基于表面活性剂增敏的电化学分析及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂在电分析中的研究和应用日益活跃,它可以显著改善待测物质的电化学响应,提高分析的灵敏度和选择性。另外,表面活性剂膜电极的结构与生物细胞膜中的类脂所组成的双层结构类似,所以对表面活性剂膜电极电化学行为的研究有助于认识生物体内的电子传递过程。本论文考察了不同类型的表面活性剂对生物分子和药物分子的电化学响应的影响,并利用表面活性剂的强吸附性能制备了表面活性剂膜修饰电极,采用扫描电子显微镜(SEM)探索了其表面形貌,并运用多种电化学技术考察了该修饰电极对氧分子的电化学响应。主要研究内容如下:
     (1)制备了聚乙烯吡咯烷酮(PVP)修饰碳糊电极,在表面活性剂CTAB存在下,用循环伏安法考察生物分子甲状腺素(T_4)在该修饰电极上的氧化过程,发现T_4在该电极上表现出完全不可逆的氧化过程。考察了不同类型表面活性剂对T_4氧化的影响,发现阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)对T_4的氧化有明显的催化作用。采用计时库仑法和交流阻抗法研究了T_4在该修饰电极上的氧化过程,发现T_4的氧化涉及到四个电子和四个质子的转移,CTAB加快了T_4在电极表面的电子转移速度。T_4的浓度在2×10~(-7)-9×10~(-6)mol/L时,其氧化峰电流与浓度呈现出良好的线性关系。在开路条件下富集40s,T_4的检出限为8×10~(-8) mol/L。
     (2)采用具有较大比表面积的乙炔黑作为电极的基体材料,制备乙炔黑电极。在不同类型的表面活性剂存在下,考察四环素(TC)在该电极表面的电化学氧化。发现TC在阴离子表面活性剂十二烷基硫酸钠(SDS)存在下表现出一灵敏的氧化峰,峰电位为0.58 V,说明SDS对TC有明显的催化作用。采用交流阻抗法、计时库仑法和循环伏安法研究TC在该体系的氧化过程,发现SDS加快TC在溶液中的扩散系数和在电极表面的电子转移速度。TC的氧化为其C_(10)位上的酚羟基的氧化,涉及到四个电子和四个质子的转移。推测出TC的酚羟基开始可能被氧化成苯醌。而苯醌在电极上又被还原成对苯二酚,且对苯二酚/苯醌电对则容易吸附在电极表面,表现出一对比较可逆的氧化还原峰。TC的浓度在1.2×10~(-7)-1.5×10~(-5)mol/L时,其氧化峰电流与浓度呈现出良好的线性关系。在开路条件下富集150s
    
    后,Tc的检出限为6.。/10一“mollL。干扰实验证明,该体系有较好的选择
    性。在最优化的实验条件,实现了蜂蜜和药物中四环素的检测。
     (3)采用乙炔黑电极,在不同类型的表面活性剂存在下,考察去甲肾
    上腺素(NA)在该电极表面的电化学行为。循环伏安法和交流阻抗法的实
    验结果表明阴离子表面活性剂SDS对强酸介质中NA的氧化还原有明显的
    催化作用。NA的氧化还原峰对应于NA结构中的邻苯二酚的氧化还原,
    即邻苯二酚/邻苯醒电对。NA的浓度在6.0/10一8一7.2/10’6mol/L时,其
    氧化峰电流与浓度呈现出良好的线性关系。在开路条件下富集70:后,Tc
    的检出限为6.0/10一9 mol/L。该体系有望应用于NA的高灵敏检测。
     (4)采用吸附法将不同类型的表面活性剂吸附到电极表面,得到各
    种类型的表面活性剂膜修饰乙炔黑电极。采用SEM研究了乙炔黑电极修饰
    前后的表面形貌,发现表面活性剂修饰电极表现出更大的比表面积。考察
    氧分子在各种修饰电极上的电化学还原响应。发现氧分子在该修饰电极上
    表现出完全不可逆的还原过程,且其还原电流增大,电位比裸的乙炔黑电
    极有不同程度的正移。cTAB膜修饰电极的较大的比表面积和饰:效应”两
    种因素导致氧分子在Cl…AB膜修饰电极上的还原电位变得更正,还原电流
    变得更高。计时库仑法和控制电位电解法的研究表明氧分子在乙炔黑电极
    表面的还原过程为两个电子过程,还原产物为HZOZ。另外,采用Tafel曲
    线研究了氧分子的还原动力学过程。
     通过总结不同类型的表面活性剂对T4、TC和NA电化学响应的影响,
    讨论了表面活性剂的增敏作用和其在疏水性碳糊类电极表面的吸附状态。
    初步的实验结果.表明表面活性剂是通过非极性亲油的碳氢链吸附在电极表
    面的。阳离子型和阴离子型表面活性剂的极性端可以与带相反电荷的物质
    发生静电作用,增加该物质的扩散系数和在电极表面的吸附量,使物质与
    电极之间的电子转移更加畅通,从而对其电氧化有明显催化作用。非离子
    型表面活性剂因与这两种带电荷的物质作用较小而不能促进它们的电氧
    化。
The studies and applications of surfactants become more and more popular in electroanalysis since surfactant can change the structure of electrode/solution interface, and consequently improve the sensitivity and selectivity of electroanalytical methods. Additionally, the structure of surfactant film modified electrode is similar to the double-layer of biologic cell film, which is composed of lipoid. So the study of the electrochemical behavior of surfactant film modified electrode is of great benefit to get information of the electron transfer in the biologic body. In this thesis, the effects of