用巨型框架结构套建增层的房屋设计与施工方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种增层形式,套建增层以其增加层数不受限制、对既有建筑物依赖小而在既有房屋增层改造中得到越来越多的应用。巨型框架结构的主框架承担全部竖向荷载及绝大部分的水平荷载,次框架仅将自身的竖向荷载传递给主框架,承担小部分的水平荷载。去掉第一巨型结构层内的次框架,对结构沿竖向的刚度分布影响不大,可以利用这一点来实现对既有房屋的套建增层。
     用巨型框架套建增层尚有一些问题亟待解决:如何使其满足抗震规范规定的“小震不坏、中震可修、大震不倒”抗震设防要求,尚需对其倒塌机制进行深入的研究;既有建筑屋盖不能承担巨型框架层的施工荷载,使套建增层巨型框架无法实现逐层施工,对无支撑自承重楼盖施工工艺提出了迫切要求;与施工方法相应的构件设计方法及细部构造措施,较大跨度涉及到预应力技术的一些相关的细部构造措施要求。本文主要针对上述问题,展开工作。
     本文基于平面杆系模型,采用IDARC-2D非线性分析程序,在引入新建巨型混凝土框架结构适用范围和抗震构造手段的基础上,通过对不同巨型结构层数和次框架层数,建造在I、II、III类场地土,设计地震分组为一、二、三组的375榀套建增层巨型框架的抗震性能研究,得出的结论是8度区的套建增层巨型框架的主框架抗震等级按一级,7度区的套建增层巨型框架以50m为界,低于50m时主框架抗震等级按二级,高于50m时按一级设计的框架,满足规范的弹塑性位移角的限值要求,未出现形成机构体系的情况,满足现行抗震规范“大震不倒”的抗震要求。用现行抗震规范推荐的静力弹塑性分析方法,采用倒三角形、均匀两种侧向力分布方式,能力谱法、改进能力谱法和α-T法等三种方法对相同模型进行了的抗震性能分析,得出了与弹塑性动力时程分析相同的结论。
     套建增层巨型框架是具有转层性质的结构,分析了逐层施工法、主次施工法及巨型结构层自承重施工法对结构构件内力的影响。并提出具体施工过程中应注意的问题。因巨型结构层的荷载巨大,既有建筑物的屋面不能够承担第一巨型结构层施工期间的荷载,论述了无支撑自承重楼盖的施工方法与措施,该方法既不影响既有结构使用,又保证了施工结构的安全。
     从主次框架的共同工作入手,分析了忽略次框架刚度的简化算法的适用性问题。根据套建增层巨型框架的弹塑性分析得出的设计建议,编制了设计程序,既为套建增层结构方案选取提供了手段,又方便套建增层巨型框架结构的设计。
     最后,结合哈尔滨市某高校实验楼的套建增层工程,给出了一榀套建增层巨型框架的设计过程与相应的施工方法,并且分析了其在罕遇地震作用下的抗震性能,验证本文弹塑性分析结果,并为具体设计提供参考。
As a method to add stories on the building, using the outer-jacketing structure to add stories is more and more widely used in reconstructing the existing buildings, for using this method, the added stories are not restrained, and the existing build-ings are not seriously affected. The main frame of the megaframe structure carries the whole vertical load and the most of horizontal load. The secondary frame only carries it vertical load and transmits it to the main frame, and it carries few horizon-tal load. If the secondary frame in the first storey of the mega structure is removed, the distribution of the structure’s stiffness varies a little. Owing to this characteris-tics, using the outer-jacketing structure to add stories around the existing building can be adopted.
     There are some problems needed to be urgently solved in using the outer-jacketing megaframe to add stories, such as how to meet the requirement in the seismic code“no damage in the frequent earthquake, mendable in the medium earthquake and no collapse in the strong earthquake”. So it is necessary to make deeper research on the mechanism of collapse. The roof of the existing building can not carry the construction load during the construction of the megaframe floor. Therefore, the added megaframe can not be constructed floor by floor. In this case, the construction technics of no support self bearing floor is urgently needed. The design methods and the detailed construction measures corresponding to the con-struction method and some detailed construction measures relating to the long span prestress technology are needed. In order to solve the above problems, we made some research in this paper.
