, Kihara J, et al. Suppression of red light-induced resistance in broad beans to Botrytis cinerea by salicylic acid [J]. Physiological and Molecular Plant Pathology,2005,66: 20-29.
    [31]Kogel K H, Langen G. Induced disease resistance and gene expression in cereals [J]. Cellular Microbiology,2005,7:1555-1564.
    [32]Ride J P. The role of cell wall alteration in resistance to fungi [J]. Annals of Applied Biology,1978, 89:302-306.
    [33]Kuc J. Induced immunity to plant disease [J]. Bioscience,1982,32:854.
    [34]Halbrock K, Grisebach H. Enzymatic control of the biosynthesis of lignin and flavonoids [J]. Annual Review of Plant Physiology,1979,30:105.
    [35]静玮.采后热水喷淋处理及与拮抗菌结合在甜樱桃贮藏保鲜上的应用[D].南京农业大学硕士学位论文,2008.
    [36]邵兴锋.采后热空气处理对苹果后熟和病害的影响及其机理研究[D].南京农业大学博十学位论文,2008.
    [37]Nafussi B, Ben-Yehoshua S, Rodov V, et al. Mode of action of hot-water dip in reducing decay of lemon fruit [J]. Journal of Agricultural Food and Chemistry,2001,49:107-113.
    [38]Saltveit M E. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock [J]. Postharvest Biology and Technology,2000,21:61-69.
    [39]Lurie S, Klein J D. Heat treatment of ripening apples:Differential effects on physiology and biochemistry [J]. Physiologia Plantarum,1990,78:181-186.
    [40]Bowles D J. Defense-related proteins in higher-plants [J]. Annual Review of Biochemistry,1990, 59:873-907.
    [41]Tian S P, Yao H J, Deng X, et al. Characterization and expression of β-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii [J]. Phytopathology, 2007,97:260-268.
    [1]高必达,陈捷.生理植物病理学[M].科学出版社,2006,424447.
    [2]Vinas I, Usall J, Sanchis V. Tolerance of Penicillium expansum to postharvest fungicide treatment in apple packin-ghouses in Lleida (Spain) [J]. Mycopathologia,1991,113:15-18.
    [3]Eckert J W, Ogawa J M. The chemical control of post-harvest diseases:deciduous fruits, berries, vegetables and root/tuber crops [J]. Annual Review of Phytopathology,1988,26:433-469.
    [4]Latorre B A, Spadaro I, Rioja M E. Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile [J]. Crop Protection,2002,21:957-961.
    [5]Spotts R A, Cervantes L A. Population pathogencity and benomyl resistance of Botrytis spp., Penicillium spp. And Mucor piriformis in packinghouses [J]. Plant Disease,1986,70:106-108.
    [6]张红印.罗伦隐球酵母对水果采后病害的生物防治及其防治机理研究[D].浙江大学博十学位论文,2004.
    [7]Ippolito R, Nigro F. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables [J]. Crop Protection,2000,19:715-723.
    [8]龙超安.酵母菌的分离、筛选以及对柑橘保鲜的机理研究[D].华中农业大学博士学位论文,2005.
    [9]Leibinger W, Breaker B, Hahn M, et al. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field [J]. Phytopathology,1997,87: 1103-1110.
    [10]Benbow J M, Sugar D. Fruit surface colonization and biological control of postharvest disease of pear by preharvest yeast applications [J]. Plant Disease,1999,83:839-844.
    [11]Teixido N, Usall J, Vinas I. Efficacy of preharvest and postharvest Candida sake biocontrol treatments to prevent blue mould on apples during cold storage [J]. International Journal of Food Microbiology,1999,50:203-210.
    [12]Droby S, Chalutz E. Biological control of postharvest diseases:a promising alternative to the use of synthetic fungicides [J]. Phytoparasitica Suppl,1992,20:149-153.
    [13]Fan Q, Tian S P. Postharvest biological control of Rhizopus rot of nectarine fruit by Pichia membranefaciens [J]. Plant Disease,2000,84:1212-1216.
    [14]Droby S, Chalutz E. Mode of action of biocontrol agents of postharvest diseases. In:Wilson, C.L. Wisniewski, M.E. (Eds.), Biological Control of Postharvest Diseases. Theory and Practice, CRC Press, Boca Raton, FL,1994, pp.63-75.
    [15]Smilanick J L, Denis-Arrue R, Bosch J R, et al. Control of postharvest brown rot of nectarines and peaches by Pseudomonas species [J]. Crop Prot,1993,12:513-520.
    [16]Ippolito A, Schena L, Pentimone I, et al. Control of postharvest rots of sweet cherries by pre-and postharvest applications of Aureobasidium pullulans in combination with calcium chloride or sodium bicarbonate [J]. Postharvest Biology and Technology,2005,36:245-252.
    [17]Zhao Y, Tu K, Shao X F, et al. Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit [J]. Postharvest Biology and Technology,2008,49:113-120.
    [18]Yao H, Tian S. Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage [J]. Postharvest Biology and Technology, 2005,35:253-262.
    [19]Meng X, Li B, Liu J, et al. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage [J]. Food Chemistry,2008,106: 501-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700