硅系化合物/木基复合材料制备与性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着天然林木材的日益匮乏及社会进步带来的人们对木质品的广泛需求,人工速生林木材已成为提供木材资源的主体,然而,其材质疏松、密度低、幼龄材含量高和干燥时易变形开裂严重影响了利用水平和附加值提高,制约了我国速生林的发展。近年来,硅系化合物,包括无机硅化合物如硅酸盐、氟硅化合物、氯硅化合物等,有机硅化合物如硅酸乙酯、甲基三乙氧基硅氧烷等广泛应用于速生林木材改性,得到的复合材料在物理力学、防腐抗虫、尺寸稳定、防火阻燃等方面都得到改善和增强。因此,本文在综合总结国内外的众多研究基础之上,以杨木为基材,分别采用溶胶-凝胶法和浸渍硅溶胶法制备了两类硅系化合物/杨木复合材料,且研究了含水率、基材预处理方式对复合材增重率及微观构造的影响。运用SEM表征了材料的微细构造,通过XRD、FTIR探讨了复合材各组分间的结合方式,采用TG分析了复合材的热性能,基于Doyle积分法构建了相关的动力学方程;同时综合比较分析了复合材的抗弯强度、弹性模量及表面硬度等物理力学性能,主要研究结论如下:
     (1)溶胶-凝胶法制备出的复合材增重率大于浸渍硅溶胶法,且随着基材含水率的增加,复合材增重率也呈现出增加的趋势。在浸渍硅溶胶处理过程中,不同的基材预处理方式对所得复合材的增重率有较大影响,先微波再偶联剂预处理后制备的复合材增重率最大,其次是偶联剂处理材,微波处理材次之,素材复合材增重率最小。
     (2)SEM观察发现,复合材保持了木材的多孔特性,反应生成的固体物质主要分布在木材的导管、木纤维、贯通导管与木纤维的纹孔及细胞间隙之间,且在木纤维中含量最多;在横切面上,它们以沉积的方式存在,而在纵切面上,它们与细胞壁物质结合,产生了物理吸附、氢键及共价键等化学键。
     (3)通过XRD分析表明,与杨木素材相比,复合材的衍射峰位置没有变化,只是衍射峰的强度有所减弱,生成的无定形态硅氧化合物没有改变纤维素的结构及晶面间距,但是影响了木材的结晶度。随着增重率的增加,衍射强度越来越弱,且对纤维素(100)结晶面影响最大,对(040)结晶面影响最小。FTIR分析发现,木材的基本特征吸收峰都没有变化,但是新的Si-O-Si键出现在复合材中,受硅氧基团与细胞壁纤维素生成的氢键影响,Si-O-Si键的所有振动都向高频区移动了30-40cm-1,然而,Si-O-C键由于生成量少且振动较弱,在光谱图上没有表现出来。
     (4)TG分析表明,复合材在热解阶段的反应温度区间变小,缩短了高温热解时间,促进炭化进行;质量损失率明显减少,木材的热稳定性提高,表现出一定的阻燃特性。热动力学分析表明,硅系化合物的引入,提高了热解阶段的活化能,降低了反应速率,在一定程度上缓解了木材的热解,对木材具有阻燃及保护作用。
     (5)溶胶-凝胶法制备的硅系化合物/杨木复合材的抗弯强度、抗弯弹性模量都小于杨木素材,但随着增重率的增大,复合材的抗弯性能逐渐增强。浸渍硅溶胶法制备的硅系化合物/杨木复合材的抗弯性能表现出溶胶-凝胶法相似的变化趋势,但是基材经过微波改性处理后的得到的复合材的抗弯弹性模量均高于杨木素材。两种方法所得的复合材的表面硬度都大于杨木素材,且增强幅度超过了30%。
Plantation-grown wood with fast growing has become the main specie supplying the wooden resource accompanying the badly lackness of natural forest wood but widely demand for wooden product which is contributed to great social progress. However, the defects like loose and soft material quality, low wood density, and high percentage of juvenile wood and easy distortion and spilt when drying have badly affected its utilization level and increacement of added-value, which restricted the wide development of fast-growing forest in our country. In recent years, silicon compounds containing inorganic such as silicates, silicofluoride and chloro-silicon compounds and organic like tetraethoxysilane and triethoxysilane have been successfully applied to the wood modification. In general, the obtained composites have an increase in durability as well as dimensional and photostability, whereas the improvement of certain mechanical such as surface hardness, tensile strength, fire resistance and water uptake can be partly achieved. Therefore, the research progress and advance manufacture methods in this field at home and abroad were summed up, based on this, two kinds of silicon compound/polar wood composites were fabrication by sol-gel and dipping silicasol respectively in this study, and the influence of moisture content and pretreatment approaches on the weight gain percentage (WPG) and microstructure were investigated. Moreover, microstructure of the composites were characterized by SEM, binding ways among various components were detected through FTIR and XRD, thermal properties of these composites were measured by TG, based on this and combined with Doyle method, the related thermokinetic equation were formulated. Meanwhile, physical-mechanical properties contaning bending strength (MOR), modulus of elasticity in static bending (MOE) and surface hardness were analyzed comprehensively, the results are as follows:
     (1) Composites which manufactured by sol-gel have a higher WPG than that by dipping silicasol, for the former, the WPG trends to increase along with the increase of moisture content in wood matrix, and for the latter, different pretreatment approaches have significant effect on the WPG, composites treated by microwave primarily and then by silane coupling agent have a highest WPG, then that treated by silane coupling agent, and then by microwave, the last is the ones without any pretreatment.