     Based on the planar linear element model, using the nonlinear analysis pro-gram IDARC-2D, the seismic performance of 375 outer-jacketing megaframes are investigated. These megaframes are different in stories of megaframe and stories of secondary frame, and they are built in site-class I, II and III and the seismic group of the first, the second and the third. After the using scope of new concrete mega-frame structures and the seismic construction measures are given, the conclusion is: these cases meet the limit of elastic-plastic drift ratio and the transformable system does not occur, which meet the requirement of current seismic code“no collapse in the strong earthquake”. They are: the main frame of outer-jacketing megaframe in the zone of seismic fortification intensity 8 conforming to measure grade 1-st, the height of megaframe under 50m conforming to measure grade 2-nd and that over 50m conforming to measure grade 1-st in zone of seismic fortification intensity 7. The seismic performance of the same model are analyzed by using the static elastic-plastic analysis method recommended in the current seismic code using two kinds of distribution of transverse load, inverse triangle and uniform. Capacity spectrum method, modified capacity spectrum method andα-T method are used to analyze the frames. The same conclusions are got with the elastic-plastic time history me-thod.
     The outer-jacketing megaframe has the transform floor. The influence of dif-ferent construction methods to the internal force of structural member are analyzed such as floor by floor, main-secondary floor and the self bearing floor of the mega-structure floor. The noteworthy problems during construction are presented. The load of the mega structure floor is too big, and the roof of the existing building can not carry the construction load of the first floor of the mega structure. Considering this, the construction methods and measures of no support self bearing floor is dis-cussed, which can not affect the service of the structure and ensure the safe con-struction.
     Start with the team work of the main frame and the secondary frame, whether the simplified method of neglecting the stiffness of the secondary frame can be used or not is analyzed. Based on the design proposal got from the elastic-plastic analy-sis of the outer-jacketing megaframe, the design procedure is compiled, which not only provides measures for the scheme selection of this kind of structure, but also facilitates its design.
     At last, combined with a reconstruction project of a test building in a collage in Harbin, the design progress of an outer-jacketing megaframe and the correspond-ing construction methods were given. The seismic performance of this frame under rarely earthquake was analyzed, and the elastic-plastic analysis results in this paper were verified. All these provided reference for the detailed design of this kind of frame.
