草酰胺金属配合物电化学行为研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文详细介绍了配位吸附波的特点、分类和形成条件,概述了配位吸附波在分析化学中的应用研究、现状和趋势。在此基础上,系统地研究了Pb(Ⅱ)、In(Ⅲ)与二溴邻苯二胺双草酰胺(dbac)、N-邻羧基苯基-N′-(2-氨基乙基)草酰胺(opac)两种配位体形成的配位吸附波体系的电化学行为,并应用于实际样品的测定。本文主要包括以下四部分:
     一.草酰胺电化学行为研究
     应用示波极谱法、循环伏安法等实验技术研究了二溴邻苯二胺双草酰胺(dbac)和N-邻羧基苯基-N′-(2-氨基乙基)草酰胺(opac)两种试剂在汞电极上的电化学行为。通过测定吸附量确定了dbac、opac吸附模式,讨论了试剂的电极反应机理和取代基效应对吸附性和电活性影响。研究表明,dbac、opac在一定的底液中均能产生2e不可逆吸附还原峰,其极谱行为受pH影响较大。两者在汞电极上都具有较强的吸附性,且符合Frumkin吸附等温式。
     二.Pb(Ⅱ)、In(Ⅲ)-二溴邻苯二胺双草酰胺(dbac)配合物电化学行为研究
     在本章中,以dbac为配位体,研究了Pb(Ⅱ)、In(Ⅲ)与其形成的配合物的电化学行为。确定了以下两种配位吸附波体系:①Pb(Ⅱ)-dbac体系。②In(Ⅲ)-dbac体系。对这两种体系系统地进行了机理研究和理论探讨。
     1.研究了两种体系配位吸附波的形成和影响因素。结果表明,底液在形成配位吸附波时起着重要作用。为了得到灵敏的极谱波,应遵循一定的原则选择底液。底液的组成及浓度,溶液pH,配体浓度和仪器条件通常会对峰电流产生很大影响。
     2.通过各种电化学、光化学实验技术研究了配合物的稳定性、吸附性和电活性,探讨了电极反应机理,比较和讨论了金属离子、配位体对配位吸附波的影响。结果表明,两体系电极过程均符合配位吸附波的CAEM过程。
     3.线性范围和检出限。通过大量的条件实验,选择了两体系测定金属离子的最佳条件,建立了示波极谱法测定Pb(Ⅱ)、In(Ⅲ)两种离子的分析方法。线性范围在10~(-6)~10~(-8)mol/L,检出限可达10~(-8)mol/L。方法具有灵敏度高、选择性好、操作简便、快捷等特点。
    
     摘 要
     三.In(lll)-一邻波基苯基一N’一口一氨基乙基)草酸胺(opa)配合物电化学行为研究
     研究了In(ll)与opac形成的配位吸附波及影响因素。通过对电活性配合物的稳定
    性、吸附性和电活性研究,探讨了电极反应机理。在大量实验基础上,确定了该体系最
    佳条件,建立了配位吸附波测定 n0)的新方法。检出限为 SX10-smp皿,线性范围在
    10-5一 10”7mo凡之间。
     四.应用研究
     介绍了电化学分析测定Ph(II、In*)的研究现状,重点叙述了配位吸附波测定
    PhOIXIn(Ill)的研究进展。首次将草酸胺Nbac、opac闯入配位吸附波领域,建立了测
    定Ph(II、In(lll的新方法,实现了Ph(11)、In(Ill)的同时狈定。用于陶瓷颜料、矿石及人
    发样品的测定,结果令人满意。
The thesis reviews the basic theories of adsorption wave, introduces the characterisitics, classification and formation conditions of the complex adsorption wave. Its applications in various fields of analytical chemistry were described .On the basis of that, the electrochemical behavior and applications of the complex of Lead(Ⅱ),Indium(Ⅲ) metal ions with dibrom-o-benzenediamine-diacetamide ester(dbac) and N-o-carboxypheny-N'-(2-aminoethyl) acetamide(opac) have been studied systematically. The thesis consists of the following four parts:
    1. Study on the electrochemical behavior of acetamide
    The electrochemical behavior of dibrom-o-benzenediamine-diacetamide ester(dbac) and N-o-carboxypheny-N'-(2-aminoethyl) acetamide(opac) on the mercury electrode have been studied by many electrochemical experiments such as oscillopolarography, cyclic voltammetry, etc. The adsorption modes of dbac and opac were found by determination of adsorption amount. The mechanism of the electrode process and the effects of displacement group on the ability of adsorption and the electroactivity were discussed. The experimental results shows that the adsorption reduce wave of dbac and opac produced in suitable supporting electrolyte. The effect of pH on the polarographic behavior of the agent was large. The interfacial electrochemical reduction of the agent was an irreversible process with two electron. Two agents have strong adsorption on the mercury electrode, the adsorption modes correspond to Frumkin adsorption isotherm.
