金纳米通道阵列的制备及其在化学、生物分离中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今分离和分析科学领域,如何在保证生物活性的前提下,对生物组分进行有效分离和检测,是研究者们普遍关注的热点问题,纳米通道技术为该问题的解决提供了一个新的手段。金纳米通道——作为一种新的固体支撑物,不仅在保证生物活性的前提下,对生物组分进行有效分离和检测,也可以单独作为一种分离工具,又可作为传感器件使用。而且,金纳米通道是多个单通道的阵列,具有单通道的全部性质,同时,多通道又有有效作用面积大的优点,因此开展金纳米通道的研制和应用研究意义重大。
     1.以聚碳酸酯滤膜为模板膜,通过化学沉积法,在温和的条件下,制备了膜表面和孔壁镀金的金纳米通道。通过自组装修饰对纳米通道进行修饰;以原子力显微镜对金纳米通道的表面成像进行表征。将金纳米通道安装到自制的流通池上,以金纳米通道为分子迁移和混合物分离载体,建立了一种简单、高效分离的技术。
     2.以金纳米通道阵列为迁移载体,开展单分子迁移研究。考察了Al~(3+)、Zn~(2+)在不同pH值下的迁移,提出了电荷选择机理,并利用该机理合理地解释了迁移结果;考察了色氨酸、桑色素、荧光素、维生素B2在不同的金纳米通道内的迁移,发现分子共平面结构的差异是有机小分子在金纳米通道内的迁移性质的主要因素;首次将有机官能团取代(精细结构)作为参量并结合不同的修饰试剂,考察了氯荧光素、荧光素钠、异硫氰酸荧光素在不同纳米通道内的迁移;首次基于蛋白变性试剂与蛋白质的作用考察生物大分子(牛血清白蛋白和免疫球蛋白)在不同pH值下的迁移,提出了影响蛋白质迁移性质的新因素——蛋白变性因素。率先利用荧光偏振考察了pH值对蛋白质性质的影响,比较了pH值和蛋白变性试剂对蛋白质作用的影响。
     3.首次以不同修饰的金纳米通道阵列为分离载体,分离了色氨酸/VB2,在半胱氨酸、异硫氰酸胍修饰的金纳米通道阵列内,色氨酸/核黄素的相对选择分离系数度分别为5.7和8.6,绝对分离度分别为111.5和168.0。控制pH值部分分离了苯胺盐酸盐/罗丹明B。pH值为1.98、5.15、11.98时,相对选择分离系数度分别为1.8、1.2、6.1。基于pH值和蛋白变性试剂的双重作用,分离了牛血
    
    清白蛋白/免疫球蛋白,在半肤氨酸、异硫氰酸肌修饰的金纳米通道阵列内,相
    对分离度分别为31 .6、23.1。该结果表明金纳米通道有类似生物膜的选择透过性,
    为生物离子开关的仿生模拟提供了一种新的方法。
Separation and detection of biological samples without any denaturalization has received much attention. Nanotubule technology, a newly developed but not unimportant method, highlights itself in its transporting and separating activities. It's been confirmed that solid supports are valuable replacements. Gold nanotubules, as a new kind of support, find their ways in separation tools and sensors with all the characteristics of single nanotubule. Together with other advantages, gold nanotubules, which hold great promise for bioseparation and bioanalysis, can be considered as an important tool of separation and detection of analytes.
    Gold was deposited on the surfaces and in the pores of the template polycarbonate membranes through a chemical method environment friendly. At room temperature, the gold nanotubule arrays are modified via self-assemble and imaged by atomic force microscope. Based on the fabrication, modification and imaging technology, a new method for the transporting and separating study of molecules is developed.
    Transporting of single molecules across the gold nanotubule arrays is investigated. The permeating activities of inorganic ions (Al3+ and Zn2+) are studied at different pH levels and explained by electric charge. Then the separation characteristics of tryptophan, morin, fluorescein and vitamin B2 by gold nanotubule modified with different function groups are observed. It is found that the separation of these substances through gold nanotubule is affected by their distinct structures. The transporting behavior of dichlorofluorescein, fluorescein sodium and fluorescein iso-thiocuanate with different substitutional groups is investigated. Then that of BS A and IgG through different modified gold nanotubule arrays at different pH levels is also discussed. The influence of pH levels on protein structure is analyzed using fluorescence anisotropism and a new principle is put forward.
    Separating of three pairs of moleculies (tryptophan/vitamin B2, hydrochloric aniline/Rhodamine B, and BSA/IgG) is progressed through modified gold nanotubule
    