     (2) SEM observation showed that composite materials maintained the wood porous characteristics, solid materials from the reaction mainly existed in vessel, wood fiber, the pits which are cross vessels and fiber and the space between cells, and the content in the wood fiber was the highest; they existed by means of deposition in transverse section while in the way of closely connecting with the cell wall material in longitual section, producing hydrogen bond and chemical bonding like covalent bond.
     (3) XRD analysis showed that compared with the poplar, the position of the diffraction peak of composite material has not changed but the intensity reduced and the obtained amorphous silicon oxide has not changed the structure and interplanar spacing of cellulose while affecting the crystallinity of wood. With the increase in WPG, diffraction intensity gradually became weaker and it has greatest impact on (100) crystal plane of cellulose and the least on the (040) crystal plane. FTIR analysis showed that the basic characteristic absorption peaks o.f timber has not changed, but the new Si-O-Si bond appeared in the composite material, and all vibrations of Si-O-Si bond moved 30-40cm-1 towards the high frequency area with the effects of hydrogen bonds derived from the reaction of silicon-oxygen groups and cellulose on cell wall, however, Si-O-C bond was not present in the spectrum because of its little amount and weak vibration.
     (4) TG analysis showed that the reaction temperature range of the composite in pyrolysis phase was shortened, as well as the high-temperature pyrolysis time, which promoted carbonization process. What's more, the mass loss rate decreased obviously, this hinted the improvement of thermal stability and a certain degree of flame-retardant effect. Thermokinetic studies have shown that the introduction of silicon compounds enhanced the activation energy in pyrolysis stage and reduced the reaction rate, and exhibited fire-retardant and protective effect on wood to a certain extent.
     (5) MOR and MOE in the composite prepared by both sol-gel are less than that of poplar wood, however, the MOR value increases along with the increasement of WPG, as well as by dipping silicasol. Hardness of these two kinds of composites was higher than polar wood that without any treatment by 30 percent.
引文
[1]刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社,2004.
    [2]国家林业局森林资源管理司.第六次全国森林资源清查及森林资源状况[J].绿色中国,2005(2):10-12.
    [3]吕建雄.紧紧围绕国家目标,加强开展人工林木材的研究[J].人造板通讯,2002,(10):3-5.
    [4]何洪城,胡伟,陈泽君.我国人工林木材深加工利用技术现状及发展趋势[J].林业经济问题,2005,25(6):364-367.
    [5]鲍甫成,江泽慧.中国主要人工林树种木材性质[M].北京:中国林业出版社,1997.
    [6]张久荣,吴玉章.人工林杨木利用现状及前景[M].中国林业产业,2006,(11):24-26.
    [7]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社,2006.
    [8]宁兆元等著.固体薄膜材料与制备技术[M].北京:科学出版社,2008.
    [9]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003.
    [10]欧育湘,李建军.阻燃剂—性能、制备及应用[M].北京:化学工业出版社,2005.
    [11]姜振华.先进聚合物基复合材料技术[M].北京:科学出版社,2007.
    [12]章小鸽.硅及其氧化物的电化学—表面反应、结构和微加工[M].北京:化学工业出版社,2004.
    [13]冯圣玉,张洁,李美江,等.有机硅高分子及其应用[M].北京:化学工业出版社,2004.