    2. Study on the electrochemical behavior of the complex of Pb(II), In(III) metal ions with dbac
    In this chapter, the electrochemical behavior of the complex of Pb(Ⅱ), In(Ⅲ) metal ions with dbac has been investigated. The following Pb(Ⅱ)-dbac system and In(Ⅲ)-dbac system were determined:
    On the base, he following theoretical has been studied:
    (1). The formation and influence factors of complex adsorption wave have been investigated. The results demonstrated that the supporting electrolyte is important to forming
    
    
    
    complex adsorption wave, and its selection should obey certainly principles.The effects of composition and concentration of supporting electrolyte, pH, the concentration of complexant and apparatus conditions, etc, on the peak current are great.
    (2). The mechanism of electrode reaction was discussed through studying the stability,
    adsorption and electroactivity of complex in systems mentioned above. The effects of metal ions and complexants on the complex adsorption wave were compared and discussed. Results demonstrated that the electrode process of complex corresponded with CAEM process of complex adsorption wave.
    (3). The liner range and the limit of detection. The optimized analytical conditions were selected and oscillopolarography of the determination of Pb(Ⅱ), In(Ⅲ) have been found. The
    linear range was 10-6 ~10-8 mol/L. The limit of detection was general 10-8 mol/L.
    3. Study on the electrochemical behavior of the complex of In(Ⅲ) metal ions with opac
    The formation and influence factors of complex adsorption wave have been investigated. The mechanism of electrode reaction was discussed through studying the stability, adsorption and electroactivity of complex based on numerous experiments the optimized condition and oscillopolarography of determination of In(III) have been found. In general,the limit of
    
    detection and the linear range were 5.0 10-8 mol/L and 10-5~10-7 mol/L respectively.
    4. Analytical applications
    This part focuses on the current sitiuation of the electrochemical analysis to determination Lead(Ⅱ), Indium(Ⅲ), and mainly on the development of reseach on the complex adsorption wave to determination Lead(Ⅱ), Indium(Ⅲ). In addition, the new method of determinating Lead(Ⅱ), Indium(Ⅲ) introduces, for the first time, acetamide to the field of the complex adsorption wave. In this field, we can determinate Lead(Ⅱ), Indium(Ⅲ) at same time. These methods have been applied to the determination of Lead(Ⅱ), Indium(Ⅲ) in pottery color ,mineral and hu
引文
[1] Szabadvary F, Robbinson A. History of Analytical Chemistry. Oxford Pergamon Press, 1966
    [2] 汪尔康主编.21世纪的分析化学.北京:科学出版社,1999
    [3] Laitinen H A. Anal. Chem. 1980, 52: 605A
    [4] Murry R W. Anal. Chem. 1991, 63, 921A.