    
    
    arrays. For the first pair, the relative separation results are 5.7 and 8.6 respectively and the absolute separation results are 111.5 and 168.0 respectively through cysteine and carbamidine thiocyante modified gold nanotubules. For the second pair, when pH level are1.98, 5.15 and 11.98, 1.8, 1.2 and 6.1 of the relative separation results are obtained. For the third pair, 31.6 and 23.1 are the relative separation results achieved when pH level is 4.5.
引文
[1] a: Song, L.; Hobaugh, M. R.;Shustak, C.; "Structure of staphylococcal α-hemolysin, α heptameric transmembrane pore", Science, 1996,274:1859~1865
    b:贾帅争,孙红琰,王全立,“纳米通道技术及应用”,生物化学与生物物理进展,2002,29:202-205
    [2] Weiss, S.; "Fluorescence spectroscopy of single biomolecules", Science, 1999, 283: 1676-1683
    [3] Mehta, A. D.; Rief, M.; Spudich, J. A.; et al., "Single-molecule biomechanice with optical methods", Science, 1999, 283:1689-1695
    [4] Hile, B.; "Ionic channels of excitable membranes", 2nd ed., Sinaue: Sunderland. MA, 1992
    [5] Hladky, S. B.; Haydon, D. A.; "Discreteness of conductance change in biomolecular lipid membranes in the presence of certain antibiotics", Nature, 1970, 225: 451-453.
    [6] Hamill, O. P.; Marty, A.; Neher, E.; et al., "Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches", J. Pflugers. Arch., 1981, 391: 85-100.
    [7] Nakane, J.; Akeson, M.; Marzialil, A.; "Nanopore sensors for nucleic acid analysis", J. Phys.: Condens. Matter., 2003,15:1365-1393
    [8] Bayley, H.; Cremer, P. S.; "Stochastic sensors inspired by biology", Nature, 2001, 413:226-230
    [9] Nakane, J.; Akeson, M.; Marzialil, A.; "Evaluation of nanopores as candidates for electronic analyte detection", Electrophoresis, 2002, 23:2592-2601
    [10] Kasianowicz, J. J.; Brandin, E.; Branton, D.; et al., "Characterization of individual polynucleotide molecules using a membrane channel", Natl. Acad. Sci. USA, 1996, 93:13770-13773
    [11] Howorka, S.; Cheley, S.; Bayley, H.; "Sequence-specific detection of individual DNA strands using engineered nanopores", Nature, 2001, 19:636-639
    
    
    [12] Deamer, D. W.; Akeson, M.; "Nanopores and nucleic acids: prospects for ultrarapid sequencing", Trends Biotechnol., 2000, 18: 147-151.
    [13] Meller, A.; Nivon, L.; Branton, D., "Voltage driven DNA translocation through a nanopore", Phys. Rev. Lett.,, 2001,86:3435-34381
    [14] Meller, A.; Nivon, L.; Brandin, E.; et al., "Rapid nanopore discrimination between single polynucleotide molecules", Proc. Natl. Acad. Sci. USA, 2000, 7: 1079-10841
    [15] Akeson, M.; Branton, D.; Kasianowiczz, J. J.; et al., "Microsecond time called discrimination among polycylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules", Biophys. J., 1999, 77: 3227~3233
    [16] DeFelice, L. J.; "Introduction to membrane noise", Plenum: New York, 1981
    [17] Bezrukov, S. M.; "Ion channels as molecular Coulter counters to probe metabolite transport", J. Membr. Biol., 2000, 174: 1-13.
    [18] Rostovtseva, T. K.; Bezrukov, S. M.; "ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis", Biophys. J., 1998, 74:2365-2373
    [19] Cornel, B. A.; Braach-Maksvytis V. L.; King, L. G; et al., "A biosensor that uses ion-channel switches", Nature, 1997, 387: 580~583.
    [20] Stora, T.; Lakey, J. H.; "Ion-Channel Gating in Transmembrane Receptor Proteins: Functional Activity in Tethered Lipid Membranes", Angew. Chem. Int. Ed., 1999, 38, 3:389-392
    [21] 包建春,徐正,“纳米有序体系的模板合成及其应用”,天机化学学报,2002,18:965-975
    [22] Menon, V. P.; Martin, C. R.; "Fabrication and evaluation of nanoelectrode ensembles", Anal, Chem., 1995, 67:1920-1928
    [23] Nishizawa, M.; Menon, V. P.; "Metal nanotubule membranes with electrochemically switchable ion-transport selectivity", Science, 1995, 268:700-702
    [24] Brumlik, C. J.; Menon, V. P.; Martin,C. R.; "Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical and vacuum deposition
    