    [14]理查德等著.含硅聚合物—合成与应用[M].北京:化学工业出版社,2004.
    [15]OWENS C W, SHORTLE W T, SHIGO A L. Silicon tetrachloride:a potential wood preservative. International Research Group on Wood Preservation (IRG/WP 3133) Stockholm.1980.
    [16]彭海源,崔永志,孙铁华,等.速生杨木增硬处理初报[J].东北林学院学报,1985,13(1):144-148.
    [17]SAKA S, SASAKI M, TANAHASHI M. Wood-inorganic composites prepared by the sol-gel process(Ⅰ).Wood-inorganic composites with porous structure[J]. Mokuzai Gakkaishi,1992,38(11):1043-1049.
    [18]YAMAGUCHI H. Properties of solicit acid compounds as chemical agents for impregnation and fixation of wood[J]. Mokuzai gakkaishi,1994,40(8):830-837.
    [19]YAMAGUCHI H. Preparation and physical properties of wood fixed with silicic acid compounds[J]. Mokuzai gakkaishi,1994,40(8):838-845.
    [20]陈志林.陶瓷化复合木材复合方法与性能的基础性研究[D].北京:北京工业大学,2003.
    [21]吕文华.木材蒙脱土纳米插层复合材料的制备[D].北京:北京林业大学,2004.
    [22]吕文华,赵广杰.木材蒙脱土(MMT)纳米插层复合材料的制备构想[J].林业科学,2005,41(1):181-188.
    [23]李坚,邱坚.新型木材-无机纳米复合材[M].北京:科技出版社,2005.
    [24]王华林.有机聚合物/SiO2有机无机杂化材料的研究[D].安徽:合肥工业大学,2006.
    [25]OGISO K, SAKA S. Wood-inorganic composites prepared by sol-gels process(Ⅱ). Effect of ultrasonic treatments on preparation of wood-inorganic composites[J]. Mokuzai Gakkaishi,1993,39 (3):301-307.
    [26]OGISO K, SHIRO S. Wood-inorganic composites prepared by sol-gel process(IV).Effects of chemical bonds between wood and inorganic substances on property enhancement[J]. Mokuzai Gakkaishi,1994,40(10):1100-1106.
    [27]MIYAFUJI H, SHIRO S. Wood-inorganic composites prepared by sol-gel process(V). Fire-resisting properties of the SiO2-P2O5-B2O3 wood-inorganic composites[J]. Mokuzai Gakkaishi,1996,42(1):74-80.
    [28]MIYAFUJI H, SAKA S. Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry[J]. Wood Science and Technology,1997,31: 449-455.
    [29]MIYAFUJI H, SAKA S, AKIRA Y. SiO2-P2O5-B2O3 wood-inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties[J]. Holzforchung,1998,52:410-416.
    [30]符韵林.二氧化硅/木材复合材料的微细构造与物性[D].北京:北京林业大学,2008.
    [31]王西成,田杰.陶瓷化木材的复合机理[J].材料研究学报,1996,10(4):435-440.
    [32]王西成,程之强,莫小洪,等.用化学方法制备木材/二氧化硅原位复合材料界面的研究[J].材料工程,1998,(5):16-18.
    [33]王西成,史淑兰,程之强,等.(Si-Al-)陶瓷化木材的化学方法[J].材料研究学报,2000,14(1):51-55.
    [34]MIYAFUJI H, SAKA S. Na2O-SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties[J]. Journal of Wood Science, 2001,47:483-489.
    [35]CARSTEN M, HOLGER M. Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds-a review[J]. Wood Sci Technol,2004(b),37:453-461.
    [36]SAKA S, UENO T. Several SiO2 wood-inorganic composites and their fire-resisting properties[J]. Wood Sci Technol,1997,31:457-466.
    [37]DENG Z S, WANG J, WUAM, et al. High strength SiO2 aerogel insulation[J]. J Non-Cryst Solids,1998,225:101-104.
    [38]王珏,周斌,吴卫东.硅气凝胶材料的研究进展[J].功能材料,1995,26(1):15-19.
    [39]李坚,邱坚,刘一星.Sol-Gel法制备木材功能性改良用SiO2凝胶[J].林业科学,2007,43(12):106-111.
    [40]王宝和,于才渊,王喜忠.纳米多孔材料的超临界干燥新技术[J].化学工程,2005,33(2):13-17.