引文
1孙澄潮.纺织工业部办公大楼加固加层结构设计.建筑结构. 1993(6): 22~24
    2来庆贵.哈医大第一临床医院实验楼套建增层结构选型与设计分析.哈尔滨工业大学硕士学位论文, 2005: 1~66
    3郑文忠,刘铁,谭军,等.绥芬河青云市场套(扩建)工程结构设计方法与施工措施研究.土木工程学报, 2006,39(11): 68~76
    4高剑平.砖混房屋整体式外套结构加层研究.哈尔滨工业大学博士学位论文, 2003: 1~137
    5谭军.绥芬河青云市场套(扩)建工程结构设计方法与施工措施研究.哈尔滨工业大学硕士学位论文, 2005: 1~85
    6郑文忠.黑龙江省科技攻关计划项目“既有房屋套建增层改造、功能改造及加固改造成套技术研究”可行性研究报告.哈尔滨工业大学土木工程学院. 2005: 1~11
    7郑文忠.哈尔滨市科学技术计划项目“既有房屋套建增层改造成套技术”可行性研究报告.哈尔滨工业大学土木工程学院. 2005: 1~15
    8郑文忠,王英,张格明.既有房屋套建增层结构设计理论研究与实践.建筑结构, 2006, 36(S1): 7-1~7-5
    9张昊宇,郑文忠.既有房屋与套建增层框架协同工作的相关问题.建筑结构, 2007, 37(3): 36~39
    10计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨工业大学博士学位论文, 2008: 92~144, 69~73
    11刘铁.套建增层框架结构房屋抗震设计与施工方法研究及实践.哈尔滨工业大学博士学位论文, 2006: 1~119
    12 W. Z. Zheng, X. J. Sun. Methods and Practice on Adding Storeys around an Ex-isting Building. Concrete Engineering International. 2008, 12(3): 62~63
    13赵西安,徐培福.高层建筑结构的选型构造及简化计算.中国建筑工业出版社, 1993: 40~108
    14包世华,龚耀清.超高层建筑空间巨型框架的简化振动分析.建筑结构, 2003, 33(7): 54~56
    15包世华,龚耀清.超高层建筑空间巨型框架的重力二阶效应分析.建筑结构, 2004,34(6): 39~41
    16李君,张耀春.超级元在巨型钢框架结构分析中的应用.哈尔滨建筑大学学报, 1999, 32(1): 38~42
    17秦卫红,惠卓,吕志涛.巨型框架结构的设计方法初探.建筑结构, 2001, 31(7): 43~47
    18李正良.钢筋混凝土巨型结构组合体系的静动力分析.重庆大学博士学位论文. 1999: 122~141, 23~44
    19时彬.巨型框架模拟施工工程的结构分析.重庆大学硕士学位论文, 2004: 1~101
    20沈蒲生.巨型框架结构设计与施工.机械工业出版社, 2007: 84~119
    21谭征,沈蒲生.模拟巨型框架结构在不同施工过程的内力与位移比较.建筑科学, 2006,22(2): 18~22
    22唐光暹.预应力混凝土巨型框架结构考虑施工过程的受力分析.广西大学硕士学位论文, 2004: 15~75
    23周晓峰.巨型钢框架结构的静力、抗震和抗风分析.浙江大学博士学位论文, 2001: 25~123
    24陈麟,张耀春,周云.巨型钢框架结构时程分析的影响因素.土木工程学报, 2005, 38(6): 20~24
    25陈荣毅.高层钢结构巨型结构体系的地震反应损伤累积研究.同济大学博士学位论文, 2000: 1~119
    26郑廷银,赵惠麟.高层钢结构巨型框架体系的二阶位移使用计算.东南大学学报, 2002, 32(5): 794~798
    27惠卓.巨型框架结构的计算理论及抗震性能的研究.东南大学博士学位论文, 1998: 71~84
    28张宇峰,舒赣平,吕志涛,等.巨型框架结构的抗震性能和振动台试验研究.建筑结构学报, 2001,22,(3): 2~8
    29袁广林,张宇峰,舒赣平,等.巨型框架结构局部模型低周反复加载试验研究.建筑结构, 2003,33(7): 50~53
    30胡庆昌,张美励,孙金栖,等.高层住宅中混凝土巨型框架结构体系应用的研究.建筑结构, 1998,28(10): 1~9
    31程晓辉,钱稼茹,方鄂华.高层住宅巨型框架节点受力性能试验研究.建筑结构, 1998, 28(10): 10~13
    32何国松,方鄂华.住宅型钢筋混凝土巨型框架节点试验研究.土木工程学报, 2000, 33(2): 13~18
    33袁政强.巨型框架箱形节点抗震性能试验及分析.重庆大学博士学位论文, 2004: 11~58
    34周兴高,赵雅梅,李庆福.采用外套巨型框架大幅度加层设计.建筑结构, 2001, 31(6): 53~55
    35欧阳峰,陈长璠.某大楼加层预应力巨型框架设计研究.建筑结构, 1997, (1): 23~25
    36郑文忠,周威,田石柱,等.哈工大动力楼巨型框架增层结构设计与测试.建筑结构, 2004, 34(9): 3~7
    37 R. Park, M. J. N. Priestley and W. D. Gill. Ductility of Square-confined Con-crete Columns. ASCE, 1982, (4): 929~951
    38何政,欧进萍.钢筋混凝土结构非线性分析.哈尔滨工业大学出版社, 2007: 235~239
    39 R. Bouc. Forced Vibration of Mechanical Systems with Hysteresis. Proceedings of the 4th Conference on Non-linear Oscillations. 1967
    40 Y. K. Wen. Method for Random Vibration of Hysteretic Systems. Journal of Engineering Mechanics. 1976,102(2): 249~263
    41 T. T. Baber, M. N. Noori. Random Vibration of Degrading Pinching Systems. Journal of Engineering Mechanics. ASCE. 1985,111(8): 1010~1026
    42 F. Casciati, Stochastic Dynamics of Hysteretic Media. Structural Safety, Ams-terdam. 1989: 259~269