    techniques", J. Mter Res., 1994, 9: 1174-1183.
    [25] Hou, Z.; Abbott, N. L.; Stroeve, P.; "Self-Assembled monolayers on electroless gold impart pH-responsive transport of ions in porous membranes", Langmuir, 2000, 16: 2401-2404.
    [26] Che, G.; Fisher, E. R.; "Carbon nanotuble membranes for electrochemieal energy storage and production", Nature, 1998, 393:346-349
    [27] Martin, C. R.; Parthasarathy, R. V.; "Polymeric mieroeapsule arrays", Adv. Mater, 1995, 7: 487-488.
    [28] Tang, Z. K.; Zhang, L. Y; Wang, N.; et al., "Superconductivity in 4 angstrom single-walled carbon nanotubes", Science, 2001,292: 2462-2465.
    [29] Foss, Jr., C. A.; Hornyak, G. L.; Stockert, J. A.; et al., "Template- synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape", J. Phys. Chem., 1994, 98: 2963-2971.
    [30] Ozin, G. A.;"Nanochemistry- synthesis in diminishing dimensions", Adv. Mater, 1992, 4:612-649
    [31] Imhof, A.; Pine, D. J.; "Ordered marcoporous materials by emulsion templating", Nature, 1997, 389:948-951.
    [32] Walsh, D.; Mann, S.; "Fabrication of hollow porous shells of calcium carbonate from self-organizing media", Nature, 1995, 377:320-323
    [33] Schmidt-Winkel, P.; Lukens,W. W.; Yang, Jr. P.; "Microemulsion Templating of Siliceous Mesostructured Cellular Foams with Well-Defined Ultralarge Mesopores", Chem. Mater., 2000, 12:686-696
    [34] Tonucci, R. J.; Justus, B. L.; "Campillo and CE ford, nanocharmel array glass", Science, 1992, 258: 783-785.
    [35] Douglas, K.; Devaud, G; Clark, N. A.; "Transfer of biologically derived nanometer scale patterns to smooth substrates", Science, 1992, 257: 642-644.
    [36] Clark, T. D.; Ghadiri, M. R.; "Supramolecular design by covalent capture: design of a peptide cylinder via hydrogen bond-promoted intermolecular olefin metathesis", J. Am. Chem. Soc., 1995, 117:12364-12365
    [37] Yang, P.; Zhao, D.; Margolese, D.I.; et al., "Generalized syntheses of large-pore
    