    [41]邱坚,李坚,刘一星.SiO2溶胶空细胞法浸渍处理木材工艺[J].林业科学,2008,44(3):124-128.
    [42]徐峰,史铁钧,张克宏,等.SiO2/杉木粉复合材料的制备与表征[J].复合材料学报,2007,24(3):84-88.
    [43]李笃信,贾德民.等离子体技术对高分子材料的表面改性[J].高分子材料科学与工程,1999,15(3):172-175.
    [44]DENES A R, TSHABALALA M A, ROWELL R, et al. Hexamethyldisiloxane-plasma coating of wood surface for creating water repellent characteristics[J]. Holzforschung,1999,53:318-326.
    [45]SEBE G, Brook M A. Hydrophobization of wood surfaces:covalent grafting of silicone polymers[J]. Wood Sci Technol,2001,35:269-282.
    [46]SEBE G, DEJESO B. The dimensional stabilization of maritime pine sapwood (Pinus pinaster) by chemical reaction with organosilicon compounds[J]. Holzforschung,2000,54:474-480.
    [47]HUANG C, LIU C H, SUCH, et al. Investigation of atmospheric-pressure plasma deposited SiOx films on polymeric substrates[J]. Thin solid films,2009, 517:5141-5145.
    [48]GERHARDINGER D, MAYER H, KOLLERITSCH G. Process for impregnating wood[P].US:5538547,1996.
    [49]HAGER R. Waterborne silicones as wood preservatives. International Research Group on Wood Preservation (IRG/WP 95-30062) Stockholm,1995.
    [50]LUKOWSKY D, PEEK R D, RAPP A O. Water-based silicones in wood. International Research Group on Wood Preservation (IRG/WP 97-30144) Stockholm,1997.
    [51]陈志林,王群,左铁镛,等.无机质复合木材的复合工艺与性能[J].复合材料学报,2003,20(4):128-132.
    [52]SAKA S, YAKAKE Y. Wood-inorganic composites prepared by sol-gel process (Ⅲ). Chemically-modified wood-inorganic composites[J]. Mokuzai Gakkaishi, 1993,39 (3):308-314.
    [53]林兰英,陈志林,傅峰.无机质复合木材研究进展[J].世界林业研究,2008,21(2):38-43.
    [54]STEVEN D, HOLGER M, CARSTEN M. Wood modification with alkoxysilanes[J]. Wood Sci Technol,2004,38:555-566.
    [55]TSHABALALA M A, KINGSHOTT P, VANLANDINGHAM M R, et al. Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process[J]. J Appl Polym Sc,2003,88:2828-2841.
    [56]CARSTEN M, HOLGER M. Modification of wood with silicon compounds. inorganic silicon compounds and sol-gel systems:a review[J]. Wood Sci Technol, 2004 (a),37:339-348.
    [57]DONATH S, MILITZ H, MAI C. Weathering of silane treated wood[J]. Holz Roh Werkst,2007,65:35-42.
    [58]KABIR F R, NICHOLAS D D, VASISHTH R C, et al. Laboratory methods to predict the weathering characteristics of wood[J]. Holzforschung,1992,46: 395-401.
    [59]EVANS P D, DONNELLY C, CUNNINGHAM R B. Checking of CCA-treated radiata pine decking timber exposed to natural weathering[J]. For Prod J.,2003, 53 (4):66-71.
    [60]MIYAFUJI H, KOKAJI H, SAKA S. Photostable wood-inorganic composites prepared by the sol-gel process with UV absorbent[J]. J Wood Sci,2004,50: 130-135.
    [61]FUMIE T, SAKA S. Antimicrobial TMSAH-added wood-inorganic composites prepared by the sol-gel process[J]. Holzforchung,1998,52:365-370.
    [62]FURUNO T, UEHARA T, JODAI S. Combination of wood and silicate (Ⅰ) Impregnation by water glass and application of aluminum sulfate and calcium chloride as reactants[J]. Mokuzai Gakkaishi,1991,37(5):462-472.
    [63]FURUNO T, SHIMADA K, UEHARA T, et al. Combination of wood and silicate (Ⅱ). Water-mineral composites using water glass and reactants barium chloride,boric acid and borax and their properties[J]. Mokuzai Gakkaishi,1992, 38 (5):448-457.