    43 A. M. Renhoun, A. Madan, R. E. Valles, et al. Modeling of Masonry Infill Pa-nels for Structural Analysis, Technical Report NCEER-95-0018, State Universi-ty of New York Buffalo.1995
    44 M. V. Sivaselvan and A. M. Reinhorn. Hysteretic Models for Deteriorating In-elastic Structures, Journal of Engineering Mechanics. ASCE. 26(6): 633~640
    45 M. B. Atalay, J. Penzien. The Seismic Behavior of Critical Regions of Rein-forced Concrete Components Influenced by Moment, Shear and Axial Force. UCB/EERC Report 75~19, University of Califoumia, Berkeley. 1975
    46 S. Nakata, T. Sproul and J. Penzien. Mathematical Modeling of Hysteresis Loops for Reinforced Concrete Columns. UCB/EERC Report 78~11. University of Califounia, Berleley. 1978
    47 Y. J. Park, A. H-S.Ang and Y. K. Wen. Damage-limiting Aseismic Design of Buildings, Earthquake Spectra, 1987, 3(1): 1~26
    48 J. Penzien. Dynamic Response of Elasto-plastic Frames. Journal of the Struc-tural Division. ASCE. 1960, 86(7)
    49 G. V. Berg. Response of Multi-story Structures to Earthquake. Journal of Engi-neering Mechanics. ASCE. 1961, 87(2)
    50 W. R. Walpole, Shephere. Elasto-plastic Seismic Response of Reinforced Con-crete Frames. Journal of the Structural Division. ASCE. 1969, 95(10)
    51 R. W. Clough and S. B. Johnston. Effects of Stiffness Degradation on Earth-quake Ductility Requirements, Proc. 2nd Japan Earthquake Engrg. 1996: 227~232
    52 T. Takeda, M. A. Sozen and N. N. Nielsen. Reinfored Concrete Response to Si-mu-lated Earthquake. Journal of the Structural Division, ASCE. 1970, 96(12): 2557~2573
    53 H. Aoyama. Analysis on a School Building Damaged during the Tockachi-Oki Earthquake. Proceedings of the Kanto District Symposium of AIJ. Tokyo, Japan. 1971
    54 K. Muto, T. Hisada, T. Tsugawa, et al. Earthquake Resistant Design of a 20-story Reinforced Concrete Building. Proceedings of the 5th World Conference on Earthquake Engineering. Rome, Italy. 1973: 1960~1969
    55 M. S. L. Roufaiel and C. Meyer. Analytical Modeling of Hysterestic Behavior of R/C frames. Journal of Structural Engineering, ASCE. 1987, 113(3): 429~444
    56 Y. Fukada. A study on the Restoring Force Characteristics of Reinforced Con-crete Buildings. Proceedings of Kanto District Symposium of AIJ, Tokyo, Japan. 1969
    57 O. Kustu, J. G. Bouwkamp. Behavior of Reinforced Concrete Deep Beam-columns Subassemblages under Cyclic Loads. UCB/EERC Report, Uni-versity of California, Berkeley. 1973: 73~82
    58 S. Tani, S. Nomura. Response of Reinforced Concrete Structures Character-ized by Skeleton curve and Normalized Characteristic Loops to Ground Motion. Proceeding of the 5th World Conference on Earthquake Engineering. 1973
    59 W. D. Iwan. A Model for the Dynamic Analysis of Deteriorating Structures. Pro-ceeding of the 5th World Conference on Earthquake Engineering. 1973