    mesoporous metal oxides with semicrystalline frameworks", Nature, 1998, 396: 152-155
    [38] Zhao, D.; Sun, J.; Li, Q.; et al., " Morphological control of highly ordered mesoporous silica SBA-15", Chem. Mater, 2000, 12: 275-279.
    [39] Wei, Y.; Jin, D.; Ding, T.; et al., "A non-surfactant templating route to mesoporous silica materials", Adv. Mater., 1998, 3: 313-316.
    [40] 郑金玉,丘坤元,危岩,“有机小分子模板法合成二氧化钛中孔材料”,高等学校化学学报,2000,2:647-649
    [41] Davis, S. A.; Burkett, S. L.; Mendelson, N. H.; "Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases", Nature, 1997, 385: 420-423.
    [42] Van Dyke, L. S.; Martin, C. R; "Electrochemical investigations of electronically conductive polymers for Controlling the supermolecular structure allows charge transport rates to be enhanced", Langmuir, 1990, 6:1118-1123
    [43] Beck, J. S.; Vartuli, J. C.; Rothm, W. J.; et al., "A new family of mesoporous molecular sieves prepared with liquid crystal templates", J. Am. Chem. Soc., 1992, 114: 10834-10843.
    [44] Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R.; " Sol-Gel template synthesis of semiconductor nanostructures", Chem. Mater., 1997, 9:857-862
    [45] Patrick Hoyer; "Formation of titanium dioxide nanotube array", Langmuir, 1996, 12: 1411-1418.
    [46] Kang M-S and. Martin C. R., Investigations of potential-dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method, Langmuir, 2001,17:2753-2759
    [47] Lee, S. B.; Martin, C. R.; "Electromodulated molecular transport in gold-nanotube membranes", J. Am. Chem. Soc., 2002,124:11850-11851
    [48] Bond, A. M.; Henderson, T. L. E D.; Mann, R. T. F.; et al., "Fast electron transfer Rate for the oxidation of ferrocene in acetonitrile or dichloromethane at platinum Disk ultramicroelectrodes", Anal. Chem., 1988, 60:1878-1883.
    [49] Kobayashi, Y.; Martin, C. R.; "Highly-sensitive methods for electroanalytical
    
    chemistry based on nanotubule membranes", Anal. Chem., 1999, 71: 3665-3672.
    [50] Martin, C. R.; Nishizawa, M.; Jirage, K. B.; et al., "Transport properties of gold nanotubule membranes", J. Phys. Chem. B, 2001, 105: 1925-1934.
    [51] 杨生荣,任嗣利,张俊彦等,“自组装单分子膜的结构及其自组装机理”,高等学校化学学报,2001,22:470-476
    [52] Ulman, A.; "An introduction to organic ultra thin films", Boston, Academic Press, 1991:237—238
    [53] 邓文礼,杨林静,王琛,白春礼,“烷基硫醇分子自组装研究进展”,科学通报,1998,43:449-457
    [54] 董献堆,陆军涛,查全性,“巯基化合物自组装单分子层的研究”,电化学,1995,1:248-258
    [55] 邰超,朱若华,邹洪等,“分离科学的前沿——膜分离技术”,化学教育,2000,12:3-5
    [56] 北京大学化学系有机教研室编,“有机化学实验”,北京:北京大学出版社,1990
    [57] Wang, B.; Li, B.; Deng, Q.; at al., "Amperometric glucose biosensor based on sel-gel organic-inorganic hybrid material", Anal. Chem., 1998, 70:3170-3174
    [58] Anna, L.; Feldman, S.; Kopelman, R.; "Spatially resolved anomalous kinetics of a catalytic reaction: enzymatic glucose oxidation in capillary spaces", J. Phys. B, 1997, 101:7881-7884
    [59] Franchina, J. G.; lackowski, W. M.; Daniel, L. D.; et al., "Electrostatic immobilization of glucose oxidase in a weak acid, polyelectrolyte hyperbranched ultrathin film on gold: fabricaton, characterization and enzymatic activity", Anal. Chem., 1999,71:3133-3139
    [60] Caruso, F.; Schüler, C.; "Enzyme mulitilayers on colloid particles: assembly, stability and enzymatic activity", Langmuir, 2000,16:9595-9603
    [61] Heller, J.; Heller, A.; " Loss of activity or gain in stability of oxidase upon their immobilization in hydrated silica: significance of the electrostatic interactions of surface arginine residues at the entrances of the reaction channels", J. Am. Soc., 1998, 120:4586-4590
    
    
    [62] Chen, Q.; Kenausis, L. G; Heller, d.; "Stability of oxidase immobilized in silica gels", J. Am. Soc., 1998, 120: 4582-4585
    [63] 李源勋,叶庆玲,“酶固定化的新型载体——PF凝胶应用研究”,生物化学与生物物理进展,1994,21:523-527
    [64] 何晓晓,王柯敏,谭蔚泓等,“基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用”,科学通报,2001,16:1353-1356

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700