    [5] 高小霞.极谱催化波.科学出版社,1991
    [6] 李启隆.分析测试通报.1988,7(5):60
    [7] 李启隆.有机试剂在吸附波中的应用.冶金分析.1991,11(2):27~28
    [8] 高小霞等.电分析化学导论.科学出版社,1986:342
    [9] H.H.Willard, J.A.Dean. Anal. Chem. 1950,23:1264
    [10] M.Perkins, G.F.Reynolds. Anal. Chem. Acta 1998, 18: 616
    [11] T.M.Florence, Y.J.Farrar. Aust. J. Chem. 1964, 17: 1085
    [12] T.M.Florence. JEC.1974,52:115
    [13] M.Veber, L.J.Csanyi. JEC. 1981,124:221
    [14] J.F.C.Boodt, R.Rudnytskij. JEC.1983,149:139
    [15] M.L.Thakur.Talanta.1974,21:771
    [16] 李启隆.电分析化学.北京师范大学出版社,1995:194
    [17] 卢巽珍.我国极谱催化波发展近况.岩矿测试.1992,11(1-2):63~73
    [18] 李启隆.电分析化学.分析试验室.1997,16(5):77~97
    [19] Y.I. Turyan. O. N. Malyavinskaya. JEC. 1969, 23:69
    [20] R.D. Levic. J.Electrochemical. Soc. 1971, 185c
    [21] J.Heyrovsky. Discussion Faraday. Soc. 1947, 1:212
    [22] D.A.Aikens, J. W. Ross. J. Phy. Chem. 1961,65:1213
    [23] F.C.Anson. JEC.1975,65:799
    [24] F.C.Anson. Anal. Chem. 1968,40:1791
    [25] R.A.Osteryouny. J.Phy.Chem. 1967,71:1348
    [26] R.W.Murray. JEC. 1968,16:327
    [27] 李启隆.电分析化学.北京大学出版社,1991:169
    [28] 周长利,高天广.络合吸附波测定痕量钼的研究.分析科学学报.1999,15(2):119~123
    [29] 周长利,卢燕.锑(Ⅱ)-向红菲咯啉络合吸附波及其应用.分析化学.1997,25(11):1337~1340
    [30] 周长利,卢燕.钒(Ⅴ)-向红菲咯啉的络合吸附波.分析化学.1998,26(8):970~973
    [31] 卢燕,周长利.青岛化工学院学报.1996,17(增刊):149
    [32] 李秀玲,寿崇奇,周长利.钼(Ⅵ)-向红菲罗啉络合物的吸附伏安行为.分析化学.1997,25
    
    (2):193~196
    [33] 李秀玲,卢燕,周长利.锡-邻菲咯啉络合物吸附极谱波的研究及应用.分析化学.1998,26(10):1241~1243
    [34] 李秀玲,周长利.镓(Ⅲ)-向红菲咯啉络合物极谱吸附波的研究及应用.分析化学.1998,26(4):451~453
    [35] 周长利,卢燕.络合吸附波测定痕量锡.分析化学.1999,27(6):672~675
    [36] 卢燕,付佩玉,周长利.钼(Ⅳ)-7-(1-苯偶氮)-8-羟基喹啉-5-磺酸钠络合吸附研究及应用.分析化学.1999,27(11):1296~1299
    [37] 周长利,卢燕.电分析化学进展.西安地图出版社,1999:100
    [38] 卢燕,周长利.电分析化学进展.西安地图出版社,1999:102
    [39] 周长利,罗川南.络合吸附波测定微量锑(Ⅲ).分析化学.2002,30(3):331~333
    [40] Chang-li Zhou, et. al. Adsorptive stripping voltammetric determination of antimony. Talanta. 1998, 46: 1531
    [41] 周长利,王晓轩,卢燕.铟-桑色素体系吸附溶出伏安法研究.山东建材学院学报.1998,12(3):217~219
    [42] 张月霞.痕量分析及其冶金检测中的作用和展望.冶金分析.1993,13(4):45~50
    [43] 张志龙.分析实验室.1987,6(10):48