    60 T. Takayanagi, W. C. Schnobrich. Computed Behavior of Coupled Shear Walls. Proceedings of the 6th World Conference on Earthquake Engineering. 1977
    61 Y. J. Park, A. M. Reinhorn and S.K.Kunnath. IDARC: Inelastic Damage Analy-sis of Reinforced Concrete Frame-shear-wall Structures, Technical Report NCEER-87-0008. State University of New York at Buffalo. 1987
    62薛伟辰,杨枫,苏旭霖,等.预应力钢骨混凝土梁低周反复荷载试验研究.哈尔滨工业大学学报, 2007, 39(8): 1185~1190
    63 C. W. Bert. Material Damping: An Introductory Review of Mathematical Mod-els, Measures and Experimental Techniques. Sound and Vibration, 1973, 29(2): 129~135
    64 R. W. Clough, J. Penzien. Dynamics of Structures. McGraw-Hill, New York, 2003: 201~218
    65黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼问题评述.地震工程与工程振动, 1996, 16(2): 95~105
    66黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼研究.土木工程学报, 1998, 31(2): 75~79
    67傅传国.预应力型钢混凝土结构试验研究及工程应用.科学出版社, 2007:
    68赵鸿铁.钢与混凝土组合结构.科学出版社, 2001:
    69 R. E. Valles, A. M. Reinhorn, S. K. Kunnath, et al. Idarc 2D Version 4.0: A Pro-gram for the Inelastic Damage Analysis of Building. Buffalo: National Center for Earthquake Engineering Research. State University of New York. 1996: 4-1~4-74
    70贺瑞,秦权.产生时程分析用的高质量地面运动时程的新方法.工程力学, 2006, 23(8): 12~18
    71 S. A. Freeman, J. P. Nicoletti and J. V. Tyrell. Evaluation of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard Bremerton, Wash-ington, Proceedings of the US National Conference on Earthquake Engi-neering, EERI, Berkeley, 1975: 113~122
    72 H. Krawinkler, G. D. P. K. Seneviratna. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation. Engineering Structures. 1998, 20(4-6): 452~464
    73 A. M. Mwafy, A. S. Elnashai. Static Pushover versus Dynamic Collapse Analy-sis of RC Buildings. Engineering Structures, 2001(23): 407~424
    74 A. K. Chopra, R. K. Goel. Evaluation of NSP to Estimate Seismic Deformation: SDF Systems. Journal of Structural Engineering, ASCE. 2000, 126(4): 482~490
    75 E. Kalkan, S. K. Kunnath. Adaptive Modal Combination Procedure for Non-linear Static Analysis of Building Structures. Journal of Structural Engineering, ASCE. 2006, 132(11): 1721~1731
    76 R. K. Goel, A. K. Chopra. Evaluation of Modal and FEMA Pushover Analyses: SAC Buildings. Earthquake Spectra. 2004, 20(1): 225~254
    77 A. K. Chopra, C. Chintanapakdee. Evaluation of Modal and FEMA Pushover Analyses: Vertically“Regular”and“Irregular”Generatic Frames. Earth-quake Spectra. 2004, 20(1): 255~271
    78 A. K. Chopra. A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings. Earthquake Engineering and Structural Dynamics. 2002, 31(3): 561~582
    79 T. S. Jan. An Upper-bound Pushover Analysis Procedure for Estimating the Seismic Demands of High-rise Buildings. Engineering Structures. 2004, 26: 117~128
    80 M. Poursha, F. Khoshnoudian and A. S. Moghadam. A Consecutive Modal Pu-shover Procedure for Estimating the Seismic Demands of Tall Buildings. Engi-neering Structures. 2009, 31: 591~599