different types of surfactants on the electrochemical response of some biological molecules and drugs were investigated. Moreover, different types of surfactant film modified electrodes were prepared, and characterized by scanning electron microscopy (SEM). Various electrochemical techniques were used to investigate the electrochemical responses of dioxygen on the modified electrode. The work is summarized as follows
    :
    (1) Polyvinylpyrrolidone (PVP) was used to modify carbon paste electrode. In the presence of cetyltrimethylammonium bromide (CTAB), the electrooxidation of thyroxine (T4) was studied by cyclic voltammetry on the modified electrode. T4 underwent totally irreversible oxidation at this system and a well-defined peak at 0.42 V was obtained. The influence of various surfactants on the oxidation of thyroxine was examined. The oxidation of T4 was facilitated by cationic surfactants CTAB. Chronocoulometry and AC impedance were also used to investigate the electrode process. T4 undergoes a four-proton and four-electron process, and the electron transfer rate of T4 was facilitated by CTAB. In the range of 2 x 10-7 - 9 x 10-6 mol/L, the oxidation peak current of T4 was linear with the T4 concentration and a low detection limit of 8 x 10-8 mol/L was obtained for 40s accumulation.
    (2) The acetylene black particle with high specific area was used to prepare the acetylene black electrode. In the presence of different surfactants,
    
    
    
    the electrooxidation of tetracycline (TC) was studied on the electrode. A sensitive oxidation peak appears at 0.58 V in the presence of the anionic surfactant sodium doddecyl sulfate (SDS), indicating that the oxidation of TC was facilitated by SDS. AC impedance, chronocoulometry and cyclic voltammetry were used to investigate the electrode process, indicating the diffuse coefficient of and electron transfer rate of TC was facilitated by SDS. The phenolic substituent in position ten of TC is responsible for the oxidation peak. The phenolic substituent may have lost four protons and four electrons and can be oxidized to benzoquinone. The benzoquinone was also reduced, forming a reversible redox couple hydroquinone / benzoquinone, which was adsorbed at the acetylene black electrode surface. In the range of 1.2 10-7 -1.5 10-5 mol/L, the oxidation peak current was linear with the TC concentration and a low detection limit of 6.0 10-8 mol/L was obtained for 150s accumulation. The good reproducibility and sensitivity were obtained. Under optimized experiment conditions, the method has been used to determine TC in honey and pharmaceutical, and the results compared favorably.