    [44] 李启隆.电化学分析.分析实验室.1995,14(5):97~111
    [45] K.Cammann, J.Fresenius. Anal. Chem. 1992, 343: 812
    [46] 高小霞.稀土的电分析化学.分析科学学报.1996,12(4):332~340
    [47] 张月霞,朱腾.混合表面活性剂对铊(Ⅰ)的示波极谱电流的增敏效应.分析化学.1996,25(12):1391~1395
    [48] 李朝均,黄淑英.导数示波极谱法测定锡铅.理化检验—化学分册.1999,35(12):554~556
    [49] 王海霞,姚修人.钴-锰-乙二胺体系中锰的极谱测定.分析化学.1992,20(11):1284~1286
    [50] 黎拒难,李定文.轻稀土-锌-茜素红S异多核配合物极谱吸附波的研究.分析化学.1991,19(7):831~834
    [51] 但德忠,祝志清.锶的络合吸附波及其在卤水分析中的应用.痕量分析.1991,7(1):71~74
    [52] 李国刚.Meso-四(4-磺基苯基)卟啉-锌络合吸附波在水样分析中的应用.环境化学.1995,14(2):164~168
    [53] P. A. M. Farias, A. K. Ohara. Anal. Chim. Acta. 1994,293:29
    [54] M. Perkins, G. F. Reynolds. Anal. Chim. Acta. 1998,18.. 616
    [55] B. Lunjun. Anal. Chem. 1997, 15: 3053
    [56] 张月霞,岳冠华.测定痕量硼的灵敏示波极谱法和表面活性剂增敏机理研究.冶金分析.1995,15(3):5~11;Anal.Chem.Acta.1995, 309: 63
    
    
    [57] 张成志,贺维军.锗-芦丁极谱络合吸附波的研究.高等学校化学学报.1994,15(1):31~34
    [58] 朱章祺.理化检验—化学分册.1985,21(1):20
    [59] 张月霞,吴永明.锗(Ⅱ)-没食子酸示波极谱电流增敏机理研究 Ⅰ.高温合金中锗的测定.冶金分析.1997,17(3):8~11,14
    [60] 陈强,康敬万,高锦章.铑-1-(2-吡啶偶氮)萘酚络合吸附波测定微量铑.兰州大学学报:自然科学版.2001,37(2):87~90
    [61] 陈强,康敬万,高锦章.铑—丁二酮肟络合吸附波测定微量铑.分析化学.2002,30(5):556~559
    [62] 易芬云,黎拒难,朱义文.钍—茜素氨羧络合剂极谱络合吸附波的研究.岩矿测试.2001,20(2):105~107
    [63] 包晓玉,朱志伟,李南强.铟-荧光镓极谱络合吸附波的研究.北京大学学报:自然科学版.2000,36(2):149~152
    [64] 刘家欣,田方团.锰(Ⅱ)-邻菲罗啉配合物极谱吸附波及其应用.分析科学学报.1996,12(2):125~128
    [65] 李建平,张立艳,舒柏崇.在碘酸钾存在下铝与茜素S的络合吸附波研究.分析化学.2001,29(7):806~809
    [66] 包晓玉,李南强.铋-芦丁极谱络合吸附波的研究.分析化学.2000,28(2):228~231
    [67] 拓宏桂,李南强.钒(Ⅳ)-槲皮素极谱络合物吸附波的研究.北京大学学报.1996,32(2):168~171
    [68] J. Wang. Bioelectrochem. And Bioenergetics. 1986, 15(2): 147
    [69] 杨功俊,冷宗周.碳糊电极吸际伏安法测定微量酚磺乙胺.药物分析杂志.1998,18(5):311~314
    [70] 戴云辉,阮湘元,李益恒.谷胱甘肽-铜极谱络合吸附波的研究.东莞理工学院学报.2002,9(1):29~32
    [71] Laviron E., J.Electroanal. Chem., 1974, 52.355
    [72] Laviron E.Bull. Soc. Chim. Fr.,1967, 3713
    [73] M.Perkins, G.F.Reynolds. Anal.Chem.Acta, 1998,18,616
    [74] 张祖训.高等学校化学学报.1985,6(5),403
    [75] 李启隆.络合吸附波吸附性的研究.分析试验室.1991,10(1):55~60,67
    [76] US FPA Aip Quality Criteria of lead (Washington DC: Environmental Protection Ayency,1986:59