    81 Applied Technology Council(ATC): Seismic Evaluation and Retrofit of Con-crete Buildings(ATC-40), Redwood City, California, Report No. SSC 96-01, 1996: 8-1~8-66
    82 Federal Emergency Management Agency(FEMA): NEHRP Guidelines for the Seismic Rehabilitation of Buildings(FEMA-273), Washington, D.C., 1997: 3-1~3-18
    83 Federal Emergency Management Agency(FEMA): NEHRP Commentary on theGuidelines for the Seismic Rehabilitation of Buildings(FEMA-274), Washing-ton, D.C., 1997: 3-1~3-41
    84 Federal Emergency Management Agency(FEMA): Prestandard and Com-mentary for the Seismic Rehabilitation of Buildings(FEMA-356), Washington, D.C., 2000: 3-10~3-27
    85 Federal Emergency Management Agency(FEMA): Global Topics Report on the Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FE-MA -357), Washington, D.C., 2000: 3-1~3-17
    86 Federal Emergency Management Agency(FEMA): Improvement of Nonlinear Static Seismic Analysis Procedures(FEMA-440), Washington, D. C., 2005: 3-1~3-19
    87 T. Vidic, P. Fajfar. Consistant Inelastic Design Spectra: Strength and Displace-ment. Earthquake Engineering and Structural Dynamics. 1994, 24(5): 507~221
    88耿淑伟.抗震设计中的设计地震动参数输入参数的研究.中国地震局工程力学研究所博士学位论文, 2005: 21~43
    89王君杰,范立础.规范反应谱长周期部分修正方法的探讨.土木工程学报, 1998,31(6): 49~55
    90王亚勇,王理,刘小弟.不同阻尼比长周期抗震设计反应谱研究.工程抗震, 1990, (1): 38~41
    91叶耀先.中国建筑结构倒塌事故分析.建筑结构, 1990(5): 54~56
    92 K. E. C. Nielsen. Load on Reinforced Concrete Floor Slabs and Their Defor-mation During Construction, Bulletin No.15 Final Report, Swedish Cement and Concrete Research Institute, Royal Institute of Technology, Stockholm, 1952
    93 P. Grundy, A. Kabaila. Construction Loads on Slabs with Shored Form-work in multistory buildings, ACI Journal, 1963, 60(12): 1729~1738
    94 W. F. Chen, X. L. Liu. Study of Concrete Framed Structures During Construc-tion. Special Session on‘Safety Consideration During Construction’, ASCE convention. New Orleans, Oct., 1982(10): 25~29
    95 X. L. Liu, W. F. Chen, M. Bowman. Construction Load Analysis for Concrete Structures. Journal of Structural Engineering, ASCE, 1985, 111(5): 1019~1036
    96 X. L. Liu. Sore-Slab Interaction in Concrete Buildings. ASCE, Journal of Con-struction Engineering and Management, 1986, 112(2): 227~244
    97李惠明.高层建筑施工过程中安全性分析.清华大学博士学位论文, 1992:
    98 M. Z. Duan, W. F. Chen. Improved Simplified Method for Slab and Shore Load Analysis During Construction. Project Report:CE-STR-95-24, Indiana, USA: Purdue University, 1995
    99方东平,耿川东,祝宏毅,等.施工期钢筋混凝土结构特性的计算研究.土木工程学报, 2000, 33(6): 57~62
    100李瑞礼,曹志远.高层建筑结构施工力学分析.计算力学学报, 1999, 16(2): 157~161
    101赵挺生,方东平,顾祥林,等.施工期现浇钢筋混凝土结构的受力特性.工程力学. 2004, 21(2): 62~68
    102 CEB-FIP Model Code 1990, Design Code.1991: 51~52
    103郑文忠,谭军,刘铁,等.发明专利:无支撑自承重现浇混凝土楼盖.专利号200410013554.1, 2004:1~10
    104 ACI committee 318. Building Code Requirements for Structure Concrete and Commentary (ACI 318M-05), 2005: 119~144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700