    (3) In the presence of different surfactants, the electrochemical response of noradrenalin (NA) was studied on the acetylene black electrode. The results of cyclic voltammetry and AC impedance indicated that the electrochemical response of NA in acid media was facilitated by the anionic surfactant SDS. The redox peak of NA is corresponding to the redox of the oxophenic acid part in the structure of NA, i.e. the reversible redox couple oxophenic acid / o-quinone. In the range of 6 10-8- 7.2 10-6 mol/L, the oxidation peak current of NA was linear with the NA concentration and a low detection limit of 6.0 x 10-9 mol/L was obtained for 70s accumulation. Under optimized experiment conditions, the method could be used to determine NA in biological sample.
    (4) Different type
引文
[1] 戚文彬,《表面活性剂与分析化学》 (上、下册),1986,北京:中国计量出版社.
    [2] J.L. Manzoori, M. Amjadi, Spectrofluorimetrie and mieelle-enhanced spectrofluorimetric methods for the determination of gemfibrozil in pharmaceutical preparations, J. Pharm. Biomed. Anal. , 2003, 31(3): 507-513.
    [3] X. Yang, X. Guo, Y. Zhao, Novel spectrofluorimetrie method for the determination of sulfite with rhodamine B hydrazide in a micellar medium, Anal. Chim. Acta, 2002, 456 (1): 121-128.
    [4] 林志芬,郑肇生,以Triton X-100作增敏剂催化光度法测定痕量银,分析化学,2000,28(3):326-329.
    
    
    [5] S. Y. Dong, J. B. Zheng, H. Gao, Voltammetric behavior of 4',7-dimethoxy-3'-isoflavone sulfonic sodium and its enhancement determination in the presence of surfactant, Anal. Biochem. 2003, 323 (2): 151-155.
    [6] C. I. Park, K. W. Cha, Spectrophotometric determination of trace amounts of cobalt with 2-hydroxybenzaldehyde-5-nitro-pyridylhydrazone in presence of surfactant after separation with Amberlite IRC-718 resin, Talanta, 1998, 46 (6): 1515-1523.
    [7] R. L. Ellis, J. F. Tyson, Use of a surfactant in the determination of arsenic by flow injection hydride generation atomic absorption spectrometry Spectrochira. Acta Part B, 1996, 51(14): 1859-1886.
    [8] M.P.A. San, S. Vera, M. L. Marina, Determination of Ni(Ⅱ), Co(Ⅱ) and Cu(Ⅱ) as diethyldithiocarbamate complexes by high-performance liquid chromatography using hexadecyltrimethylammonium bromide in the mobile phase, J. Chromatogr. A, 1994, 685: 271-278.
    [9] M. Plavsic, D. Krznarie, B. Cosovie, The Electrochemical Processes of Copper in the Presence of Triton X-100. Electroanalysis, 1994, 6(5): 469-474.
    [10] R. Vittal, H. Gomathi, G. P. Rao, Derivatised nickel and cobalt oxide modified electrode: effect of surfaetant, J. Electroanal. Chem., 2001, 497: 47-54.
    [11] R. Vittal, H. Gomathi, G.P. Rao, Influence of a cationic surfactant on the modification of electrodes with nickel hexacyanoferrate surface films, Electrochim. Acta, 2000, 45: 2083-2093.
    [12] S. Hu, K. Wu, H. Yi, et al, Voltammetric Behavior and Determination of Estrogens at Nafion-mocified Glassy Carbon Electrode in the Presence of Cetyltrimethylammonium Bromide. Anal Chim Acta, 2002, 464 (2): 209-216.
    [13] J. F. Rusing, Controlling Electrochemical Catalysis with Surfactant Microstructures. Acc. Chem. Res., 1991, 24 (3): 75-81.
    
    
    [14] J. F. Rusing, Liquid crystal surfactant films for electrochemical catalysis, Microporous Materials, 1994, 3: 1-16.
    [15] P. Somasundaran, S. Krishnakumar, Adsorption of surfactants and polymers at the solid-liquid interface, Colloids and Surfaces A, 1997, 123-124: 491-513.
    [16] F. Tiberg, J. Brinck, L. Grant, Adsorption and surface-induced self-assembly of surfactants at the solid-aqueous interface, Current Opinion in Colloid and Interface Science, 2000, 4 (6): 411-419.