    [64]FURUNO T, UEHARA T, JODAI S. Combination of wood and silicate (Ⅲ).Some properties of wood-mineral composites using the water glass-boron compound system[J]. Mokuzai Gakkaishi,1993,39 (5):561-570.
    [65]符韵林,赵广杰,全寿京.二氧化硅/木材复合材料的微细构造与物理性能[J].复合材料学报,2006,23(4):52-59.
    [66]符韵林,赵广杰.木材/二氧化硅复合材料的微细构造[J].北京林业大学学报,2006,28(5):119-124.
    [67]MIYAFUJI H, SAKA S. Fire-resisting properties in inorganic composites and several TiO2 wood-their topochemistry[J]. Wood Science and Technology,1997, 31:449-455.
    [68]SAKA S, UENO T. Several SiO2 wood-inorganic composites and their fire-resisting properties[J]. Wood Sci Technol,1997,31:457-466.
    [69]SAKA S, TANNO F. Wood-inorganic composites prepared by sol-gel process(VI). Effects of a property-enhancer on fire-resistance in SiO2-P2O5 and SiO2-B2O3 wood-inorganic composites[J]. Mokuzai Gakkaishi,1996,42 (1):81-86.
    [70]SCHWERIN. Manufacture of chemically pure soluble silicic acid[P]. US: 1132394,1915.
    [71]BIRD. Colloidal solutions of inorganic oxides[P]. US:2244325,1941.
    [72]王自新,赵冰.硅溶胶制备与应用[J].化学推进剂与高分子材料,2003,1(5): 34-39.[73]田华,陈连喜,刘全文.硅溶胶的性质、制备和应用[J].国外建材科技,2007,28(2):8-11.[74]杨南如,余桂郁.溶胶-凝胶的基本原理与过程[J].硅酸盐通报,1992,11(2):56-63.[75]江楠,宋晓岚,徐大余.纳米SiO2复合材料研究进展[J].粉末冶金材料科学与工程.2007,12(5):272-276.[76] SEGAUSA T. Organic polymer silica gel hbyrid. A Precursor of highly Porous silica gel[J]. J.Macormol. Sei:Chem.,1991, A2,8 (9):817-829.[77]马海红,史铁钧,宋秋生.溶胶-凝胶法有机-无机杂化材料的制备及应用研究进展[J].化工新型材料,2008,36(12):1-3.[78]王华林.有机聚合物/SiO2有机无机杂化材料的研究[D].安徽:合肥工业大学,2006.[79]邱坚,李坚.超临界干燥制备木材-SiO2气凝胶复合材料及其纳米结构[J].东北林业大学学报,2005,33(3):3-4.[80]廖秋霞,卢灿辉,许晨.原位溶胶-疑胶制备木材-PMMA-SiO2复合材料及其显微结构[J].福建化工,2001,(1):21-23.
    [81]林兰英.硅溶胶强化杨木复合材的制备与性能研究[D].北京:中国林业科学研究院,2008.
    [82]中国国家技术监督局.GB/T 1931-2009木材含水率测定方法[S].北京:中国标准出版社,2009.
    [83]邱坚,李坚.木材-无机质复合材料的基本内涵[J].中国木材,2003,(1):34-34.
    [84]顾炼百.木材加工工艺学[M].北京:中国林业出版社,2003.
    [85]吕建雄,鲍甫成,姜笑梅,等.气蒸处理对木材渗透性的影响[J].林业科学,1994,30(4):352-357.
    [86]侯祝强,鲍甫成.木材可压缩流体的流动型态分析[J].林业科学,1999,35(3):63-68.
    [87]刘元,胡云楚,袁光明.纳米科技与纳米木材学的发展方向[J].中南林学院学报,2004,24(5):143-146.
    [88]RENATE M V, WILHELM F M, HENK V. Hydrophobic silica membranes for gas separation[J]. Journal of Membrane Science,1999,158:277-288.
    [89]韦奇,李健林,宋春林,等.微孔二氧化硅膜的制备、氢气分离以及水热稳定 性研究[J].无机材料学报,2004,19(1):133-139.
    [90]杨靖,陈杰,张建民,等.二氧化硅溶胶反应物的配比对性能的影响研究[J].西安工程科技学院学报,2007,21(1):126-130.
    [91]周永东,傅峰,李贤军,等.微波处理对桉木应力及微观构造的影响[J].北京林业大学学报,2009,31(2):146-150.
    [92]赵广杰.木材细胞壁中吸着水的介电弛豫[M].北京:中国林业出版社,2002.