    [77] 叶玲霞.环境铅污染与人体健康.安徽预防医学杂志.2001,7(2):159~160
    [78] 姜允申.铅污染对儿童健康的危害.化工劳动保护.2001,22(6):212~213
    [79] 雷淑贞.铅-邻苯二酚红络合物吸附波的研究及应用.分析测试通报.1989,8(4):64~67
    [80] 李启隆,冯晓红.铅-二甲酚橙络合吸附波及食糖中铅的测定.环境化学.1989,8(4):57~62
    
    
    [81] 吴建人,卢燕.对乙酰基偶氮氯膦(CPAPA)-96配合物的极谱吸附波研究及应用,山东建材学院学报.1991,5(4):42~45
    [82] 魏显有.铅镉-邻菲罗啉-溴化钾配合物的吸附波及其应用.分析测试通报.1991,10(6):68~70
    [83] 路纯明.示波极谱配合物吸附波测定痕量铅.理化检验—化学分册.1989,25(1):39~41
    [84] 王建琴,王劲榕.铜精矿中铅锌的连续测定.岩矿测试.2000,19(4):295~297
    [85] 庄秀润,岑传铨.Pb(Ⅱ)-Cup络合物导数极谱波研究.华侨大学学报:自科版.1995,16(1):30~33
    [86] 费俊杰,黎拒难,易芬云.槲皮素化学修饰碳糊电极吸附溶出伏安法测定痕量铅.分析化学.2001,29(8):916~918
    [87] 王志华,卢小泉,耿再新等.2,4,6-三(3,5-二甲基吡唑)-1,3,5-三嗪碳糊修饰电极刚极溶出伏安法测定铅.两北师范大学学报(自然科学版).2001,37(1):60~62
    [88] 黄杉生,程冀达,李芬等.TBP碳糊修饰电极三元络合物体系测定痕量铅(Ⅱ).分析科学学报.1998,14(2):126~128,
    [89] 但德忠,阮静纯.微分电位溶出法连续测定饮料中的铜铅镉锌.分析试验室.2000,19(2):27~30
    [90] 张文德.电位溶出法同时测定锌镉铅的研究.理化检验-化学分册.2001,37(11):499~500
    [91] 北京医学院第二附属医院职业病科编.金属中毒.人民卫生出版社,1977:437
    [92] 布谢夫著,刘崇志译.北京:科学出版社,1960:111
    [93] Marczenko Z.Chichester, 1976: 288
    [94] 周景道,沈求一,沈乃葵.分光光度法测定铟新进展.淮北煤师院学报.1996,17(4):78~82
    [95] 段群章.金属及合金中铟的光度分析.稀有金属.1999(1):36~38
    [96] 徐政,华菊如.十年来铟的分析方法进展.冶金分析.1995,15(4):23~28
    [97] 李启隆,李松梅.铟-二甲酚橙络合吸附波的研究.分析测试通报.1989,8(3):45~51
    [98] 姚德,丁志友.铟(Ⅲ)-邻苯二酚紫配合物吸附波的研究.南京化工学院学报.1993,15(2):36~42
    [99] 范瑞溪,赵康.铟-PAR络合吸附波的极谱行为研究.苏州大学学报:自然科学.1993,9(1):94~97
    [100] 李启隆,曹光銮.铟-1-(2-吡啶偶氮)一2-萘酚络合吸附波的研究.分析试验室.1992,11(2):9~12
    [101] 肖仁贵,廖霞.铟-TC-偶氮胂极谱波的研究及应用.贵州工业大学学报.1999,28(3):23~26
    [102] 李秀玲,卢燕.铟(Ⅲ)-向红菲啰啉络合物极谱吸附波的研究分析化学.1995,23(7):793~795
    [103] 李秀玲,卢燕,周长利.络合物极谱吸附波测定微量铅.分析化学.2000,28(5):652
    
    
    [104] 周清海,黎如佳.铟-8-羟基喹哪啶络合物吸附波的研究及应用.冶金分析.1996,16(2):5~8
    [105] 李南强,刘杨.铟-槲皮素极谱络合吸附波测定锌盐中的痕量铟.分析科学学报.1993,9(3):27~30
    [106] 张亿增.铟-硫氰酸钾络合物阴极吸附溶出伏安法的研究及应用.冶金分析.1997,17(5):44~46
    [107] 王洪恩,杜新胜,陈中道等.电位溶出法测定人发中的铟铅锌.济宁医学院学报.2000,23(2):23~24
    [108] 张勤,孙晓玲.电流氧化溶出计时电位法测定地质物料中痕量铟.岩矿测试.1996,15(3):183~187
    [109] 胡娟,张振海,李青彬等.示波计时电位法测定矿石中的镓和铟.岩矿测试.2000,19(2):109~111,118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700