    [17] 徐燕莉,《表面活性剂的功能》,2000,北京,化学工业出版社与精细化工出版社.
    [18] J. F. Rusling, Molecular Aspects of Electron Transfer at Electrodes in Micellar Solutions, Colloids and Surfaces A, 1997, 123-124: 81-88.
    [19] I. Svancara, K. Vytras, J. Barek, et al, Carbon Paste Electrodes in Modern Electroanalysis, Critical Reviews in Analytical Chemistry, 2001, 31(4): 311-345.
    [20] 吴康兵,易洪潮,胡胜水等,表面活性剂存在下雌激素的直接电化学分析,高等学校化学学报,2001,22(10):1658-1660.
    [21] 张月霞,阎美占,铟(Ⅲ)-桑色素共存时的电化学行为的研究和分析应用.Ⅰ.微量铟的示波极谱测定,分析化学,1991,19(4):464—467.
    [22] A. E. Kaifer, A. J. Bard, Micellar Effects on the Reductive Electrochemistry of Methylviologen, J. Phys. Chem., 1985, 89 (22): 4876-4880.
    [23] P. A. Quiatela, A. Diaz, A. E. Kaifer, Dimerization of the Methylviologen Cation Radical in Anionic Micellar and Polyelectrolyte Solutions, Langmuir, 1988, 4(3): 663-667.
    [24] H.C. Yi, K.B. Wu, S.S. Hu, et al, Adsorption stripping voltammetry of phenol at Nation-modified glassy carbon electrode in the presence of surfactants, Talanta, 2001, 55: 1205-1210.
    [25] Svaneara I, Konvalina J, Schachl K, et al, Stripping Voltammetric Determination of Iodide with Synergistic Accumulation at a Carbon Paste
    
    Electrode, Electroanalysis, 1998, 10(6): 435-442.
    [26] M. Stadlober, K. Kalcher,; G. Raber, et al, Anodic Stripping Voltammetric Determination of Titanium(Ⅳ) Using a Carbon Paste Electrode Modified with Cetyltrimethylammonium Bromide, Talanta, 1996, 43 (11): 1915-1924.
    [27] M. Stadlober, K. Kalcher, G. Raber, A New Method for the Voltammetric Determination of Molybdenum(Ⅵ) Using Carbon Paste Electrodes Modified in Situ with Cetyltrimethylammonium bromide, Anal Chim Acta, 1997, 350(3): 319-328
    [28] X. Wen, Y. Jia, Zh. Liu, Micellar effects on the electrochemistry of dopamine and its selective detection in the presence of ascorbic acid, Talanta, 1999, 50(5): 1027-1033.
    [29] A. Ciszewshi, Z. Lukaszwski, The influence of long-chain amine and ammonium salts on the anodic stripping voltammetry of thallium, lead, tin, cadmium and indium, Anal. Chim. Acta, 1983, 146: 51-59.
    [30] R. Modolo, O. Vittori, Determination of cadmium in the presence of indium by polarography with addition of an electroinactive surfactant, Anal. Chim. Acta, 1983, 151: 483-486.
    [31] P. Sagberg, W. Lund, Trace metal analysis by anodic-stripping voltammetry effect of surface-active substrances, Talanta, 1982, 29: 457-460.
    [32] J. H. Mendez, R. C. Martinez, M. E. G. Lopez, Simultaneous determination of tin and lead by A.C. anodic stripping voltammetry at a hanging mercury drop electrodes sensitized by cetyltrimethylammonium bromide, Anal. Chim. Acta, 1982, 138: 47-54.
    [33] 张妮娜,谷学新(导师),金属离子与8—羟基喹啉类试剂络合物极谱波性质基表面活性剂的作用研究,首都师范大学硕士论文,2003.
    [34] 蒲宇宏,张月霞。铋(Ⅲ)-8-羟基喹哪啶体系极谱行为—表面活性剂增敏机理和分析应用Ⅱ铋(Ⅲ)-8-羟基喹哪啶络合物电极反应和十二烷基苯磺酸钠增敏机理,分析化学,1993,21(3):285-289.