    [93]金钦汉.微波化学[M].北京:科学出版社,2001.
    [94]李贤军.木材微波真空干燥特性的研究[D].北京:北京林业大学,2005.
    [95]史孝群,肖久梅,马文江,等.硅烷偶联剂在聚合物基复合材料增容改性中的应用[J].工程塑料应用,2002,30(7):54-56.
    [96]吴刚.材料结构表征及应用[M].北京:化学工业出版社,2001.
    [97]李坚.木材波谱学[M].北京:科学出版社,2003.
    [98]邓芹英,刘岚,邓慧敏.波谱分析教程[M].北京:科学出版社,2003.
    [99]ROBERT M. SILVERSTEIN著,药明康德新药开发有限公司译.有机化合物的波谱解析[M].上海:华东理工大学出版社,2007.
    [100]常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2006.
    [101]成青.热重分析技术及其在高分子材料领域的应用[J].广东化工,2008,35(12):50-52.
    [102]常铁军,祁欣.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [103]冯玉红.现代仪器分析实用教程[M].北京:北京大学出版社,2008.
    [104]孙才英,史桂香,武兰在,等.杨木热分析[J].东北林业大学学报,1998,26(1):38-41.
    [105]林木森,蒋剑春.杨木屑热解过程及动力学研究[J].太阳能学报,2008,20(9):1135-1138.
    [106]BYRNE C E, NAGLE D C. Carbonization of wood for advanced materials application[J]. Carbon,1997,35 (2):259-266.
    [107]高明,孙彩云,李桂芬,等.胍类阻燃剂处理木材的热解机理[J].北京工业大学学报,2009,35(3):391-396.
    [108]胡云楚,刘元.酚类阻燃剂处理杉木热解过程的热动力学研究[J].林业科学,2003,39(3):116-120.
    [109]杨文斌,马世春,顾炼百.阻燃处理马尾松的热动力学分析[J].木材工业, 2000,14 (5):10-12.
    [110]CORDERO T. A kinetic study of holm oak wood pyrolysis from dynamic and isothermal TG experiments[J]. Thermochimica Acta,1989,149:225-237.
    [111]CORDERO T. On the kinetics of thermal decomposition of wood and wood components[J]. Thermochimica Acta,1990,164:135-144.
    [112]CORDERO T. Thermal decomposition of wood in oxidizing atmosphere. A kinetic study from non-isothermal TG experiments [J]. Thermochimica Acta, 1991,191:161-178.
    [113]BILBO R. Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere[J]. J. Anal. Appl. Pyrol,1997,39:53-64.
    [114]LIU N A. Kinetic modeling of thermal decomposition of natural cellulose materials in air atmosphere[J]. Journal of analytical and applied pyrolysis,2002, 63:303-325.
    [115]文丽华,王树荣,施海云,等.木材热解特性和动力学研究[J].消防科学与技术,2004,23(1):1-5.
    [116]冉景煜,曾艳,张力,等.几种典型农作物生物质的热解及动力学特性[J].重庆大学学报,2009,32(1):76-81.
    [117]何芳,易维明,柏雪源,等.几种生物质热解反应动力学模型的比较[J].太阳能学报,2003,24(6):771-775.
    [118]宋春财,胡浩权,朱盛维,等.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报,2003,31(4):311-316.
    [119]周志芳,江涛,王清文.高强度微波处理对落叶松木材力学性质的影响[J].东北林业大学学报,2007,35(2):6-8.
    [120]胡荣祖,高胜利,赵凤起,等.热分析动力学(第二版)[M].北京:科学出版社,2007.
    [121]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:治金工业版社,1995.
    [122]傅峰,鲍甫成.人工林杨木的用途选择[J].林业科学,1999,35(4):58-65.
    [123]刘盛全,鲍甫成.我国杨树人工林材性与加工利用研究现状及发展趋势[J].木材工业,1999,13(3):14-16.
    [124]中国国家技术监督局.GB/T1936.1-1991木材抗弯强度试验方法[S].北京:中国标准出版社,1991.
    [125]中国国家技术监督局.GB/T1936.2-1991木材抗弯弹性模量试验方法[S].北京:中国标准出版社,1991.
    [126]中国国家技术监督局.GB/T1941-1991木材硬度试验方法[S].北京:中国标准出版社,1991.
    [127]尹思慈.木材学[M].北京:中国林业出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700