    
    
    [35] 龙晖,候小凤,李益恒。锡(Ⅳ)-邻苯三酚红-钒(Ⅳ)-十二烷基磺酸钠体系极谱吸附催化波研究,分析化学,1999,27(3):316-319.
    [36] Z. Hu, C. J. Seliskar, W. R. Heineman, PAN-incorporated Nation-modified spectroscopic graphite electrodes for voltammetric stripping determination of lead, Anal. Chim. Acta, 1998, 369 (1-2): 93-101.
    [37] 张文德,李彦,郭忠,聚乙烯醇对锌镉铅溶出增敏作用及应用,分析化学,1999,27(1):1289-1291.
    [38] 王长发,陈建林,谭鄂等。铅、镉-四(4-三甲铵苯基)卟啉络合物吸附波及其同时测定,武汉大学学报(自然科学版),1993,(1):61-65.
    [39] K. Digua, J. M. Kauffmann, J. L. Delplaneke, Surfactant Modified Carbon Paste Electrode Part 1: Electrochemical and Microscopic Characterization, Electroanalysis, 1994, 6(5): 451-458.
    [40] Y. Okahata, A. Shimizu, Preparation of bilayer-intercalated clay films and permeation control responding to temperature, eletric field, and ambient pH changes, Langmuir, 1989, 5(4): 954-959.
    [41] T. Kunitake, A. Tsuge, N. Nakashima, Immobilization of ammonium bilayer membranes by complexation with anionic polymers, Chem. Lett., 1984, 154: 1783-1786.
    [42] J. F. Rusling, H. Zhang, Multilayer Films of Cationic Surfactants on Electrodes. Control of Change Transport by Phase, Langmuir, 1991, 7(8): 1791-1796.
    [43] 刘慧宏,陈显堂,李俊,H.A.O.Hill,辣根过氧化物酶在表面活性剂膜中的直接电化学,分析化学,2001,29(5):511-515.
    [44] A. E. F. Nassar, W. S. Willis, J. F. Rusling, Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules, Anal. Chem., 1995, 67: 2386-2392.
    [45] J. F. Rusling, M. F. Ahmadi, N. Hu, Surfactant-Intercalated Clay Films Containing Metal Phthalocyanines, Langmuir, 1992, 8 (10): 2455-2460.
    
    
    [46] J. F. Rusling, Enzyme bioelectrochemstry in cast biomembrane-like films, Acc. Chem. Res., 1988, 31: 363-369.
    [47] K. Chattopadhyay, S. Mazumdar, Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactants, Bioelectrochemistry, 2000, 53(1): 17-24.
    [48] N. Hu, D. J. Howe, M. F. Ahmad, J. F. Rusling, Stable films of cationic surfactants and phthalocyaninetetrasulfonate catalysts, Anal. Chem., 1992, 64 (24): 3180-3186.
    [49] H. Zhang, J. F. Rusling, Preconcentration and catalysis in reduction of aliphatic organohalides using surfactant-coated electrode, Talanta, 1993, 40 (5): 741-747.
    [50] J. F. Rusling, D. J. Howe, Electron transfer in surfactant films on electrodes; copper phthalocyaninetetrasulfonate didodecyl dimethylammonium bromide, Inorg. Chim. Acta, 1994, 226 (1-2): 159-169.
    [51] 刘婷,胡乃非,曾永淮,四磺酸酞菁镍—表面活性剂薄膜电极催化性能的研究,化学学报,1996,54(4):338.
    [52] 刘婷,胡乃非,曾永淮,酞菁镍—表面活性剂薄膜修饰电极及其催化性能的研究,高等学校化学学报,1996,17(10):1532-1536.
    [53] 胡乃非,黄茸,杨敬,四磺酸酞菁钴—DDA B表面活性剂薄膜电极的电化学与电化学催化性能研究,高等学校化学学报,1999,20(8):1200-1204.
    [54] J. F. Rusling, D. Zhou, Electrochemical catalysis in microemulsions. Dynamics and organic synthesis, J. Electroanal. Chem., 1997,439: 89-96.
    [55] 谭学才,李启隆,表面活性剂在极谱伏安分析中的应用,岩矿测试,1994,13:214-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700